in mathematica, how to make initial condition as a variable in ndsolve? - wolfram-mathematica

i'd like to have something like this
w[w1_] :=
NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0}, y, {x, 0, 30}]
this seems like it works better but i think i'm missing smtn
w := NDSolve[{y''[x] + y[x] == 2, y[0] == w1, y'[0] == 0},
y, {x, 0, 30}]
w2 = Table[y[x] /. w, {w1, 0.0, 1.0, 0.5}]
because when i try to make a table, it doesn't work:
Table[Evaluate[y[x] /. w2], {x, 10, 30, 10}]
i get an error:
ReplaceAll::reps: {<<1>>[x]} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>
ps: is there a better place to ask questions like that? mathematica doesn't have supported forums and only has mathGroup e-mail list. it would be nice if stackoverflow would have more specific mathematica tags like simplify, ndsolve, plot manipulation

There are a lot of ways to do that. One is:
w[w1_] := NDSolve[{y''[x] + y[x] == 2,
y'[0] == 0}, y[0] == w1,
y[x], {x, 0, 30}];
Table[Table[{w1,x,y[x] /. w[w1]}, {w1, 0., 1.0, 0.5}]/. x -> u, {u, 10, 30, 10}]
Output:
{{{0., 10, {3.67814}}, {0.5, 10, {3.25861}}, {1.,10, {2.83907}}},
{{0., 20, {1.18384}}, {0.5, 20, {1.38788}}, {1.,20, {1.59192}}},
{{0., 30, {1.6915}}, {0.5, 30, {1.76862}}, {1.,30, {1.84575}}}}

I see you already chose an answer, but I want to toss this solution for families of linear equations up. Specifically, this is to model a slight variation on Lotka-Volterra.
(*Put everything in a module to scope x and y correctly.*)
Module[{x, y},
(*Build a function to wrap NDSolve, and pass it
the initial conditions and range.*)
soln[iCond_, tRange_, scenario_] :=
NDSolve[{
x'[t] == -scenario[[1]] x[t] + scenario[[2]] x[t]*y[t],
y'[t] == (scenario[[3]] - scenario[[4]]*y[t]) -
scenario[[5]] x[t]*y[t],
x[0] == iCond[[1]],
y[0] == iCond[[2]]
},
{x[t], y[t]},
{t, tRange[[1]], tRange[[2]]}
];
(*Build a plot generator*)
GeneratePlot[{iCond_, tRange_, scen_,
window_}] :=
(*Find a way to catch errors and perturb iCond*)
ParametricPlot[
Evaluate[{x[t], y[t]} /. soln[iCond, tRange, scen]],
{t, tRange[[1]], tRange[[2]]},
PlotRange -> window,
PlotStyle -> Thin, LabelStyle -> Medium
];
(*Call the plot generator with different starting conditions*)
graph[scenario_, tRange_, window_, points_] :=
{plots = {};
istep = (window[[1, 2]] - window[[1, 1]])/(points[[1]]+1);
jstep = (window[[2, 2]] - window[[2, 1]])/(points[[2]]+1);
Do[Do[
AppendTo[plots, {{i, j}, tRange, scenario, window}]
, {j, window[[2, 1]] + jstep, window[[2, 2]] - jstep, jstep}
], {i, window[[1, 1]] + istep, window[[1, 2]] - istep, istep}];
Map[GeneratePlot, plots]
}
]
]
We can then use Animate (or table, but animate is awesome)
tRange = {0, 4};
window = {{0, 8}, {0, 6}};
points = {5, 5}
Animate[Show[graph[{3, 1, 8, 2, 0.5},
{0, t}, window, points]], {t, 0.01, 5},
AnimationRunning -> False]

Related

Mathematica Nested Manipulates Lag

Ok! I'm working towards building a nested manipulate command that will solve n number of damped oscillating masses in series (with fixed endpoints). I have everything pretty much working but I have one problem - when I increase the number of oscillators, my initial conditions lag behind a bit. For example, if I set n to 4, Mathematica says I still only have 2 initial conditions (the starting number - position and velocity for one oscillator). When I then move to 3, I now have 8 (from my 4 oscillators) - which is too many for the state space equations, and it all fails. What is going on?
(Yes, I know that my initial conditions aren't going to be put in correctly yet, I'm just trying to get them to match up first).
coupledSMD[n_, m_, k_, b_, f_, x0_, v0_, tmax_] :=
Module[{aM, bM, cM, dM},
aM = Join[Table[Boole[i == j - n], {i, n}, {j, 2 n}],
Join[
If[n != 1,DiagonalMatrix[-2 k/m Table[1, {n}]] +
k/m DiagonalMatrix[Table[1, {n - 1}], 1] +
k/m DiagonalMatrix[Table[1, {n - 1}], -1],
{{-2 k/m}}],
If[n != 1,DiagonalMatrix[-2 b/m Table[1, {n}]] +
b/m DiagonalMatrix[Table[1, {n - 1}], 1] +
b/m DiagonalMatrix[Table[1, {n - 1}], -1],
{{-2 b/m}}], 2]];
bM = Join[Table[0, {n}, {1}], Table[1/m, {n}, {1}]];
cM = Table[Boole[i == j], {i, n}, {j, 2 n}];
dM = Table[0, {n}, {1}];
OutputResponse[
{StateSpaceModel[{aM, bM, cM, dM}], Flatten[Join[x0, v0]]},
f, {t, 0, tmax}]
]
Manipulate[
With[{
x0s = Table[Subscript[x, i, 0], {i, 1, n}],
v0s = Table[Subscript[v, i, 0], {i, 1, n}],
initialx = Sequence ## Table[{{Subscript[x, i, 0], 0}, -10, 10}, {i, 1, n}],
initialv = Sequence ## Table[{{Subscript[v, i, 0], 0}, -10, 10}, {i, 1, n}]},
Manipulate[
myplot = coupledSMD[n, m, k, b, f, x0s, v0s, tmax];
Plot[myplot, {t, 0, tmax}, PlotRange -> yheight {-1, 1},
PlotLegends -> Table[Subscript[x, i, 0], {i, 1, n}]],
Style["Initial Positions", Bold],
initialx,
Delimiter,
Style["Initial Velocities", Bold],
initialv,
Delimiter,
Style["System conditions", Bold],
{{m, 1, "Mass(kg)"}, 0.1, 10, Appearance -> "Labeled"},
{{k, 1, "Spring Constant(N/m)"}, 0.1, 10, Appearance -> "Labeled"},
{{b, 0, "Damping Coefficient(N.s/m)"}, 0, 1, Appearance -> "Labeled"},
{{f, 0, "Applied Force"}, 0, 10, Appearance -> "Labeled"},
Delimiter,
Style["Plot Ranges", Bold],
{tmax, 10, 100},
{{yheight, 10}, 1, 100},
Delimiter,
ControlPlacement -> Flatten[{Table[Right, {2 n + 2}], Table[Left, {8}]}]
]],
{n, 1, 4, 1}
]
Edit: Updated the code. It works now, but I'm still getting the errors. I'm guessing that it has something to do with a time lag in the updating process? - That some parts are getting updated before others. Again, it seems to be working perfectly, except it throws these errors (the errors seem superfluous to me, as if they are remnants in the code, but not actually causing a problem)
But I don't really know what I'm talking about :)

Working with implicit functions in Mathematica

Can I plot and deal with implicit functions in Mathematica?
for example :-
x^3 + y^3 = 6xy
Can I plot a function like this?
ContourPlot[x^3 + y^3 == 6*x*y, {x, -2.7, 5.7}, {y, -7.5, 5}]
Two comments:
Note the double equals sign and the multiplication symbols.
You can find this exact input via the WolframAlpha interface. This interface is more forgiving and accepts your input almost exactly - although, I did need to specify that I wanted some type of plot.
Yes, using ContourPlot.
And it's even possible to plot the text x^3 + y^3 = 6xy along its own curve, by replacing the Line primitive with several Text primitives:
ContourPlot[x^3 + y^3 == 6 x y, {x, -4, 4}, {y, -4, 4},
Background -> Black, PlotPoints -> 7, MaxRecursion -> 1, ImageSize -> 500] /.
{
Line[s_] :>
Map[
Text[Style["x^3+y^3 = 6xy", 16, Hue[RandomReal[]]], #, {0, 0}, {1, 1}] &,
s]
}
Or you can animate the equation along the curve, like so:
res = Table[ Normal[
ContourPlot[x^3 + y^3 == 6 x y, {x, -4, 4}, {y, -4, 4},
Background -> Black,
ImageSize -> 600]] /.
{Line[s_] :> {Line[s],
Text[Style["x^3+y^3 = 6xy", 16, Red], s[[k]], {0, 0},
s[[k + 1]] - s[[k]]]}},
{k, 1, 448, 3}];
ListAnimate[res]
I'm guessing this is what you need:
http://reference.wolfram.com/mathematica/Compatibility/tutorial/Graphics/ImplicitPlot.html
ContourPlot[x^3 + y^3 == 6 x*y, {x, -10, 10}, {y, -10, 10}]

How to shade a plot in Mathematica

I want to generate a plot like the following
I am not sure how to generate a shading even though I can get the frame done. I'd like to know the general approach to shade certain areas in a plot in Mathematica. Please help. Thank you.
Perhaps you are looking for RegionPlot?
RegionPlot[(-1 + x)^2 + (-1 + y)^2 < 1 &&
x^2 + (-1 + y)^2 < 1 && (-1 + x)^2 + y^2 < 1 && x^2 + y^2 < 1,
{x, 0, 1}, {y, 0, 1}]
Note the use of op_ in the following (only one set of equations for the curves and the intersection!):
t[op_] :=Reduce[op[(x - #[[1]])^2 + (y - #[[2]])^2, 1], y] & /# Tuples[{0, 1}, 2]
tx = Texture[Binarize#RandomImage[NormalDistribution[1, .005], 1000 {1, 1}]];
Show[{
Plot[y /. ToRules /# #, {x, 0, 1}, PlotRange -> {{0, 1}, {0, 1}}] &# t[Equal],
RegionPlot[And ## #, {x, 0, 1}, {y, 0, 1}, PlotStyle -> tx] &# t[Less]},
Frame->True,AspectRatio->1,FrameStyle->Directive[Blue, Thick],FrameTicks->None]
If, for any particular reason, you want the dotted effect in your picture, you can achieve this like so:
pts = RandomReal[{0, 1}, {10000, 2}];
pts = Select[pts,
And ## Table[Norm[# - p] < 1, {p,
{{0, 0}, {1, 0}, {1, 1}, {0, 1}}}] &];
Graphics[{Thick,
Line[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}],
Circle[{0, 0}, 1, {0, Pi/2}],
Circle[{1, 0}, 1, {Pi/2, Pi}],
Circle[{1, 1}, 1, {Pi, 3 Pi/2}],
Circle[{0, 1}, 1, {3 Pi/2, 2 Pi}],
PointSize[Small], Point[pts]
}]

Find zeros for solutions to differential equations in Mathematica

Given the following code:
s := NDSolve[{x''[t] == -x[t], x[0] == 1, x'[0] == 1}, x, {t, 0, 5 }]
Plot[Evaluate[{x[t]} /. s], {t, 0, 3}]
This plots the solution to the differential equation. How would I numerically solve for a zero of x[t] where t ranges between 0 and 3?
The original question was answered by #rcollyer. I am answering the question you posted in your first comment to rcollyer's answer:
But what if instead our s is "s := NDSolve[{x'[t]^2 == -x[t]^3 - x[t] + 1, x[0] == 0.5}, x, {t, 0, 5}]" Then the FindRoot function just gives back an error while the plot shows that there is a zero around 0.6 or so.
So:
s = NDSolve[{x'[t]^2 == -x[t]^3 - x[t] + 1, x[0] == 0.5},
x, {t, 0, 1}, Method -> "StiffnessSwitching"];
Plot[Evaluate[{x[t]} /. s], {t, 0, 1}]
FindRoot[x[t] /. s[[1]], {t, 0, 1}]
{t -> 0.60527}
Edit
Answering rcollyer's comment, the "second line" comes from the squared derivative, as in:
s = NDSolve[{x'[t]^2 == Sin[t], x[0] == 0.5}, x[t], {t, 0, Pi}];
Plot[Evaluate[{x[t]} /. s], {t, 0, Pi}]
Coming from:
DSolve[{x'[t]^2 == Sin[t]}, x[t], t]
(*
{{x[t] -> C[1] - 2 EllipticE[1/2 (Pi/2 - t), 2]},
{x[t] -> C[1] + 2 EllipticE[1/2 (Pi/2 - t), 2]}}
*)
FindRoot works
In[1]:= FindRoot[x[t] /. s, {t, 0, 3}]
Out[1]:= {t -> 2.35619}

Plotting arrows at the edges of a curve

Inspired by this question at ask.sagemath, what is the best way of adding arrows to the end of curves produced by Plot, ContourPlot, etc...? These are the types of plots seen in high school, indicating the curve continues off the end of the page.
After some searching, I could not find a built-in way or up-to-date package to do this. (There is ArrowExtended, but it's quite old).
The solution given in the ask.sagemath question relies on the knowledge of the function and its endpoints and (maybe) the ability to take derivatives. Its translation into Mathematica is
f[x_] := Cos[12 x^2]; xmin = -1; xmax = 1; small = .01;
Plot[f[x],{x,xmin,xmax}, PlotLabel -> y==f[x], AxesLabel->{x,y},
Epilog->{Blue,
Arrow[{{xmin,f[xmin]},{xmin-small,f[xmin-small]}}],
Arrow[{{xmax,f[xmax]},{xmax+small,f[xmax+small]}}]
}]
An alternative method is to simply replace the Line[] objects generate by Plot[] with Arrow[]. For example
Plot[{x^2, Sin[10 x], UnitStep[x]}, {x, -1, 1},
PlotStyle -> {Red, Green, {Thick, Blue}},
(*AxesStyle -> Arrowheads[.03],*) PlotRange -> All] /.
Line[x__] :> Sequence[Arrowheads[{-.04, .04}], Arrow[x]]
But this has the problem that any discontinuities in the lines generate arrow heads where you don't want them (this can often be fixed by the option Exclusions -> None). More importantly, this approach is hopeless with CountourPlots. Eg try
ContourPlot[x^2 + y^3 == 1, {x, -2, 2}, {y, -2, 1}] /.
Line[x__] :> Sequence[Arrowheads[{-.04, .04}], Arrow[x]]
(the problems in the above case can be fixed by the rule, e.g., {a___, l1_Line, l2_Line, b___} :> {a, Line[Join[l2[[1]], l1[[1]]]], b} or by using appropriate single headed arrows.).
As you can see, neither of the above (quick hacks) are particularly robust or flexible. Does anyone know an approach that is?
The following seems to work, by sorting the segments first:
f[x_] := {E^-x^2, Sin[10 x], Sign[x], Tan[x], UnitBox[x],
IntegerPart[x], Gamma[x],
Piecewise[{{x^2, x < 0}, {x, x > 0}}], {x, x^2}};
arrowPlot[f_] :=
Plot[{#}, {x, -2, 2}, Axes -> False, Frame -> True, PlotRangePadding -> .2] /.
{Hue[qq__], a___, x___Line} :> {Hue[qq], a, SortBy[{x}, #[[1, 1, 1]] &]} /.
{a___,{Line[x___], d___, Line[z__]}} :>
List[Arrowheads[{-.06, 0}], a, Arrow[x], {d},
Arrowheads[{0, .06}], Arrow[z]] /.
{a___,{Line[x__]}}:> List[Arrowheads[{-.06, 0.06}], a, Arrow[x]] & /# f[x];
arrowPlot[f]
Inspired by both Alexey's comment and belisarius's answers, here's my attempt.
makeArrowPlot[g_Graphics, ah_: 0.06, dx_: 1*^-6, dy_: 1*^-6] :=
Module[{pr = PlotRange /. Options[g, PlotRange], gg, lhs, rhs},
gg = g /. GraphicsComplex -> (Normal[GraphicsComplex[##]] &);
lhs := Or##Flatten[{Thread[Abs[#[[1, 1, 1]] - pr[[1]]] < dx],
Thread[Abs[#[[1, 1, 2]] - pr[[2]]] < dy]}]&;
rhs := Or##Flatten[{Thread[Abs[#[[1, -1, 1]] - pr[[1]]] < dx],
Thread[Abs[#[[1, -1, 2]] - pr[[2]]] < dy]}]&;
gg = gg /. x_Line?(lhs[#]&&rhs[#]&) :> {Arrowheads[{-ah, ah}], Arrow##x};
gg = gg /. x_Line?lhs :> {Arrowheads[{-ah, 0}], Arrow##x};
gg = gg /. x_Line?rhs :> {Arrowheads[{0, ah}], Arrow##x};
gg
]
We can test this on some functions
Plot[{x^2, IntegerPart[x], Tan[x]}, {x, -3, 3}, PlotStyle -> Thick]//makeArrowPlot
And on some contour plots
ContourPlot[{x^2 + y^2 == 1, x^2 + y^2 == 6, x^3 + y^3 == {1, -1}},
{x, -2, 2}, {y, -2, 2}] // makeArrowPlot
One place where this fails is where you have horizontal or vertical lines on the edge of the plot;
Plot[IntegerPart[x],{x,-2.5,2.5}]//makeArrowPlot[#,.03]&
This can be fixed by options such as PlotRange->{-2.1,2.1} or Exclusions->None.
Finally, it would be nice to add an option so that each "curve" can arrow heads only on their boundaries. This would give plots like those in Belisarius's answer (it would also avoid the problem mentioned above). But this is a matter of taste.
The following construct has the advantage of not messing with the internal structure of the Graphics structure, and is more general than the one suggested in ask.sagemath, as it manage PlotRange and infinities better.
f[x_] = Gamma[x]
{plot, evals} =
Reap[Plot[f[x], {x, -2, 2}, Axes -> False, Frame -> True,
PlotRangePadding -> .2, EvaluationMonitor :> Sow[{x, f[x]}]]];
{{minX, maxX}, {minY, maxY}} = Options[plot, PlotRange] /. {_ -> y_} -> y;
ev = Select[evals[[1]], minX <= #[[1]] <= maxX && minY <= #[[2]] <= maxY &];
seq = SortBy[ev, #[[1]] &];
arr = {Arrow[{seq[[2]], seq[[1]]}], Arrow[{seq[[-2]], seq[[-1]]}]};
Show[plot, Graphics[{Red, arr}]]
Edit
As a function:
arrowPlot[f_, interval_] := Module[{plot, evals, within, seq, arr},
within[p_, r_] :=
r[[1, 1]] <= p[[1]] <= r[[1, 2]] &&
r[[2, 1]] <= p[[2]] <= r[[2, 2]];
{plot, evals} = Reap[
Plot[f[x], Evaluate#{x, interval /. List -> Sequence},
Axes -> False,
Frame -> True,
PlotRangePadding -> .2,
EvaluationMonitor :> Sow[{x, f[x]}]]];
seq = SortBy[Select[evals[[1]],
within[#,
Options[plot, PlotRange] /. {_ -> y_} -> y] &], #[[1]] &];
arr = {Arrow[{seq[[2]], seq[[1]]}], Arrow[{seq[[-2]], seq[[-1]]}]};
Show[plot, Graphics[{Red, arr}]]
];
arrowPlot[Gamma, {-3, 4}]
Still thinking what is better for ListPlot & al.

Resources