Given a set A of n positive integers, determine a non-empty subset B
consisting of as few elements as possible such that their GCD is 1 and output its size.
For example: 5 6 10 12 15 18
yields an output of "3", while:
5 2 4 6 8 10
equals "NONE" since no subset can be determined.
So it seems really basic but I'm still stuck with it. My thoughts on it are as follows: we know that having the multiples of some number already present in the set are useless since their divisors are the same times some factor k and we're going for the smallest subsest. Hence, for every ni, we remove any kni where k is a positive int from further calculations.
That's where I get stuck, though. What should I do next? I can only think of a dumb, brute force approach of trying if there is already some 2-element subset, then 3-elem and so on. What should I check to determine it in some more clever way?
Suppose for each A,B (two elements) we calculate their greatest common
divisor D. And then we store these D values somewhere as a map of the form:
A,B -> D
Let's say we also store the reverse map
D -> A,B
If there's at least one D=1 then there we go - the answer is 2.
Suppose now, there's no such D that D=1.
What condition should be met for the answer to be 3?
I think this one:
there exist two D values say D1 and D2 such that GCD(D1, D2)=1.
Right?
So now instead of As and Bs, we've transformed our problem to the
same problem over the set of all Ds and we've transformed the option of
a the 2 answer to the option a 3 answer. Right?
I am not 100% sure just thinking out loud.
But this transformed problem is even worse as
we have to store much more values.
(combinations of N elements class 2).
Not sure, this problem you pose seems like a hard
problem to me. I would be surprised if there exists
a better approach than brute-force
and would be interested to know it.
What you need to think on (and look for) is this:
is there a way to express GCD(a1, a2, ... aN)
if you know their pair-wise GCDs. If there's some
sort of method or formula you can simplify a bit
your search (for the smallest subset matching
the desired criterion).
See also this link. Maybe it could help.
https://cs.stackexchange.com/questions/10249/finding-the-size-of-the-smallest-subset-with-gcd-1
The problem is definitely a tough one to solve. I can't see any computationally efficient algorithm that would guaranteed find the solution in reasonable time.
One approach is:
Form a list of ordered sets that would contain the prime factors of each element in the original set.
Now you need to find the minimum number of sets for which their intersection is zero.
To do that, first order these sets in your list so that the sets that have least number of intersections with other sets are towards the beginning. Now what are "least number of intersections"?
This is where heuristics come into play. It can be:
1. set having Less of MIN number of intersections with other elements.
2. set having Less of MAX number of intersections with other elements.
3. Any other more suitable definition.
Now you will need to expensively iterate through all the combinations maybe through recursion to determine the solution.
Related
You are given an array of positive integers of size N. You can choose any positive number x such that x<=max(Array) and subtract it from all elements of the array greater than and equal to x.
This operation has a cost A[i]-x for A[i]>=x. The total cost for a particular step is the
sum(A[i]-x). A step is only valid if the sum(A[i]-x) is less than or equal to a given number K.
For all the valid steps find the minimum number of steps to make all elements of the array zero.
0<=i<10^5
0<=x<=10^5
0<k<10^5
Can anybody help me with any approach? DP will not work due to high constraints.
Just some general exploratory thoughts.
First, there should be a constraint on N. If N is 3, this is much easier than if it is 100. The naive brute force approach is going to be O(k^N)
Next, you are right that DP will not work with these constraints.
For a greedy approach, I would want to minimize the number of distinct non-zero values, and not maximize how much I took. Our worst case approach is take out the largest each time, for N steps. If you can get 2 pairs of entries to both match, then that shortened our approach.
The obvious thing to try if you can is an A* search. However that requires a LOWER bound (not upper). The best naive lower bound that I can see is ceil(log_2(count_distinct_values)). Unless you're incredibly lucky and the problem can be solved that quickly, this is unlikely to narrow your search enough to be helpful.
I'm curious what trick makes this problem actually doable.
I do have an idea. But it is going to take some thought to make it work. Naively we want to take each choice for x and explore the paths that way. And this is a problem because there are 10^5 choices for x. After 2 choices we have a problem, and after 3 we are definitely not going to be able to do it.
BUT instead consider the possible orders of the array elements (with ties both possible and encouraged) and the resulting inequalities on the range of choices that could have been made. And now instead of having to store a 10^5 choices of x we only need store the distinct orderings we get, and what inequalities there are on the range of choices that get us there. As long as N < 10, the number of weak orderings is something that we can deal with if we're clever.
It would take a bunch of work to flesh out this idea though.
I may be totally wrong, and if so, please tell me and I'm going to delete my thoughts: maybe there is an opportunity if we translate the problem into another form?
You are given an array A of positive integers of size N.
Calculate the histogram H of this array.
The highest populated slot of this histogram has index m ( == max(A)).
Find the shortest sequence of selections of x for:
Select an index x <= m which satisfies sum(H[i]*(i-x)) <= K for i = x+1 .. m (search for suitable x starts from m down)
Add H[x .. m] to H[0 .. m-x]
Set the new m as the highest populated index in H[0 .. x-1] (we ignore everything from H[x] up)
Repeat until m == 0
If there is only a "good" but not optimal solution sought for, I could imagine that some kind of spectral analysis of H could hint towards favorable x selections so that maxima in the histogram pile upon other maxima in the reduction step.
I have n integers a_1, ..., a_n. I want to pick the minimum number from all of them whose xor forms others.
For example, consider [1,2,3], 1^3=2 so you don't need 2 in the array. So you can remove it. To end up with [1,3]. So the min number of elements is 2 and they can form all the original elements in the array by xoring any 2 of them. Would a greedy approach work here? or DP?
Edit: To explain what I am thinking. A greedy approach I thought about was due to the fact that if a^b=c then a^c=b and b^c=a. First I delete all duplicates. then I would first in the beginning list all the pairs that each element can pair up with to form another element in the array. It takes O(n^3) for preprocessing. Then I pick the element with the least contribution and I delete it and subsequently subtract 1 from each of the other elements. I repeat this until all elements have <=2 pairs. and I stop. This would also take O(n^3) for a total of O(n^3). Does this greedy approach work? Is there a DP way to do it?
If n is bounded by 50 I think backtracking should work.
Suppose at some step we have already selected a subset S of numbers (that should produce all the others) and want to include a new number to that subset.
Then we can do the following:
Consider all remaining numbers R and include in S all numbers that can't be produced by others (in S and R)
Include in S a random (or "best" in some way) number from R
Remove from R all numbers that can be produced by those in updated S
Also you should keep track of the current best solution and cut off all the branches that won't allow to get a better result.
If I have an unsorted large set of n integers (say 2^20 of them) and would like to generate subsets with k elements each (where k is small, say 5) in increasing order of their sums, what is the most efficient way to do so?
Why I need to generate these subsets in this fashion is that I would like to find the k-element subset with the smallest sum satisfying a certain condition, and I thus would apply the condition on each of the k-element subsets generated.
Also, what would be the complexity of the algorithm?
There is a similar question here: Algorithm to get every possible subset of a list, in order of their product, without building and sorting the entire list (i.e Generators) about generating subsets in order of their product, but it wouldn't fit my needs due to the extremely large size of the set n
I intend to implement the algorithm in Mathematica, but could do it in C++ or Python too.
If your desired property of the small subsets (call it P) is fairly common, a probabilistic approach may work well:
Sort the n integers (for millions of integers i.e. 10s to 100s of MB of ram, this should not be a problem), and sum the k-1 smallest. Call this total offset.
Generate a random k-subset (say, by sampling k random numbers, mod n) and check it for P-ness.
On a match, note the sum-total of the subset. Subtract offset from this to find an upper bound on the largest element of any k-subset of equivalent sum-total.
Restrict your set of n integers to those less than or equal to this bound.
Repeat (goto 2) until no matches are found within some fixed number of iterations.
Note the initial sort is O(n log n). The binary search implicit in step 4 is O(log n).
Obviously, if P is so rare that random pot-shots are unlikely to get a match, this does you no good.
Even if only 1 in 1000 of the k-sized sets meets your condition, That's still far too many combinations to test. I believe runtime scales with nCk (n choose k), where n is the size of your unsorted list. The answer by Andrew Mao has a link to this value. 10^28/1000 is still 10^25. Even at 1000 tests per second, that's still 10^22 seconds. =10^14 years.
If you are allowed to, I think you need to eliminate duplicate numbers from your large set. Each duplicate you remove will drastically reduce the number of evaluations you need to perform. Sort the list, then kill the dupes.
Also, are you looking for the single best answer here? Who will verify the answer, and how long would that take? I suggest implementing a Genetic Algorithm and running a bunch of instances overnight (for as long as you have the time). This will yield a very good answer, in much less time than the duration of the universe.
Do you mean 20 integers, or 2^20? If it's really 2^20, then you may need to go through a significant amount of (2^20 choose 5) subsets before you find one that satisfies your condition. On a modern 100k MIPS CPU, assuming just 1 instruction can compute a set and evaluate that condition, going through that entire set would still take 3 quadrillion years. So if you even need to go through a fraction of that, it's not going to finish in your lifetime.
Even if the number of integers is smaller, this seems to be a rather brute force way to solve this problem. I conjecture that you may be able to express your condition as a constraint in a mixed integer program, in which case solving the following could be a much faster way to obtain the solution than brute force enumeration. Assuming your integers are w_i, i from 1 to N:
min sum(i) w_i*x_i
x_i binary
sum over x_i = k
subject to (some constraints on w_i*x_i)
If it turns out that the linear programming relaxation of your MIP is tight, then you would be in luck and have a very efficient way to solve the problem, even for 2^20 integers (Example: max-flow/min-cut problem.) Also, you can use the approach of column generation to find a solution since you may have a very large number of values that cannot be solved for at the same time.
If you post a bit more about the constraint you are interested in, I or someone else may be able to propose a more concrete solution for you that doesn't involve brute force enumeration.
Here's an approximate way to do what you're saying.
First, sort the list. Then, consider some length-5 index vector v, corresponding to the positions in the sorted list, where the maximum index is some number m, and some other index vector v', with some max index m' > m. The smallest sum for all such vectors v' is always greater than the smallest sum for all vectors v.
So, here's how you can loop through the elements with approximately increasing sum:
sort arr
for i = 1 to N
for v = 5-element subsets of (1, ..., i)
set = arr{v}
if condition(set) is satisfied
break_loop = true
compute sum(set), keep set if it is the best so far
break if break_loop
Basically, this means that you no longer need to check for 5-element combinations of (1, ..., n+1) if you find a satisfying assignment in (1, ..., n), since any satisfying assignment with max index n+1 will have a greater sum, and you can stop after that set. However, there is no easy way to loop through the 5-combinations of (1, ..., n) while guaranteeing that the sum is always increasing, but at least you can stop checking after you find a satisfying set at some n.
This looks to be a perfect candidate for map-reduce (http://en.wikipedia.org/wiki/MapReduce). If you know of any way of partitioning them smartly so that passing candidates are equally present in each node then you can probably get a great throughput.
Complete sort may not really be needed as the map stage can take care of it. Each node can then verify the condition against the k-tuples and output results into a file that can be aggregated / reduced later.
If you know of the probability of occurrence and don't need all of the results try looking at probabilistic algorithms to converge to an answer.
I have a problem which I am trying to solve with genetic algorithms. The problem is selecting some subset (say 4) of 100 integers (these integers are just ids that represent something else). Order does not matter, the solution to the problem is a SET of integers not an ordered list. I have a good fitness function but am having trouble with the crossover function.
I want to be able to mate the following two chromosomes:
[1 2 3 4] and
[3 4 5 6] into something useful. Clearly I cannot use the typical crossover function because I could end up with duplicates in my children which would represent invalid solutions. What is the best crossover method in this case.
Just ignore any element that occurs in both of the sets (i.e. in their intersection.), that is leave such elements unchanged in both sets.
The rest of the elements form two disjoint sets, to which you can apply pretty much any random transformation (e.g. swapping some pairs randomly) without getting duplicates.
This can be thought of as ordering and aligning both sets so that matching elements face each other and applying one of the standard crossover algorithms.
Sometimes it is beneficial to let your solution go "out of bounds" so that your search will converge more quickly. Rather than making a set of 4 unique integers a requirement for your chromosome, make the number of integers (and their uniqueness) part of the fitness function.
Since order doesn't matter, just collect all the numbers into an array, sort the array, throw out the duplicates (by disconnecting them from a linked list, or setting them to a negative number, or whatever). Shuffle the array and take the first 4 numbers.
I don't really know what you mean on "typical crossover", but I think you could use a crossover similar to what is often used for permutations:
take m ints from the first parent (m < n, where n is the number of ints in your sets)
scan the second and fill your subset from it with (n-m) ints that are free (not in the subset already).
This way you will have n ints from the first and n-m ints from the second parent, without duplications.
Sounds like a valid crossover for me :-).
I guess it might be beneficial not to do either steps on ordered sets (or using an iterator where the order of returned elements correlates somehow with the natural ordering of ints), otherwise either smaller or higher numbers will get a higher chance to be in the child making your search biased.
If it is the best method depends on the problem you want to solve...
In order to combine sets A and B, you could choose the resulting set S probabilistically so that the probability that x is in S is (number of sets out of A, B, which contain x) / 2. This will be guaranteed to contain the intersection and be contained in the union, and will have expected cardinality 4.
This is intended to be a more concrete, easily expressable form of my earlier question.
Take a list of words from a dictionary with common letter length.
How to reorder this list tto keep as many letters as possible common between adjacent words?
Example 1:
AGNI, CIVA, DEVA, DEWA, KAMA, RAMA, SIVA, VAYU
reorders to:
AGNI, CIVA, SIVA, DEVA, DEWA, KAMA, RAMA, VAYU
Example 2:
DEVI, KALI, SHRI, VACH
reorders to:
DEVI, SHRI, KALI, VACH
The simplest algorithm seems to be: Pick anything, then search for the shortest distance?
However, DEVI->KALI (1 common) is equivalent to DEVI->SHRI (1 common)
Choosing the first match would result in fewer common pairs in the entire list (4 versus 5).
This seems that it should be simpler than full TSP?
What you're trying to do, is calculate the shortest hamiltonian path in a complete weighted graph, where each word is a vertex, and the weight of each edge is the number of letters that are differenct between those two words.
For your example, the graph would have edges weighted as so:
DEVI KALI SHRI VACH
DEVI X 3 3 4
KALI 3 X 3 3
SHRI 3 3 X 4
VACH 4 3 4 X
Then it's just a simple matter of picking your favorite TSP solving algorithm, and you're good to go.
My pseudo code:
Create a graph of nodes where each node represents a word
Create connections between all the nodes (every node connects to every other node). Each connection has a "value" which is the number of common characters.
Drop connections where the "value" is 0.
Walk the graph by preferring connections with the highest values. If you have two connections with the same value, try both recursively.
Store the output of a walk in a list along with the sum of the distance between the words in this particular result. I'm not 100% sure ATM if you can simply sum the connections you used. See for yourself.
From all outputs, chose the one with the highest value.
This problem is probably NP complete which means that the runtime of the algorithm will become unbearable as the dictionaries grow. Right now, I see only one way to optimize it: Cut the graph into several smaller graphs, run the code on each and then join the lists. The result won't be as perfect as when you try every permutation but the runtime will be much better and the final result might be "good enough".
[EDIT] Since this algorithm doesn't try every possible combination, it's quite possible to miss the perfect result. It's even possible to get caught in a local maximum. Say, you have a pair with a value of 7 but if you chose this pair, all other values drop to 1; if you didn't take this pair, most other values would be 2, giving a much better overall final result.
This algorithm trades perfection for speed. When trying every possible combination would take years, even with the fastest computer in the world, you must find some way to bound the runtime.
If the dictionaries are small, you can simply create every permutation and then select the best result. If they grow beyond a certain bound, you're doomed.
Another solution is to mix the two. Use the greedy algorithm to find "islands" which are probably pretty good and then use the "complete search" to sort the small islands.
This can be done with a recursive approach. Pseudo-code:
Start with one of the words, call it w
FindNext(w, l) // l = list of words without w
Get a list l of the words near to w
If only one word in list
Return that word
Else
For every word w' in l do FindNext(w', l') //l' = l without w'
You can add some score to count common pairs and to prefer "better" lists.
You may want to take a look at BK-Trees, which make finding words with a given distance to each other efficient. Not a total solution, but possibly a component of one.
This problem has a name: n-ary Gray code. Since you're using English letters, n = 26. The Wikipedia article on Gray code describes the problem and includes some sample code.