Using NSolve with Interpolation - wolfram-mathematica

I'm very new to Mathematica, so sorry if this has an obvious answer, but:
I'm trying to use NSolve to find the point of intersection between two functions, one of which was made using Interpolation, but it won't give me a solution.
Here is the input:
data = Table[x, {x, 1, 25, 1}];
data2 = Table[x^.5, {x, 1, 25, 1}];
a1 = Interpolation[Transpose[{data, data2}]];
NSolve[a1[z] == 5 - z^.5, z]
And the output:
NSolve[InterpolatingFunction[][z] == 5 - z^0.5, z, Reals]
Thanks for the help!

In[1]:= data = Table[x, {x, 1, 25, 1}];
data2 = Table[x^.5, {x, 1, 25, 1}];
a1 = Interpolation[Transpose[{data, data2}]];
r = z /. FindRoot[a1[z] - (5 - z^.5), {z, 1}];
{r, a1[r], 5 - r^.5}
Out[5]= {6.24994, 2.50001, 2.50001}

Related

Ploting implicit variable of Nonanalytic Equation

I have a non-analytical equation. I could solve for different values of parameters but my program is not working at all. At the end i want to plot y vs x
f[x_] := y + Sqrt[3 + x*y - x^20 - y^4]
Table[f[x], {x, 0.1, 0.5, 0.1}]
NSolve[f[x] == 0, y]
f[x_] := y + Sqrt[3 + x*y - x^20 - y^4]
sol = Solve[f[x] == 0, y];
x0 = Table[i, {i, 0.1, 0.5, 0.1}];
subs = N[sol /. x -> #] & /# x0
This creates results from which we can see that the first and second solutions produce complex numbers. Plotting the two real solutions first.
y3 = subs[[All, 3, 1, 2]];
y4 = subs[[All, 4, 1, 2]];
ListLinePlot[{Transpose[{x0, y3}], Transpose[{x0, y4}]}]
Alternatively the plot can be produced from the solutions with
Plot[{sol[[3, 1, 2]], sol[[4, 1, 2]]}, {x, 0.1, 0.5}]
The complex solutions can be plotted like so:
ParametricPlot[{{Re[sol[[1, 1, 2]]], Im[sol[[1, 1, 2]]]},
{Re[sol[[2, 1, 2]]], Im[sol[[2, 1, 2]]]}}, {x, 0, Pi/2}]

Working with implicit functions in Mathematica

Can I plot and deal with implicit functions in Mathematica?
for example :-
x^3 + y^3 = 6xy
Can I plot a function like this?
ContourPlot[x^3 + y^3 == 6*x*y, {x, -2.7, 5.7}, {y, -7.5, 5}]
Two comments:
Note the double equals sign and the multiplication symbols.
You can find this exact input via the WolframAlpha interface. This interface is more forgiving and accepts your input almost exactly - although, I did need to specify that I wanted some type of plot.
Yes, using ContourPlot.
And it's even possible to plot the text x^3 + y^3 = 6xy along its own curve, by replacing the Line primitive with several Text primitives:
ContourPlot[x^3 + y^3 == 6 x y, {x, -4, 4}, {y, -4, 4},
Background -> Black, PlotPoints -> 7, MaxRecursion -> 1, ImageSize -> 500] /.
{
Line[s_] :>
Map[
Text[Style["x^3+y^3 = 6xy", 16, Hue[RandomReal[]]], #, {0, 0}, {1, 1}] &,
s]
}
Or you can animate the equation along the curve, like so:
res = Table[ Normal[
ContourPlot[x^3 + y^3 == 6 x y, {x, -4, 4}, {y, -4, 4},
Background -> Black,
ImageSize -> 600]] /.
{Line[s_] :> {Line[s],
Text[Style["x^3+y^3 = 6xy", 16, Red], s[[k]], {0, 0},
s[[k + 1]] - s[[k]]]}},
{k, 1, 448, 3}];
ListAnimate[res]
I'm guessing this is what you need:
http://reference.wolfram.com/mathematica/Compatibility/tutorial/Graphics/ImplicitPlot.html
ContourPlot[x^3 + y^3 == 6 x*y, {x, -10, 10}, {y, -10, 10}]

how to generate a plot of planar Cantor set in mathematica

I am wondering if anyone can help me to plot the Cantor dust on the plane in Mathematica. This is linked to the Cantor set.
Thanks a lot.
EDIT
I actually wanted to have something like this:
Here's a naive and probably not very optimized way of reproducing the graphics for the ternary Cantor set construction:
cantorRule = Line[{{a_, n_}, {b_, n_}}] :>
With[{d = b - a, np = n - .1},
{Line[{{a, np}, {a + d/3, np}}], Line[{{b - d/3, np}, {b, np}}]}]
Graphics[{CapForm["Butt"], Thickness[.05],
Flatten#NestList[#/.cantorRule&, Line[{{0., 0}, {1., 0}}], 6]}]
To make Cantor dust using the same replacement rules, we take the result at a particular level, e.g. 4:
dust4=Flatten#Nest[#/.cantorRule&,Line[{{0.,0},{1.,0}}],4]/.Line[{{a_,_},{b_,_}}]:>{a,b}
and take tuples of it
dust4 = Transpose /# Tuples[dust4, 2];
Then we just plot the rectangles
Graphics[Rectangle ### dust4]
Edit: Cantor dust + squares
Changed specs -> New, but similar, solution (still not optimized).
Set n to be a positive integer and choice any subset of 1,...,n then
n = 3; choice = {1, 3};
CanDChoice = c:CanD[__]/;Length[c]===n :> CanD[c[[choice]]];
splitRange = {a_, b_} :> With[{d = (b - a + 0.)/n},
CanD##NestList[# + d &, {a, a + d}, n - 1]];
cantLevToRect[lev_]:=Rectangle###(Transpose/#Tuples[{lev}/.CanD->Sequence,2])
dust = NestList[# /. CanDChoice /. splitRange &, {0, 1}, 4] // Rest;
Graphics[{FaceForm[LightGray], EdgeForm[Black],
Table[cantLevToRect[lev], {lev, Most#dust}],
FaceForm[Black], cantLevToRect[Last#dust /. CanDChoice]}]
Here's the graphics for
n = 7; choice = {1, 2, 4, 6, 7};
dust = NestList[# /. CanDChoice /. splitRange &, {0, 1}, 2] // Rest;
and everything else the same:
Once can use the following approach. Define cantor function:
cantorF[r:(0|1)] = r;
cantorF[r_Rational /; 0 < r < 1] :=
Module[{digs, scale}, {digs, scale} = RealDigits[r, 3];
If[! FreeQ[digs, 1],
digs = Append[TakeWhile[Most[digs]~Join~Last[digs], # != 1 &], 1];];
FromDigits[{digs, scale}, 2]]
Then form the dust by computing differences of F[n/3^k]-F[(n+1/2)/3^k]:
With[{k = 4},
Outer[Times, #, #] &[
Table[(cantorF[(n + 1/2)/3^k] - cantorF[(n)/3^k]), {n, 0,
3^k - 1}]]] // ArrayPlot
I like recursive functions, so
cantor[size_, n_][pt_] :=
With[{s = size/3, ct = cantor[size/3, n - 1]},
{ct[pt], ct[pt + {2 s, 0}], ct[pt + {0, 2 s}], ct[pt + {2 s, 2 s}]}
]
cantor[size_, 0][pt_] := Rectangle[pt, pt + {size, size}]
drawCantor[n_] := Graphics[cantor[1, n][{0, 0}]]
drawCantor[5]
Explanation: size is the edge length of the square the set fits into. pt is the {x,y} coordinates of it lower left corner.

Mathematica Interpolation[] that remains constant when outside range

I want to "modify" Mathematica's Interpolation[] function (in 1
dimension) by replacing extrapolation with constant values when the
input is out of range.
In other words, if the interpolation domain is [1,20] and f[1]==7 and
f[20]==12, I want:
f[x] = 7 for x<=1
f[x] = 12 for x>=20
f[x] = Interpolation[...]
However, this fails:
(* interpolation w cutoff *)
interpcut[r_] := Module[{s, minpair, maxpair},
(* sort array by x coord *)
s = Sort[r, #1[[1]] < #2[[1]] &];
(* find min x value and corresponding y value *)
minpair = s[[1]];
(* ditto for max x value *)
maxpair = s[[-1]];
(* return the pure function representing cutoff interpolation *)
Piecewise[{
{minpair[[2]] &, #1 < minpair[[1]] &},
{maxpair[[2]] &, #1 > maxpair[[1]] &},
{Interpolation[r], True}
}]]
test = Table[{x,Prime[x]},{x,1,10}]
InputForm[interpcut[test]]
Piecewise[{{minpair$59[[2]] & , #1 < minpair$59[[1]] & },
{maxpair$59[[2]] & , #1 > maxpair$59[[1]] & }},
InterpolatingFunction[{{1, 10}}, {3, 1, 0, {10}, {4}, 0, 0, 0, 0},
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, {{2}, {3}, {5}, {7}, {11}, {13}, {17},
{19}, {23}, {29}}, {Automatic}]]
I'm sure I'm missing something basic. What?
Function definition
interpcut[r_, x_] :=
Module[{s},(*sort array by x coord*)
s = SortBy[r, First];
Piecewise[
{{First[s][[2]], x < First[s][[1]]},
{Last [s][[2]], x > Last [s][[1]]},
{Interpolation[r][x], True}}]];
Test
test = Table[{x, Prime[x]}, {x, 1, 10}];
f[x_] := interpcut[test, x]
Plot[f[x], {x, -10, 30}]
Edit
Answering your comment about pure functions.
I did it that way just for clarity, not for cheating. For using pure functions just "follow the recipe":
interpcut[r_] := Module[{s},
s = SortBy[r, First];
Function[Piecewise[
{{First[s][[2]], # < First[s][[1]]},
{Last [s][[2]], # > Last [s][[1]]},
{Interpolation[r][#], True}}]]
]
test = Table[{x, Prime[x]}, {x, 1, 10}];
f = interpcut[test] // InputForm
Plot[interpcut[test][x], {x, -10, 30}]
Let me add an update to this old thread. Since V9 you can use native (but still experimental) "ExtrapolationHandler" parameter
test = Table[{x, Prime[x]}, {x, 1, 10}];
g = Interpolation[test, "ExtrapolationHandler" ->
{If[# <= test[[1, 1]], test[[1, 2]], test[[-1, 2]]] &,
"WarningMessage" -> False}];
Plot[g[x], {x, -10, 30}]
Here's a possible alternative to belisarius's answer:
interpcut[r_] := Module[{s}, s = SortBy[r, First];
Composition[Interpolation[r], Clip[#, Map[First, Through[{First, Last}[s]]]] &]]

in mathematica, how to make initial condition as a variable in ndsolve?

i'd like to have something like this
w[w1_] :=
NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0}, y, {x, 0, 30}]
this seems like it works better but i think i'm missing smtn
w := NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0},
y, {x, 0, 30}]
w2 = Table[y[x] /. w, {w1, 0.0, 1.0, 0.5}]
because when i try to make a table, it doesn't work:
Table[Evaluate[y[x] /. w2], {x, 10, 30, 10}]
i get an error:
ReplaceAll::reps: {<<1>>[x]} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
ps: is there a better place to ask questions like that? mathematica doesn't have supported forums and only has mathGroup e-mail list. it would be nice if stackoverflow would have more specific mathematica tags like simplify, ndsolve, plot manipulation
There are a lot of ways to do that. One is:
w[w1_] := NDSolve[{y''[x] + y[x] == 2,
y'[0] == 0}, y[0] == w1,
y[x], {x, 0, 30}];
Table[Table[{w1,x,y[x] /. w[w1]}, {w1, 0., 1.0, 0.5}]/. x -> u, {u, 10, 30, 10}]
Output:
{{{0., 10, {3.67814}}, {0.5, 10, {3.25861}}, {1.,10, {2.83907}}},
{{0., 20, {1.18384}}, {0.5, 20, {1.38788}}, {1.,20, {1.59192}}},
{{0., 30, {1.6915}}, {0.5, 30, {1.76862}}, {1.,30, {1.84575}}}}
I see you already chose an answer, but I want to toss this solution for families of linear equations up. Specifically, this is to model a slight variation on Lotka-Volterra.
(*Put everything in a module to scope x and y correctly.*)
Module[{x, y},
(*Build a function to wrap NDSolve, and pass it
the initial conditions and range.*)
soln[iCond_, tRange_, scenario_] :=
NDSolve[{
x'[t] == -scenario[[1]] x[t] + scenario[[2]] x[t]*y[t],
y'[t] == (scenario[[3]] - scenario[[4]]*y[t]) -
scenario[[5]] x[t]*y[t],
x[0] == iCond[[1]],
y[0] == iCond[[2]]
},
{x[t], y[t]},
{t, tRange[[1]], tRange[[2]]}
];
(*Build a plot generator*)
GeneratePlot[{iCond_, tRange_, scen_,
window_}] :=
(*Find a way to catch errors and perturb iCond*)
ParametricPlot[
Evaluate[{x[t], y[t]} /. soln[iCond, tRange, scen]],
{t, tRange[[1]], tRange[[2]]},
PlotRange -> window,
PlotStyle -> Thin, LabelStyle -> Medium
];
(*Call the plot generator with different starting conditions*)
graph[scenario_, tRange_, window_, points_] :=
{plots = {};
istep = (window[[1, 2]] - window[[1, 1]])/(points[[1]]+1);
jstep = (window[[2, 2]] - window[[2, 1]])/(points[[2]]+1);
Do[Do[
AppendTo[plots, {{i, j}, tRange, scenario, window}]
, {j, window[[2, 1]] + jstep, window[[2, 2]] - jstep, jstep}
], {i, window[[1, 1]] + istep, window[[1, 2]] - istep, istep}];
Map[GeneratePlot, plots]
}
]
]
We can then use Animate (or table, but animate is awesome)
tRange = {0, 4};
window = {{0, 8}, {0, 6}};
points = {5, 5}
Animate[Show[graph[{3, 1, 8, 2, 0.5},
{0, t}, window, points]], {t, 0.01, 5},
AnimationRunning -> False]

Resources