I am taking a parallel programming class and am really struggling with understanding some of the computational complexity calculations and algebraic simplifications.Specifically for the bitonic sort algorithm I am looking when each processor is given a block of elements.
I am looking at situations when either a hypercube or 2D mesh interconnection network is used. I am given the following definitions for the calculation of Speedup, Efficiency, Iso-Efficiency and determining if the solution is cost optimal. I can understand how Speedup is determined but am totally lost as to how to solve for Efficiency and Iso-Efficiency. I think I understand cost-optimality as well. Given below are the equations.
The text which I am using for the class is
Introduction to Parallel Computing, 2nd Edition by Ananth Grama, Anshul Gupta, George Karypis & Vipin Kumar
For my question regarding the algebra of this problem, please refer to this
Related
I hope this is the right place for this question.
Polynomial time algorithms! How do polynomial time algorithms (PTAs) actually relate to the processing power, memory size (RAM) and storage of computers?
We consider PTAs to be efficient. We know that even for a PTA, the time complexity increases with the input size n. Take for example, there already exists a PTA that determines if a number is prime. But what happens if I want to check a number this big https://justpaste.it/3fnj2? Is the PTA for prime check still considered efficient? Is there a computer that can compute if such a big number like that is prime?
Whether yes or no (maybe no, idk), how does the concept of polynomial time algorithms actually apply in the real world? Is their some computing bound or something for so-called polynomial time algorithms?
I've tried Google searches on this but all I find are mathematical Big O related explanations. I don't find articles that actual relate the concept of PTAs to computing power. I would appreciate some explanation or links to some resources.
There are a few things to explain.
Regarding Polynomial Time as efficient is just an arbitrary agreement. The mathematicians have defined a set Efficient_Algorithms = {P algorithm, where P Polynomial}. That is only a mathematical definition. Mathematicians don't see your actual hardware and they don't care for it. They work with abstract concepts. Yes, scientists consider O(n^100) as efficient.
But you cannot compare one to one statements from theoretical computer science with computer programs running on hardware. Scientists work with formulas and theorems while computer programs are executed on electric circuits.
The Big-Oh notation does not help you for comparing implementations of an algorithms. The Big-Oh notation compares algorithms but not the implementations of them. This can be illustrated as follows. Consider you have a prime checking algorithm with a high polynomial complexity. You implement it and you see it does not perform well for practical use cases. So you use a profiler. It tells you where the bottle neck is. You find out that 98% of the computations time are matrix multiplications. So you develop a processor that does exactly such calculations extremely fast. Or you buy the most modern graphics card for this purpose. Or you wait 150 years for a new hardware generation. Or you achieve to make most of these multiplications parallel. Imagine you achieved somehow to reduce the time for matrix multiplications by 95%. With this wonderful hardware you run your algorithm. And suddenly it performs well. So your algorithm is actually efficient. It was only your hardware that was not powerful enough. This is not an thought experiment. Such dramatic improvements of computation power are reality quite often.
The very most of algorithms that have a polynomial complexity have such because the problems they are solving are actually of polynomial complexity. Consider for example the matrix multiplication. If you do it on paper it is O(n^3). It is the nature of this problem that it has a polynomial complexity. In practice and daily life (I think) most problems for which you have a polynomial algorithm are actually polynomial problems. If you have a polynomial problem, then a polynomial algorithm is efficient.
Why do we talk about polynomial algorithms and why do we consider them as efficient? As already said, this is quite arbitrary. But as a motivation the following words may be helpful. When talking about "polynomial algorithms", we can say there are two types of them.
The algorithms that have a complexity that is even lower than polynomial (e.t. linear or logarithmic). I think we can agree to say these are efficient.
The algorithms that are actually polynomial and not lower than polynomial. As illustrated above, in practice these algorithms are oftentimes polynomial because they solve problems that are actually of polynomial nature and therefore require polynomial complexity. If you see it this way, then of course we can say, these algorithms are efficient.
In practice if you have a linear problem you will normally recognise it as a linear problem. Normally you would not apply an algorithm that has a worse complexity to a linear problem. This is just practical experience. If you for example search an element in a list you would not expect more comparisons than the number of elements in the list. If in such cases you apply an algorithm that has a complexity O(n^2), then of course this polynomial algorithm is not efficient. But as said, such mistakes are oftentimes so obvious, that they don't happen.
So that is my final answer to your question: In practice software developers have a good feeling for linear complexity. Good developers also have a feeling of logarithmic complexity in real life. In consequence that means, you don't have to worry about complexity theory too much. If you have polynomial algorithm, then you normally have a quite good feeling to tell if the problem itself is actually linear or not. If this is not the case, then your algorithm is efficient. If you have an exponential algorithm, it may not be obvious what is going on. But in practice you see the computation time, do some experiments or get complains from users. Exponential complexity is normally not deniable.
I have been reading about the Strassen Algorithm for matrix multiplication.
As mentioned in Introduction to Algorithms by Cormen , the algorithm is not intuitive. However I am curious to know if there exists any rigorous mathematical proof of the algorithm and what actually went into the design of the algorithm.
I tried searching on Google and stackoverflow, but all links are only on comparing Strassen's approach to standard matrix multiplication approach or they elaborate on the procedure presented by the algorithm.
You should go to the source material. In this case, the original paper by Strassen:
Strassen, Volker, Gaussian Elimination is not Optimal, Numer. Math. 13, p. 354-356, 1969
http://link.springer.com/article/10.1007%2FBF02165411?LI=true
Even though I haven't read it myself, I would assume that there is a rigorous discussion and proof of the complexity of the algorithm.
It looks like Professor Strassen is still active (http://en.wikipedia.org/wiki/Volker_Strassen) and has a home page (http://www.math.uni-konstanz.de/~strassen/). If, after learning as much as you can about the algorithm, you are still interested in learning more, I don't think a carefully worded email to the professor would be out of the question.
Unfortunately, there does not seem to be a free version of the paper available online despite the fact that the work was completed at a public university (UC Berkeley) using federal funds (NSF grant), but that is a completely separate issue we shouldn't discuss here.
If you are a student, you will likely have access via your school, or at least your school could get you a copy without cost to you. Good luck.
The proof that Strassen's algorithm should exist is a simple dimension count (combined with a proof that the naive dimension count gives the correct answer). Consider the vector
space of all bilinear
map $C^n\times C^n \rightarrow C^n$, this is a vector space of dimension $n^3$ (in the case of matrix multiplication, we have $n=m^2$, e.g. $n=4$ for the $2\times 2$ case). The set of bilinear
maps of rank one, i.e., those computable in an algorithm using just one scalar multiplication, has dimension $3(n-1)+1$ and the set of bilinear maps of rank at
most $r$ has dimension the min of $r[3(n-1)]+r$ and $n^3$ for most values of $n,r$ (and one can check that
this is correct when $r=7,n=4$. Thus any bilinear map $C^4\times C^4\rightarrow C^4$,
with probability one has rank at most $7$, and may always be approximated to arbitrary
precision by a bilinear map of rank at most $7$.
Can anyone give some references showing how to determine the maximum likelihood and support vector machine classifiers' computation complexity?
I have been searching the web but don't seem to find a good docs that details how to find the equations that model the computation complexity of those classifier algorithms.
Thanks
Support vector machines, and a number of maximum likelihood fits are convex minimization problems. Therefore they could in theory be solved in polynomial time using http://en.wikipedia.org/wiki/Ellipsoid_method.
I suspect that you can get much better estimates if you consider methods. http://www.cse.ust.hk/~jamesk/papers/jmlr05.pdf says that standard SVM fitting on m instances costs O(m^3) time and O(m^2) space. http://research.microsoft.com/en-us/um/people/minka/papers/logreg/minka-logreg.pdf gives costs per iteration for logistic regression but does not give a theoretical basis for estimating the number of iterations. In practice I would hope that this goes to quadratic convergence most of the time and is not too bad.
Where can I turn for information regarding computing times of mathematical functions? Has any (general) study with any amount of rigor been made?
For instance, the computing time of
constant + constant
generally takes O(1).
Suppose I want to start using math like integrals, and I'd like to get an asymptotic approximation to various integrals. Has there been a standard study of this, or must I take the information I have and figure out my own approximation. I'd be very interested in a standard approach to this, and I'd like to know if it already exists.
Here's my motivation:
I'm in the middle of writing a paper that points out the equivalence between NP hard problems and certain types of mathematical equations. It seems that there might be use for a study of math computing times that is generalized like a new science.
EDIT:
I guess I'm wondering if there is a standard computational complexity to any given math that cannot be avoided. I'm wondering if anyone has studied this question. I'd love to see what others have tried.
EDIT 2:
Wikipedia lists "Computational Complexity Theory" in their encyclopedia, which I think may fit the bill. I'm still wondering if someone who has studied this could affirm this.
"Standard" math has no notion of algorithmic complexity. That's reserved for computer algorithms.
There are ways to analyze the dynamic behavior of solutions of equations. Things like convergence matter a great deal to mathematicians.
You can ask what the algorithmic complexity of euler integration versus fifth-order Runge-Kutta for integration. They would compare based on number of function evaluations required and time step stability.
But what's the "running time" of the solution to Fermat's Last Theorem? What about the last of David Hilbert's challenge problems? Is the "running time" for those a century and counting? What's your running time for solving a partial differential equation using separation of variables?
When you think about it that way, do you have a better understanding of why people would be put off by your question?
Yes, for various mathematical functions, the computational complexity (running time) of computing the function has been studied. This can differ depending on the model of computation.
For example adding two n-bit numbers takes Θ(n) time, multiplying them takes Θ(n log n) time (using the FFT), finding their gcd takes Θ(n2) time with the usual Euclidean algorithm and Θ(n(log n)2 (log log n)) with better algorithms, etc. For more complicated stuff like integrals, obviously it depends on what algorithm you use to do it.
There isn't a collected body of work, but work on approximating functions comes close. For example, you'd like to know that approximating sin(x) to within an epsilon error can be done in time proportional to some polynomial in log(x) and 1/epsilon. There isn't a general theory here (you should look up information complexity though), and focusing on specific functions might help.
user389117,
I think that subconsciously you want to deduce the complexity of computing a mathematical type from the form of this mathematical type.
E.g. A math type which concerns the square of the variable (x^2) you think (at least subconsciously) that the complexity of the computation is anologous to x^2 so the complexity should be something like O(n^2) or there is a standard process to deduce the form of complexity from the form of the mathematical equation.
These both are different qualities and one cannot deduce the one quality from the other.
I will give you an example: In papers all algorithms are written in pseudo code and then the scientists deduce the complexity of the pseudo code.
The pseudo code must be inevitably written and then you compute the complexity.
There is no a magical way to have the complexity derived from the form of the thing you want to compute.
Even if you compute the complexity and you find that the form is analogous to the form of the equation computed then I think it would be hard, at least at first place, for you to convert that remark from pseudo-science to science.
Good Luck!
Several of my peers have mentioned that "linear algebra" is very important when studying algorithms. I've studied a variety of algorithms and taken a few linear algebra courses and I don't see the connection. So how is linear algebra used in algorithms?
For example what interesting things can one with a connectivity matrix for a graph?
Three concrete examples:
Linear algebra is the fundament of modern 3d graphics. This is essentially the same thing that you've learned in school. The data is kept in a 3d space that is projected in a 2d surface, which is what you see on your screen.
Most search engines are based on linear algebra. The idea is to represent each document as a vector in a hyper space and see how the vector relates to each other in this space. This is used by the lucene project, amongst others. See VSM.
Some modern compression algorithms such as the one used by the ogg vorbis format is based on linear algebra, or more specifically a method called Vector Quantization.
Basically it comes down to the fact that linear algebra is a very powerful method when dealing with multiple variables, and there's enormous benefits for using this as a theoretical foundation when designing algorithms. In many cases this foundation isn't as appearent as you might think, but that doesn't mean that it isn't there. It's quite possible that you've already implemented algorithms which would have been incredibly hard to derive without linalg.
A cryptographer would probably tell you that a grasp of number theory is very important when studying algorithms. And he'd be right--for his particular field. Statistics has its uses too--skip lists, hash tables, etc. The usefulness of graph theory is even more obvious.
There's no inherent link between linear algebra and algorithms; there's an inherent link between mathematics and algorithms.
Linear algebra is a field with many applications, and the algorithms that draw on it therefore have many applications as well. You've not wasted your time studying it.
Ha, I can't resist putting this here (even though the other answers are good):
The $25 billion dollar eigenvector.
I'm not going to lie... I never even read the whole thing... maybe I will now :-).
I don't know if I'd phrase it as 'linear algebra is very important when studying algorithms". I'd almost put it the other way around. Many, many, many, real world problems end up requiring you to solve a set of linear equations. If you end up having to tackle one of those problems you are going to need to know about some of the many algorithms for dealing with linear equations. Many of those algorithms were developed when computers was a job title, not a machine. Consider gaussian elimination and the various matrix decomposition algorithms for example. There is a lot of very sophisticated theory on how to solve those problems for very large matrices for example.
Most common methods in machine learning end up having an optimization step which requires solving a set of simultaneous equations. If you don't know linear algebra you'll be completely lost.
Many signal processing algorithms are based on matrix operations, e.g. Fourier transform, Laplace transform, ...
Optimization problems can often be reduced to solving linear equation systems.
Linear algebra is also important in many algorithms in computer algebra, as you might have guessed. For example, if you can reduce a problem to saying that a polynomial is zero, where the coefficients of the polynomial are linear in the variables x1, …, xn, then you can solve for what values of x1, …, xn make the polynomial equal to 0 by equating the coefficient of each x^n term to 0 and solving the linear system. This is called the method of undetermined coefficients, and is used for example in computing partial fraction decompositions or in integrating rational functions.
For the graph theory, the coolest thing about an adjacency matrix is that if you take the nth power of an adjacency Matrix for an unweighted graph (each entry is either 0 or 1), M^n, then each entry i,j will be the number of paths from vertex i to vertex j of length n. And if that isn't just cool, then I don't know what is.
All of the answers here are good examples of linear algebra in algorithms.
As a meta answer, I will add that you might be using linear algebra in your algorithms without knowing it. Compilers that optimize with SSE(2) typically vectorize your code by having many data values manipulated in parallel. This is essentially elemental LA.
It depends what type of "algorithms".
Some examples:
Machine-Learning/Statistics algorithms: Linear Regressions (least-squares, ridge, lasso).
Lossy compression of signals and other processing (face recognition, etc). See Eigenfaces
For example what interesting things can one with a connectivity matrix for a graph?
A lot of algebraic properties of the matrix are invariant under permutations of vertices (for example abs(determinant)), so if two graphs are isomorphic, their values will be equal.
This is a source for good heuristics for determining whether two graphs
are not isomorphic, since of course equality does not guarantee existance of isomorphism.
Check algebraic graph theory for a lot of other interesting techniques.