I have variables outside a particular function, which I want to put in a workspace. I do this by using assignin('caller'....
As a test case, I did the same scenario, one as described above, and the other as simply defining a duplicate scenario within the main function (code below)
Quite simply there is a performance issue with this, here are my results:
normal
Elapsed time is 1.613414 seconds.
assignin('caller',...
Elapsed time is 1.849663 seconds.
The timing is not significant here, but it does matter as number of (single) variables increase. I see orders of magnitude performance decrease in my work. I checked that both versions give the exact same results at the end
note: For some strange reason in my code not present here, I have many matrices and single-variables each involved in operations and computations. If matrices are called with assignin('caller'..., there is literally no performance hit. With single variables, the problem in performance arises.
MATLAB versions tested in:
2013a Win7-64bit (me)
2010b Win7-64bit (Luis Mendo)
CODE
function sof
sig = 0.3;
max_iter = 100000;
% in functiond efined variables
y1 = 2.5;
y2 = 7.3;
y3 = 3.4;
y4 = 7.2;
y5 = 2.2;
y6 = 1.7;
y7 = 9.2;
k = zeros(1,max_iter);
% defined elswhere using assignin 'caller'
get_vars (max_iter);
% perform calculations with variables defined here
tic
for i=1:max_iter
k(i) = normrnd(y1,sig)/y2*y3*y4/y5*y6/y7/y1*y2 + y1*y3*y5/y2;
end
toc
% perform calculations with variables defined with assignin('caller',...;
tic
for i=1:max_iter
k_a(i) = normrnd(x1,sig)/x2*x3*x4/x5*x6/x7/x1*x2 + x1*x3*x5/x2;
end
toc
end
function get_vars (mrange)
assignin('caller','x1',2.5);
assignin('caller','x2',7.3);
assignin('caller','x3',3.4);
assignin('caller','x4',7.2);
assignin('caller','x5',2.2);
assignin('caller','x6',1.7);
assignin('caller','x7',9.2);
assignin('caller','k_a',zeros(1,mrange ));
end
Related
The goal of this experiment is to compare speed of Matlab and Julia with a small piece of code below.
First the Matlab code:
>> t = 5000; n = 10000; x = 1:t*n;
>> x = reshape(x, t, n);
>> tic(); y1 = sum(x(:) .* x(:)); toc()
Elapsed time is 0.229563 seconds.
>> y1
y1 =
4.1667e+22
>> tic(); y2 = trace(x * x'); toc()
Elapsed time is 15.332694 seconds.
>> y2
y2 =
4.1667e+22
Versus in Julia
julia> t = 5000; n = 10000; x = 1: t*n;
julia> x = reshape(x, t, n);
julia> tic(); y1 = sum(x[:].* x[:]); toc();
elapsed time: 1.235170533 seconds
julia> y1
-4526945843202100544
julia> tic();y2 = trace(x*x'); toc();
The second one did not finish the job in more than 1 minutes. So what is the matter here with Julia? This piece of code happen to run both slower and overflow in Julia? Is there any problem in my style? I think one reason to convert from Matlab to Julia is the speed, and I used to think that Julia handles big number arithmetic operations by default. Now, it looks like these are not correct. Can someone explain?
There are a couple of things going on here.
Firstly, unlike Matlab, the x is an array of machine integers, not floating point values. This appears to be the main difference in speed, as it is unable to use BLAS routines for linear algebra.
You need to do either
x = 1.0:t*n
or explicitly convert it via
x = float(x)
This is also the reason for a different answer: Julia uses machine arithmetic, which for integers will wrap around on overflow (hence the negative number). You won't have this problem with floating point values.
(Julia does have arbitrary-precision integers, but doesn't promote by default: instead you would need to promote them yourself via big(n))
This will give you some speed up, but you can do better. Julia does require a slightly different programming style than Matlab. See the links that Isaiah provided in the comments above.
In regards to your specific examples
sum(x[:].* x[:])
This is slow as it creates 3 intermediate vectors (2 copies of x[:], though hopefully this will change in future, and their product).
Similarly,
trace(x*x')
computes an intermediate matrix (most of which is not used in the trace).
My suggestion would be to use
dot(vec(x),vec(x))
vec(x) just reshapes x into a vector (so no copying), and dot is the usual sum-product. You could also "roll-your-own":
function test(x)
s = zero(eltype(x)) # this prevents type-instability
for xi in x
s += xi*xi
end
s
end
test(x)
(this needs to be in a function for the JIT compiler to work its magic). It should be reasonably fast, though probably still not as fast as dot, which uses BLAS calls underneath.
I have a loop in which I use ppval to evaluate a set of values from a piecewise polynomial spline. The interpolation is easily the most time consuming part of the loop and I am looking for a way improve the function's efficiency.
More specifically, I'm using a finite difference scheme to calculate transient temperature distributions in friction welds. To do this I need to recalculate the material properties (as a function of temperature and position) at each time step. The rate limiting factor is the interpolation of these values. I could use an alternate finite difference scheme (less restrictive in the time domain) but would rather stick with what I have if at all possible.
I've included a MWE below:
x=0:.1:10;
y=sin(x);
pp=spline(x,y);
tic
for n=1:10000
x_int=10*rand(1000,1);
y_int=ppval(pp,x_int);
end
toc
plot(x,y,x_int,y_int,'*') % plot for sanity of data
Elapsed time is 1.265442 seconds.
Edit - I should probably mention that I would be more than happy with a simple linear interpolation between values but the interp1 function is slower than ppval
x=0:.1:10;
y=sin(x);
tic
for n=1:10000
x_int=10*rand(1000,1);
y_int=interp1(x,y,x_int,'linear');
end
toc
plot(x,y,x_int,y_int,'*') % plot for sanity of data
Elapsed time is 1.957256 seconds.
This is slow, because you're running into the single most annoying limitation of JIT. It's the cause of many many many oh so many questions in the MATLAB tag here on SO:
MATLAB's JIT accelerator cannot accelerate loops that call non-builtin functions.
Both ppval and interp1 are not built in (check with type ppval or edit interp1). Their implementation is not particularly slow, they just aren't fast when placed in a loop.
Now I have the impression it's getting better in more recent versions of MATLAB, but there are still quite massive differences between "inlined" and "non-inlined" loops. Why their JIT doesn't automate this task by simply recursing into non-builtins, I really have no idea.
Anyway, to fix this, you should copy-paste the essence of what happens in ppval into the loop body:
% Example data
x = 0:.1:10;
y = sin(x);
pp = spline(x,y);
% Your original version
tic
for n = 1:10000
x_int = 10*rand(1000,1);
y_int = ppval(pp, x_int);
end
toc
% "inlined" version
tic
br = pp.breaks.';
cf = pp.coefs;
for n = 1:10000
x_int = 10*rand(1000,1);
[~, inds] = histc(x_int, [-inf; br(2:end-1); +inf]);
x_shf = x_int - br(inds);
zero = ones(size(x_shf));
one = x_shf;
two = one .* x_shf;
three = two .* x_shf;
y_int = sum( [three two one zero] .* cf(inds,:), 2);
end
toc
Profiler:
Results on my crappy machine:
Elapsed time is 2.764317 seconds. % ppval
Elapsed time is 1.695324 seconds. % "inlined" version
The difference is actually less than what I expected, but I think that's mostly due to the sum() -- for this ppval case, I usually only need to evaluate a single site per iteration, which you can do without histc (but with simple vectorized code) and matrix/vector multiplication x*y (BLAS) instead of sum(x.*y) (fast, but not BLAS-fast).
Oh well, a ~60% reduction is not bad :)
It is a bit surprising that interp1 is slower than ppval, but having a quick look at its source code, it seems that it has to check for many special cases and has to loop over all the points since it it cannot be sure if the step-size is constant.
I didn't check the timing, but I guess you can speed up the linear interpolation by a lot if you can guarantee that steps in x of your table are constant, and that the values to be interpolated are stricktly within the given range, so that you do not have to do any checking. In that case, linear interpolation can be converted to a simple lookup problem like so:
%data to be interpolated, on grid with constant step
x = 0:0.5:10;
y = sin(x);
x_int = 0:0.1:9.9;
%make sure it is interpolation, not extrapolation
assert(all(x(1) <= x_int & x_int < x(end)));
% compute mapping, this can be precomputed for constant grid
slope = (length(x) - 1) / (x(end) - x(1));
offset = 1 - slope*x(1);
%map x_int to interval 1..lenght(i)
xmapped = offset + slope * x_int;
ind = floor(xmapped);
frac = xmapped - ind;
%interpolate by taking weighted sum of neighbouring points
y_int = y(ind) .* (1 - frac) + y(ind+1) .* frac;
% make plot to check correctness
plot(x, y, 'o-', x_int, y_int, '.')
I have two vectors that represents a function f(x), and another vector f(ax+b) i.e. a scaled and shifted version of f(x). I would like to find the best scale and shift factors.
*best - by means of least squares error , maximum likelihood, etc.
any ideas?
for example:
f1 = [0;0.450541598502498;0.0838213779969326;0.228976968716819;0.91333736150167;0.152378018969223;0.825816977489547;0.538342435260057;0.996134716626885;0.0781755287531837;0.442678269775446;0];
f2 = [-0.029171964726699;-0.0278570165494982;0.0331454732535324;0.187656956432487;0.358856370923984;0.449974662483267;0.391341738643094;0.244800719791534;0.111797007617227;0.0721767235173722;0.0854437239807415;0.143888234591602;0.251750993723227;0.478953530572365;0.748209818420035;0.908044924557262;0.811960826711455;0.512568916956487;0.22669198638799;0.168136111568694;0.365578085161896;0.644996661336714;0.823562159983554;0.792812945867018;0.656803251999341;0.545799498053254;0.587013303815021;0.777464637372241;0.962722388208354;0.980537136457874;0.734416947254272;0.375435649393553;0.106489547770962;0.0892376361668696;0.242467741982851;0.40610516900965;0.427497319032133;0.301874099075184;0.128396341665384;0.00246347624097456;-0.0322120242872125]
*note that f(x) may be irreversible...
Thanks,
Ohad
For each f(x), take the absolute value of f(x) and normalize it such that it can be considered a probability mass function over its support. Calculate the expected value E[x] and variance of Var[x]. Then, we have that
E[a x + b] = a E[x] + b
Var[a x + b] = a^2 Var[x]
Use the above equations and the known values of E[x] and Var[x] to calculate a and b. Taking your values of f1 and f2 from your example, the following Octave script performs this procedure:
% Octave script
% f1, f2 are defined as given in your example
f1 = [zeros(length(f2) - length(f1), 1); f1];
save_f1 = f1; save_f2 = f2;
f1 = abs( f1 ); f2 = abs( f2 );
f1 = f1 ./ sum( f1 ); f2 = f2 ./ sum( f2 );
mean = #(x)sum(((1:length(x))' .* x));
var = #(x)sum((((1:length(x))'-mean(x)).^2) .* x);
m1 = mean(f1); m2 = mean(f2);
v1 = var(f1); v2 = var(f2)
a = sqrt( v2 / v1 ); b = m2 - a * m1;
plot( a .* (1:length( save_f1 )) + b, save_f1, ...
1:length( save_f2 ), save_f2 );
axis([0 length( save_f1 )];
And the output is
Here's a simple, effective, but perhaps somewhat naive approach.
First make sure you make a generic interpolator through both functions. That way you can evaluate both functions in between the given data points. I used a cubic-splines interpolator, since that seems general enough for the type of smooth functions you provided (and does not require additional toolboxes).
Then you evaluate the source function ("original") at a large number of points. Use this number also as a parameter in an inline function, that takes as input X, where
X = [a b]
(as in ax+b). For any input X, this inline function will compute
the function values of the target function at the same x-locations, but then scaled and offset by a and b, respectively.
The sum of the squared-differences between the resulting function values, and the ones of the source function you computed earlier.
Use this inline function in fminsearch with some initial estimate (one that you have obtained visually or by via automatic means). For the example you provided, I used a few random ones, which all converged to near-optimal fits.
All of the above in code:
function s = findScaleOffset
%% initialize
f2 = [0;0.450541598502498;0.0838213779969326;0.228976968716819;0.91333736150167;0.152378018969223;0.825816977489547;0.538342435260057;0.996134716626885;0.0781755287531837;0.442678269775446;0];
f1 = [-0.029171964726699;-0.0278570165494982;0.0331454732535324;0.187656956432487;0.358856370923984;0.449974662483267;0.391341738643094;0.244800719791534;0.111797007617227;0.0721767235173722;0.0854437239807415;0.143888234591602;0.251750993723227;0.478953530572365;0.748209818420035;0.908044924557262;0.811960826711455;0.512568916956487;0.22669198638799;0.168136111568694;0.365578085161896;0.644996661336714;0.823562159983554;0.792812945867018;0.656803251999341;0.545799498053254;0.587013303815021;0.777464637372241;0.962722388208354;0.980537136457874;0.734416947254272;0.375435649393553;0.106489547770962;0.0892376361668696;0.242467741982851;0.40610516900965;0.427497319032133;0.301874099075184;0.128396341665384;0.00246347624097456;-0.0322120242872125];
figure(1), clf, hold on
h(1) = subplot(2,1,1); hold on
plot(f1);
legend('Original')
h(2) = subplot(2,1,2); hold on
plot(f2);
linkaxes(h)
axis([0 max(length(f1),length(f2)), min(min(f1),min(f2)),max(max(f1),max(f2))])
%% make cubic interpolators and test points
pp1 = spline(1:numel(f1), f1);
pp2 = spline(1:numel(f2), f2);
maxX = max(numel(f1), numel(f2));
N = 100 * maxX;
x2 = linspace(1, maxX, N);
y1 = ppval(pp1, x2);
%% search for parameters
s = fminsearch(#(X) sum( (y1 - ppval(pp2,X(1)*x2+X(2))).^2 ), [0 0])
%% plot results
y2 = ppval( pp2, s(1)*x2+s(2));
figure(1), hold on
subplot(2,1,2), hold on
plot(x2,y2, 'r')
legend('before', 'after')
end
Results:
s =
2.886234493867320e-001 3.734482822175923e-001
Note that this computes the opposite transformation from the one you generated the data with. Reversing the numbers:
>> 1/s(1)
ans =
3.464721948700991e+000 % seems pretty decent
>> -s(2)
ans =
-3.734482822175923e-001 % hmmm...rather different from 7/11!
(I'm not sure about the 7/11 value you provided; using the exact values you gave to make a plot results in a less accurate approximation to the source function...Are you sure about the 7/11?)
Accuracy can be improved by either
using a different optimizer (fmincon, fminunc, etc.)
demanding a higher accuracy from fminsearch through optimset
having more sample points in both f1 and f2 to improve the quality of the interpolations
Using a better initial estimate
Anyway, this approach is pretty general and gives nice results. It also requires no toolboxes.
It has one major drawback though -- the solution found may not be the global optimizer, e.g., the quality of the outcomes of this method could be quite sensitive to the initial estimate you provide. So, always make a (difference) plot to make sure the final solution is accurate, or if you have a large number of such things to do, compute some sort of quality factor upon which you decide to re-start the optimization with a different initial estimate.
It is of course very possible to use the results of the Fourier+Mellin transforms (as suggested by chaohuang below) as an initial estimate to this method. That might be overkill for the simple example you provide, but I can easily imagine situations where this could indeed be very useful.
For the scale factor a, you can estimate it by computing the ratio of the amplitude spectra of the two signals since the Fourier transform is invariant to shift.
Similarly, you can estimate the shift factor b by using the Mellin transform, which is scale invariant.
Here's a super simple approach to estimate the scale a that works on your example data:
a = length(f2) / length(f1)
This gives 3.4167 which is close to your stated value of 3.4. If that estimate is good enough, you can use correlation to estimate the shift.
I realize that this is not exactly what you asked, but it may be an acceptable alternative depending on the data.
Both Rody Oldenhuis and jstarr's answers are correct. I'm adding my own answer just to sum things up, and connect between them.
I've messed up Rody's code a little bit and ended up with the following:
function findScaleShift
load f1f2
x0 = [length(f1)/length(f2) 0]; %initial guess, can do better
n=length(f1);
costFunc = #(z) sum((eval_f1(z,f2,n)-f1).^2);
opt.TolFun = eps;
xopt=fminsearch(costFunc,x0,opt);
f1r=eval_f1(xopt,f2,n);
subplot(211);
plot(1:n,f1,1:n,f1r,'--','linewidth',5)
title(xopt);
subplot(212);
plot(1:n,(f1-f1r).^2);
title('squared error')
end
function y = eval_f1(x,f2,n)
t = maketform('affine',[x(1) 0 x(2); 0 1 0 ; 0 0 1]');
y=imtransform(f2',t,'cubic','xdata',[1 n ],'ydata',[1 1])';
end
This gives zero results:
This method is accurate but exhaustive and may take some time. Another disadvantage is that it finds only a local minima, and may give false results if initial guess (x0) is far.
On the other hand, jstarr method gave the following results:
xopt = [ 3.49655562549115 -0.676062367063033]
which is 10% deviation from the correct answer. Pretty fast solution, but not as accurate as I requested, but still should be noted.
I think in order to get the best results jstarr method should be used as an initial guess for the method purposed by Rody, giving an accurate solution.
Ohad
Optimizing my MATLAB code, I stumbled upon a weird problem regarding anonymous functions.
Like in this thread I realized, that sometimes anonymous functions are running really slow.
But with minimal changes to the function, it runs as fast as subfunctions or nested functions.
I used this (simple) test file to reproduce the behaviour with Matlab R2010b under Windows 7 64-bit:
clear all; close all; clc;
% functions
fn1 = #(x) x^2;
fn2 = #(x) double(x^2);
% variables
x = linspace(-100,100,100000);
N = length(x);
%% anonymous function
y = zeros(1,N);
t = tic;
for i=1:N
y(i) = fn1(x(i));
end
tm.anonymous_1 = toc(t);
%% anonymous function (modified)
y = zeros(1,N);
t = tic;
for i=1:N
y(i) = fn2(x(i));
end
tm.anonymous_2 = toc(t);
%% print
tm
The results I got were:
tm =
anonymous_1: 1.0605
anonymous_2: 0.1217
As you can see the first approach is about 10 times slower.
I have no idea what triggers this speedup/slowdown.
I tried different things, getting nearly the same (fast) timings:
fn2 = #(x) 1 * x^2;
fn2 = #(x) 0 + x^2;
fn2 = #(x) abs(x^2);
fn2 = #(x) x*x;
Before I start profiling all of my functions,
I would like to know if anyone has an explanation for this behaviour?
P.S.: I know that "vectorized" approaches are much faster, but in my case a solver will be evaluating the function for each variable time step, so that is not an option.
It appears that in the case of 'fn2' the Matlab optimizer is able to inline the function, whereas it is unable to do so in the case of 'fn1'.
This probably has to do with what Matlab knows about the scalarity or complexity or structure of the argument and return value. It probably figures out that 'i' (the argument at the call-site) is necessarily scalar, real and non-strctured. Given a scalar argument it then tries to figure out the behaviour of the function. In the case of 'fn2' Matlab's optimizer statically determines that it can always fit all possible results of 'double()' into the target variable 'y(i)'. For some reason only known to the designers of the optimizer, Matlab is unable to come to the same conclusion for 'fn1'. Maybe there are some non-obvious corner-cases, or '^' lacks some piece of meta-data that the optimizer depends on. Anyway, the result is that in case of 'fn1' Matlab apparently re-evaluats the function at every iteration.
Anyway, statically optimizing dynamic languages is something of a black art in compiler design.
I believe that making the return type of a function independent of its argument's types makes it easier for Matlab to optimize. By the way, y = fn1(x); and y = fn2(x); have roughly the same proportion in terms of run time, so it's not the effect of arguments being scalar or complex.
Purely as an experiment, I'm writing sort functions in MATLAB then running these through the MATLAB profiler. The aspect I find most perplexing is to do with swapping elements.
I've found that the "official" way of swapping two elements in a matrix
self.Data([i1, i2]) = self.Data([i2, i1])
runs much slower than doing it in four lines of code:
e1 = self.Data(i1);
e2 = self.Data(i2);
self.Data(i1) = e2;
self.Data(i2) = e1;
The total length of time taken up by the second example is 12 times less than the single line of code in the first example.
Would somebody have an explanation as to why?
Based on suggestions posted, I've run some more tests.
It appears the performance hit comes when the same matrix is referenced in both the LHS and RHS of the assignment.
My theory is that MATLAB uses an internal reference-counting / copy-on-write mechanism, and this is causing the entire matrix to be copied internally when it's referenced on both sides. (This is a guess because I don't know the MATLAB internals).
Here are the results from calling the function 885548 times. (The difference here is times four, not times twelve as I originally posted. Each of the functions have the additional function-wrapping overhead, while in my initial post I just summed up the individual lines).
swap1: 12.547 s
swap2: 14.301 s
swap3: 51.739 s
Here's the code:
methods (Access = public)
function swap(self, i1, i2)
swap1(self, i1, i2);
swap2(self, i1, i2);
swap3(self, i1, i2);
self.SwapCount = self.SwapCount + 1;
end
end
methods (Access = private)
%
% swap1: stores values in temporary doubles
% This has the best performance
%
function swap1(self, i1, i2)
e1 = self.Data(i1);
e2 = self.Data(i2);
self.Data(i1) = e2;
self.Data(i2) = e1;
end
%
% swap2: stores values in a temporary matrix
% Marginally slower than swap1
%
function swap2(self, i1, i2)
m = self.Data([i1, i2]);
self.Data([i2, i1]) = m;
end
%
% swap3: does not use variables for storage.
% This has the worst performance
%
function swap3(self, i1, i2)
self.Data([i1, i2]) = self.Data([i2, i1]);
end
end
In the first (slow) approach, the RHS value is a matrix, so I think MATLAB incurs a performance penalty in creating a new matrix to store the two elements. The second (fast) approach avoids this by working directly with the elements.
Check out the "Techniques for Improving Performance" article on MathWorks for ways to improve your MATLAB code.
you could also do:
tmp = self.Data(i1);
self.Data(i1) = self.Data(i2);
self.Data(i2) = tmp;
Zach is potentially right in that a temporary copy of the matrix may be made to perform the first operation, although I would hazard a guess that there is some internal optimization within MATLAB that attempts to avoid this. It may be a function of the version of MATLAB you are using. I tried both of your cases in version 7.1.0.246 (a couple years old) and only saw a speed difference of about 2-2.5.
It's possible that this may be an example of speed improvement by what's called "loop unrolling". When doing vector operations, at some level within the internal code there is likely a FOR loop which loops over the indices you are swapping. By performing the scalar operations in the second example, you are avoiding any overhead from loops. Note these two (somewhat silly) examples:
vec = [1 2 3 4];
%Example 1:
for i = 1:4,
vec(i) = vec(i)+1;
end;
%Example 2:
vec(1) = vec(1)+1;
vec(2) = vec(2)+1;
vec(3) = vec(3)+1;
vec(4) = vec(4)+1;
Admittedly, it would be much easier to simply use vector operations like:
vec = vec+1;
but the examples above are for the purpose of illustration. When I repeat each example multiple times over and time them, Example 2 is actually somewhat faster than Example 1. For a small loop with a known number (in the example, just 4), it can actually be more efficient to forgo the loop. Of course, in this particular example, the vector operation given above is actually the fastest.
I usually follow this rule: Try a few different things, and pick the fastest for your specific problem.
This post deserves an update, since the JIT compiler is now a thing (since R2015b) and so is timeit (since R2013b) for more reliable function timing.
Below is a short benchmarking function for element swapping within a large array.
I have used the terms "directly swapping" and "using a temporary variable" to describe the two methods in the question respectively.
The results are pretty staggering, the performance of directly swapping 2 elements using is increasingly poor by comparison to using a temporary variable.
function benchie()
% Variables for plotting, loop to increase size of the arrays
M = 15; D = zeros(1,M); W = zeros(1,M);
for n = 1:M;
N = 2^n;
% Create some random array of length N, and random indices to swap
v = rand(N,1);
x = randi([1, N], N, 1);
y = randi([1, N], N, 1);
% Time the functions
D(n) = timeit(#()direct);
W(n) = timeit(#()withtemp);
end
% Plotting
plot(2.^(1:M), D, 2.^(1:M), W);
legend('direct', 'with temp')
xlabel('number of elements'); ylabel('time (s)')
function direct()
% Direct swapping of two elements
for k = 1:N
v([x(k) y(k)]) = v([y(k) x(k)]);
end
end
function withtemp()
% Using an intermediate temporary variable
for k = 1:N
tmp = v(y(k));
v(y(k)) = v(x(k));
v(x(k)) = tmp;
end
end
end