Ranking/ weighing search result - algorithm

I am trying to build an application that has a smart adaptive search engine (lets say for cars). If I search for for 4x4 then the DB will return all the 4x4 cars I have (100 cars) - but as time goes by and I start checking out cars, liking them, commenting on them, etc the order of the search result should be the different. That means 1 month later when searching for 4x4, I should get the same result set ordered differently as per my previous interaction with the site. If I was mainly liking and commenting on German cars, BMW should be on the top and Land cruiser should be further down.
This ranking should be based on attributes that I captureduring user interaction (eg: car origin, user age, user location, car type[4x4, coupe, hatchback], price range). So for each car result I get, I will be weighing it based on how well it is performing on the 5 attributes above.
I intend to use the DB just as a repository and do the ranking and the thinking on the server. My question is, what kind of algorithm should I be using to weigh/rank my search result?
Thanks.

You're basically saying that you already have several ordering schemes:
Keyword search result
amount of likes for car's category
likely others, such as popularity, some form of date, etc.
What you do then is make up a new scheme, call it relevance:
relevance = W1 * keyword_score + W2*likes_score + ...
and sort by relevance. Experiment with the weights W1, W2, ..., until you get something you find useful.
From my understanding search engines work on this principle. It's been long thrown around that Google has on the order of 200 different inputs into the relevance score, PageRank being just one. The beauty of this approach is that it lets you fine tune the importance of everything (even individually for every query), and it lets you add additional inputs without screwing everything up.

Related

Using scoring to find customers

I have a site where customers purchase items that are tagged with a variety of taxonomy terms. I want to create a group of customers who might be interested in the same items by considering the tags associated with purchases they've made. Rather than comparing a list of tags for each customer each time I want to build the group, I'm wondering if I can use some type of scoring to solve the problem.
The way I'm thinking about it, each tag would have some unique number assigned to it. When I perform a scoring operation it would render a number that could only be achieved by combining a specific set of tags.
I could update a customer's "score" periodically so that it remains relevant.
Am I on the right track? Any ideas?
Your description of the problem looks much more like a clustering or recommendation problem. I am not sure if those tags are enough of an information to use clustering or recommendation tough.
Your idea of the score doesn't look promising to me, because the same sum could be achieved in several ways, if those numbers aren't carefully enough chosen.
What I would suggest you:
You can store tags for each user. When some user purchases a new item, you will add the tags of the item to the user's tags. On periodical time you will update the users profiles. Let's say we have users A and B. If at the time of the update the similarity between A and B is greater than some threshold, you will add a relation between the users which will indicate that the two users are similar. If it's lower you will remove the relation (if previously they were related). The similarity could be either a number of common tags or num_common_tags / num_of_tags_assigned_either_in_A_or_B.
Later on, when you will want to get users with particular set of tags, you will just do a query which checks which users have that set of tags. Also you can check for similar users to given user, just by looking up which users are linked with the user in question.
If you assign a unique power of two to each tag, then you can sum the values corresponding to the tags, and users with the exact same sets of tags will get identical values.
red = 1
green = 2
blue = 4
yellow = 8
For example, only customers who have the set of { red, blue } will have a value of 5.
This is essentially using a bitmap to represent a set. The drawback is that if you have many tags, you'll quickly run out of integers. For example, if your (unsigned) integer type is four bytes, you'd be limited to 32 tags. There are libraries and classes that let you represent much larger bitsets, but, at that point, it's probably worth considering other approaches.
Another problem with this approach is that it doesn't help you cluster members that are similar but not identical.

Sorting a list based on multiple indices and weights

Sort of a very long winded explanation of what I'm looking at so I apologize in advance.
Let's consider a Recipe:
Take the bacon and weave it ...blahblahblah...
This recipe has 3 Tags
author (most important) - Chandler Bing
category (medium importance) - Meat recipe (out of meat/vegan/raw/etc categories)
subcategory (lowest importance) - Fast food (our of fast food / haute cuisine etc)
I am a new user that sees a list of randomly sorted recipes (my palate/profile isn't formed yet). I start interacting with different recipes (reading them, saving them, sharing them) and each interaction adds to my profile (each time I read a recipe a point gets added to the respective category/author/subcategory). After a while my profile starts to look something like this :
Chandler Bing - 100 points
Gordon Ramsey - 49 points
Haute cuisine - 12 points
Fast food - 35 points
... and so on
Now, the point of all this exercise is to actually sort the recipe list based on the individual user's preferences. For example in this case I will always see Chandler Bing's recipes on the top (regardless of category), then Ramsey's recipes. At the same time, Bing's recipes will be sorted based on my preferred categories and subcategories, seeing his fast food recipes higher than his haute cuisine ones.
What am I looking at here in terms of a sorting algorithm?
I hope that my question has enough information but if there's anything unclear please let me know and I'll try to add to it.
I would allow the "Tags" with the most importance to have the greatest capacity in point difference. Example: Give author a starting value of 50 points, with a range of 0-100 points. Give Category a starting value of 25 points, with a possible range of 0-50 points, give subcategory a starting value of 12.5 points, with a possible range of 0-25 points. That way, if the user's palate changes over time, s/he will only have to work down from the maximum, or work up from the minimum.
From there, you can simply add up the points for each "Tag", and use one of many languages' sort() methods to compare each recipe.
You can write a comparison function that is used in your sort(). The point is when you're comparing two recipes just add up the points respectively based on their tags and do a simple comparison. That and whatever sorting algorithm you choose should do just fine.
You can use a recursively subdividing MSD (sort of radix sort algorithm). Works as follows:
Take the most significant category of each recipe.
Sort the list of elements based on that category, grouping elements with the same category into one bucket (Ramsay bucket, Bing bucket etc).
Recursively sort each bucket, starting with the next category of importance (Meat bucket etc).
Concatenate the buckets together in order.
Complexity: O(kn) where k is the number of category types and N is the number of recipes.
I think what you're looking for is not a sorting algorithm, but a rating scheme.
You say, you want to sort by preferences. Let's assume, these preferences have different “dimensions”, like level of complexity, type of cuisine, etc.
These dimensions have different levels of measurement. These can be e.g. numeric or simple categories/tags. It would be your job to:
Create a scheme of dimensions and scales that can represent a user's preferences.
Operationalize real-world data to fit into this scheme.
Create a profile for the users which reflects their preferences. Same for the chefs; treat them just like normal users here.
To actually match a user to a chef (or, even to another user), create a sorting callback that matches all your dimensions against each other and makes sure that in each of the dimension the compared users have a similar value (on a numeric scale), or an overlapping set of properties (on a nominal scale, like tags). Then you sort the result by the best match.

Multi Attribute Matching of Profiles

I am trying to solve a problem of a dating site. Here is the problem
Each user of app will have some attributes - like the books he reads, movies he watches, music, TV show etc. These are defined top level attribute categories. Each of these categories can have any number of values. e.g. in books : Fountain Head, Love Story ...
Now, I need to match users based on profile attributes. Here is what I am planning to do :
Store the data with reverse indexing. i.f. Each of Fountain Head, Love Story etc is index key to set of users with that attribute.
When a new user joins, get the attributes of this user, find which index keys for this user, get all the users for these keys, bucket (or radix sort or similar sort) to sort on the basis of how many times a user in this merged list.
Is this good, bad, worse? Any other suggestions?
Thanks
Ajay
The algorithm you described is not bad, although it uses a very simple notion of similarity between people.
Let us make it more adjustable, without creating a complicated matching criteria. Let's say people who like the same book are more similar than people who listen to the same music. The same goes with every interest. That is, similarity in different fields has different weights.
Like you said, you can keep a list for each interest (like a book, a song etc) to the people who have that in their profile. Then, say you want to find matches of guy g:
for each interest i in g's interests:
for each person p in list of i
if p and g have mismatching sexual preferences
continue
if p is already in g's match list
g->match_list[p].score += i->match_weight
else
add p to g->match_list with score i->match_weight
sort g->match_list based on score
The choice of weights is not a simple task though. You would need a lot of psychology to get that right. Using your common sense however, you could get values that are not that far off.
In general, matching people is much more complicated than summing some scores. For example a certain set of matching interests may have more (or in some cases less) effect than the sum of them individually. Also, an interest in one may totally result in a rejection from the other no matter what other matching interest exists (Take two very similar people that one of them loves and the other hates twilight for example)

Categorizing Words and Category Values

We were set an algorithm problem in class today, as a "if you figure out a solution you don't have to do this subject". SO of course, we all thought we will give it a go.
Basically, we were provided a DB of 100 words and 10 categories. There is no match between either the words or the categories. So its basically a list of 100 words, and 10 categories.
We have to "place" the words into the correct category - that is, we have to "figure out" how to put the words into the correct category. Thus, we must "understand" the word, and then put it in the most appropriate category algorthmically.
i.e. one of the words is "fishing" the category "sport" --> so this would go into this category. There is some overlap between words and categories such that some words could go into more than one category.
If we figure it out, we have to increase the sample size and the person with the "best" matching % wins.
Does anyone have ANY idea how to start something like this? Or any resources ? Preferably in C#?
Even a keyword DB or something might be helpful ? Anyone know of any free ones?
First of all you need sample text to analyze, to get the relationship of words.
A categorization with latent semantic analysis is described in Latent Semantic Analysis approaches to categorization.
A different approach would be naive bayes text categorization. Sample text with the assigned category are needed. In a learning step the program learns the different categories and the likelihood that a word occurs in a text assigned to a category, see bayes spam filtering. I don't know how well that works with single words.
Really poor answer (demonstrates no "understanding") - but as a crazy stab you could hit google (through code) for (for example) "+Fishing +Sport", "+Fishing +Cooking" etc (i.e. cross join each word and category) - and let the google fight win! i.e. the combination with the most "hits" gets chosen...
For example (results first):
weather: fish
sport: ball
weather: hat
fashion: trousers
weather: snowball
weather: tornado
With code (TODO: add threading ;-p):
static void Main() {
string[] words = { "fish", "ball", "hat", "trousers", "snowball","tornado" };
string[] categories = { "sport", "fashion", "weather" };
using(WebClient client = new WebClient()){
foreach(string word in words) {
var bestCategory = categories.OrderByDescending(
cat => Rank(client, word, cat)).First();
Console.WriteLine("{0}: {1}", bestCategory, word);
}
}
}
static int Rank(WebClient client, string word, string category) {
string s = client.DownloadString("http://www.google.com/search?q=%2B" +
Uri.EscapeDataString(word) + "+%2B" +
Uri.EscapeDataString(category));
var match = Regex.Match(s, #"of about \<b\>([0-9,]+)\</b\>");
int rank = match.Success ? int.Parse(match.Groups[1].Value, NumberStyles.Any) : 0;
Debug.WriteLine(string.Format("\t{0} / {1} : {2}", word, category, rank));
return rank;
}
Maybe you are all making this too hard.
Obviously, you need an external reference of some sort to rank the probability that X is in category Y. Is it possible that he's testing your "out of the box" thinking and that YOU could be the external reference? That is, the algorithm is a simple matter of running through each category and each word and asking YOU (or whoever sits at the terminal) whether word X is in the displayed category Y. There are a few simple variations on this theme but they all involve blowing past the Gordian knot by simply cutting it.
Or not...depends on the teacher.
So it seems you have a couple options here, but for the most part I think if you want accurate data you are going to need to use some outside help. Two options that I can think of would be to make use of a dictionary search, or crowd sourcing.
In regards to a dictionary search, you could just go through the database, query it and parse the results to see if one of the category names is displayed on the page. For example, if you search "red" you will find "color" on the page and likewise, searching for "fishing" returns "sport" on the page.
Another, slightly more outside the box option would be to make use of crowd sourcing, consider the following:
Start by more or less randomly assigning name-value pairs.
Output the results.
Load the results up on Amazon Mechanical Turk (AMT) to get feedback from humans on how well the pairs work.
Input the results of the AMT evaluation back into the system along with the random assignments.
If everything was approved, then we are done.
Otherwise, retain the correct hits and process them to see if any pattern can be established, generate a new set of name-value pairs.
Return to step 3.
Granted this would entail some financial outlay, but it might also be one of the simplest and accurate versions of the data you are going get on a fairly easy basis.
You could do a custom algorithm to work specifically on that data, for instance words ending in 'ing' are verbs (present participle) and could be sports.
Create a set of categorization rules like the one above and see how high an accuracy you get.
EDIT:
Steal the wikipedia database (it's free anyway) and get the list of articles under each of your ten categories. Count the occurrences of each of your 100 words in all the articles under each category, and the category with the highest 'keyword density' of that word (e.g. fishing) wins.
This sounds like you could use some sort of Bayesian classification as it is used in spam filtering. But this would still require "external data" in the form of some sort of text base that provides context.
Without that, the problem is impossible to solve. It's not an algorithm problem, it's an AI problem. But even AI (and natural intelligence as well, for that matter) needs some sort of input to learn from.
I suspect that the professor is giving you an impossible problem to make you understand at what different levels you can think about a problem.
The key question here is: who decides what a "correct" classification is? What is this decision based on? How could this decision be reproduced programmatically, and what input data would it need?
I am assuming that the problem allows using external data, because otherwise I cannot conceive of a way to deduce the meaning from words algorithmically.
Maybe something could be done with a thesaurus database, and looking for minimal distances between 'word' words and 'category' words?
Fire this teacher.
The only solution to this problem is to already have the solution to the problem. Ie. you need a table of keywords and categories to build your code that puts keywords into categories.
Unless, as you suggest, you add a system which "understands" english. This is the person sitting in front of the computer, or an expert system.
If you're building an expert system and doesn't even know it, the teacher is not good at giving problems.
Google is forbidden, but they have almost a perfect solution - Google Sets.
Because you need to unterstand the semantics of the words you need external datasources. You could try using WordNet. Or you could maybe try using Wikipedia - find the page for every word (or maybe only for the categories) and look for other words appearing on the page or linked pages.
Yeah I'd go for the wordnet approach.
Check this tutorial on WordNet-based semantic similarity measurement. You can query Wordnet online at princeton.edu (google it) so it should be relatively easy to code a solution for your problem.
Hope this helps,
X.
Interesting problem. What you're looking at is word classification. While you can learn and use traditional information retrieval methods like LSA and categorization based on such - I'm not sure if that is your intent (if it is, then do so by all means! :)
Since you say you can use external data, I would suggest using wordnet and its link between words. For instance, using wordnet,
# S: (n) **fishing**, sportfishing (the act of someone who fishes as a diversion)
* direct hypernym / inherited hypernym / sister term
o S: (n) **outdoor sport, field sport** (a sport that is played outdoors)
+ direct hypernym / inherited hypernym / sister term
# S: (n) **sport**, athletics
(an active diversion requiring physical exertion and competition)
What we see here is a list of relationships between words. The term fishing relates to outdoor sport, which relates to sport.
Now, if you get the drift - it is possible to use this relationship to compute a probability of classifying "fishing" to "sport" - say, based on the linear distance of the word-chain, or number of occurrences, et al. (should be trivial to find resources on how to construct similarity measures using wordnet. when the prof says "not to use google", I assume he means programatically and not as a means to get information to read up on!)
As for C# with wordnet - how about http://opensource.ebswift.com/WordNet.Net/
My first thought would be to leverage external data. Write a program that google-searches each word, and takes the 'category' that appears first/highest in the search results :)
That might be considered cheating, though.
Well, you can't use Google, but you CAN use Yahoo, Ask, Bing, Ding, Dong, Kong...
I would do a few passes. First query the 100 words against 2-3 search engines, grab the first y resulting articles (y being a threshold to experiment with. 5 is a good start I think) and scan the text. In particular I"ll search for the 10 categories. If a category appears more than x time (x again being some threshold you need to experiment with) its a match.
Based on that x threshold (ie how many times a category appears in the text) and how may of the top y pages it appears in you can assign a weigh to a word-category pair.
for better accuracy you can then do another pass with those non-google search engines with the word-category pair (with a AND relationship) and apply the number of resulting pages to the weight of that pair. Them simply assume the word-category pair with highest weight is the right one (assuming you'll even have more than one option). You can also multi assign a word to a multiple category if the weights are close enough (z threshold maybe).
Based on that you can introduce any number of words and any number of categories. And You'll win your challenge.
I also think this method is good to evaluate the weight of potential adwords in advertising. but that's another topic....
Good luck
Harel
Use (either online, or download) WordNet, and find the number of relationships you have to follow between words and each category.
Use an existing categorized large data set such as RCV1 to train your system of choice. You could do worse then to start reading existing research and benchmarks.
Appart from Google there exist other 'encyclopedic" datasets you can build of, some of them hosted as public data sets on Amazon Web Services, such as a complete snapshot of the English language Wikipedia.
Be creative. There is other data out there besides Google.
My attempt would be to use the toolset of CRM114 to provide a way to analyze a big corpus of text. Then you can utilize the matchings from it to give a guess.
My naive approach:
Create a huge text file like this (read the article for inspiration)
For every word, scan the text and whenever you match that word, count the 'categories' that appear in N (maximum, aka radio) positions left and right of it.
The word is likely to belong in the category with the greatest counter.
Scrape delicious.com and search for each word, looking at collective tag counts, etc.
Not much more I can say about that, but delicious is old, huge, incredibly-heavily tagged and contains a wealth of current relevant semantic information to draw from. It would be very easy to build a semantics database this way, using your word list as a basis from scraping.
The knowledge is in the tags.
As you don't need to attend the subject when you solve this 'riddle' it's not supposed to be easy I think.
Nevertheless I would do something like this (told in a very simplistic way)
Build up a Neuronal Network which you give some input (a (e)book, some (e)books)
=> no google needed
this network classifies words (Neural networks are great for 'unsure' classification). I think you may simply know which word belongs to which category because of the occurences in the text. ('fishing' is likely to be mentioned near 'sports').
After some training of the neural network it should "link" you the words to the categories.
You might be able to put use the WordNet database, create some metric to determine how closely linked two words (the word and the category) are and then choose the best category to put the word in.
You could implement a learning algorithm to do this using a monte carlo method and human feedback. Have the system randomly categorize words, then ask you to vote them as "match" or "not match." If it matches, the word is categorized and can be eliminated. If not, the system excludes it from that category in future iterations since it knows it doesn't belong there. This will get very accurate results.
This will work for the 100 word problem fairly easily. For the larger problem, you could combine this with educated guessing to make the process work faster. Here, as many people above have mentioned, you will need external sources. The google method would probably work the best, since google's already done a ton of work on it, but barring that you could, for example, pull data from your facebook account using the facebook apis and try to figure out which words are statistically more likely to appear with previously categorized words.
Either way, though, this cannot be done without some kind of external input that at some point came from a human. Unless you want to be cheeky and, for example, define the categories by some serialized value contained in the ascii text for the name :P

Algorithm for most recently/often contacts for auto-complete?

We have an auto-complete list that's populated when an you send an email to someone, which is all well and good until the list gets really big you need to type more and more of an address to get to the one you want, which goes against the purpose of auto-complete
I was thinking that some logic should be added so that the auto-complete results should be sorted by some function of most recently contacted or most often contacted rather than just alphabetical order.
What I want to know is if there's any known good algorithms for this kind of search, or if anyone has any suggestions.
I was thinking just a point system thing, with something like same day is 5 points, last three days is 4 points, last week is 3 points, last month is 2 points and last 6 months is 1 point. Then for most often, 25+ is 5 points, 15+ is 4, 10+ is 3, 5+ is 2, 2+ is 1. No real logic other than those numbers "feel" about right.
Other than just arbitrarily picked numbers does anyone have any input? Other numbers also welcome if you can give a reason why you think they're better than mine
Edit: This would be primarily in a business environment where recentness (yay for making up words) is often just as important as frequency. Also, past a certain point there really isn't much difference between say someone you talked to 80 times vs say 30 times.
Take a look at Self organizing lists.
A quick and dirty look:
Move to Front Heuristic:
A linked list, Such that whenever a node is selected, it is moved to the front of the list.
Frequency Heuristic:
A linked list, such that whenever a node is selected, its frequency count is incremented, and then the node is bubbled towards the front of the list, so that the most frequently accessed is at the head of the list.
It looks like the move to front implementation would best suit your needs.
EDIT: When an address is selected, add one to its frequency, and move to the front of the group of nodes with the same weight (or (weight div x) for courser groupings). I see aging as a real problem with your proposed implementation, in that it requires calculating a weight on each and every item. A self organizing list is a good way to go, but the algorithm needs a bit of tweaking to do what you want.
Further Edit:
Aging refers to the fact that weights decrease over time, which means you need to know each and every time an address was used. Which means, that you have to have the entire email history available to you when you construct your list.
The issue is that we want to perform calculations (other than search) on a node only when it is actually accessed -- This gives us our statistical good performance.
This kind of thing seems similar to what is done by firefox when hinting what is the site you are typing for.
Unfortunately I don't know exactly how firefox does it, point system seems good as well, maybe you'll need to balance your points :)
I'd go for something similar to:
NoM = Number of Mail
(NoM sent to X today) + 1/2 * (NoM sent to X during the last week)/7 + 1/3 * (NoM sent to X during the last month)/30
Contacts you did not write during the last month (it could be changed) will have 0 points. You could start sorting them for NoM sent in total (since it is on the contact list :). These will be showed after contacts with points > 0
It's just an idea, anyway it is to give different importance to the most and just mailed contacts.
If you want to get crazy, mark the most 'active' emails in one of several ways:
Last access
Frequency of use
Contacts with pending sales
Direct bosses
Etc
Then, present the active emails at the top of the list. Pay attention to which "group" your user uses most. Switch to that sorting strategy exclusively after enough data is collected.
It's a lot of work but kind of fun...
Maybe count the number of emails sent to each address. Then:
ORDER BY EmailCount DESC, LastName, FirstName
That way, your most-often-used addresses come first, even if they haven't been used in a few days.
I like the idea of a point-based system, with points for recent use, frequency of use, and potentially other factors (prefer contacts in the local domain?).
I've worked on a few systems like this, and neither "most recently used" nor "most commonly used" work very well. The "most recent" can be a real pain if you accidentally mis-type something once. Alternatively, "most used" doesn't evolve much over time, if you had a lot of contact with somebody last year, but now your job has changed, for example.
Once you have the set of measurements you want to use, you could create an interactive apoplication to test out different weights, and see which ones give you the best results for some sample data.
This paper describes a single-parameter family of cache eviction policies that includes least recently used and least frequently used policies as special cases.
The parameter, lambda, ranges from 0 to 1. When lambda is 0 it performs exactly like an LFU cache, when lambda is 1 it performs exactly like an LRU cache. In between 0 and 1 it combines both recency and frequency information in a natural way.
In spite of an answer having been chosen, I want to submit my approach for consideration, and feedback.
I would account for frequency by incrementing a counter each use, but by some larger-than-one value, like 10 (To add precision to the second point).
I would account for recency by multiplying all counters at regular intervals (say, 24 hours) by some diminisher (say, 0.9).
Each use:
UPDATE `addresslist` SET `favor` = `favor` + 10 WHERE `address` = 'foo#bar.com'
Each interval:
UPDATE `addresslist` SET `favor` = FLOOR(`favor` * 0.9)
In this way I collapse both frequency and recency to one field, avoid the need for keeping a detailed history to derive {last day, last week, last month} and keep the math (mostly) integer.
The increment and diminisher would have to be adjusted to preference, of course.

Resources