I have a big text file, every line has a timestamp and some other data, like this:
timestamp1,data
timestamp2,data
timestamp5,data
timestamp7,data
...
timestampN,data
This file is ordered by timestamp but there might be gaps between consecutive timestamps.
I need to fill those gaps and write the new file.
I've thought about reading two consecutive lines of the file. But I have two problems here:
How to read two consecutive lines? NLineInputFormat or
MultipleLineTextInputFormat may help with this, will they read
line1+line2, line2+line3,... or line1+line2, line3+line4?
How to manage lines when I have several mappers running?
Any other algorithm/solution? Maybe this can not be done with mapreduce?
(Pig/Hive solutions are also valid)
Thanks in advance.
You can use similar approach to famous 1 Tb sort
If you know range of timestamp values in your file you can do following:
Mappers should map data by some timestamp region(which will be your key).
Reducers process data in context of one key and you can implement any desired logic there.
Also, secondary sort may help to get values sorted by timestamps in your reducer.
Related
Writing parquet data can be done with something like the following. But if I'm trying to write to more than just one file and moreover wanting to output to multiple s3 files so that reading a single column does not read all s3 data how can this be done?
AvroParquetWriter<GenericRecord> writer =
new AvroParquetWriter<GenericRecord>(file, schema);
GenericData.Record record = new GenericRecordBuilder(schema)
.set("name", "myname")
.set("favorite_number", i)
.set("favorite_color", "mystring").build();
writer.write(record);
For example what if I want to partition by a column value so that all the data with favorite_color of red goes in one file and those with blue in another file to minimize the cost of certain queries. There should be something similar in a Hadoop context. All I can find are things that mention Spark using something like
df.write.parquet("hdfs:///my_file", partitionBy=["created_year", "created_month"])
But I can find no equivalent to partitionBy in plain Java with Hadoop.
In a typical Map-Reduce application, the number of output files will be the same as the number of reduces in your job. So if you want multiple output files, set the number of reduces accordingly:
job.setNumReduceTasks(N);
or alternatively via the system property:
-Dmapreduce.job.reduces=N
I don't think it is possible to have one column per file with the Parquet format. The internal structure of Parquet files is initially split by row groups, and only these row groups are then split by columns.
I'm new to developing map-reduce function. Consider I have csv file containing four column data.
For example:
101,87,65,67
102,43,45,40
103,23,56,34
104,65,55,40
105,87,96,40
Now, I want extract say
40 102
40 104
40 105
as those row contain 40 in forth column.
How to write map reduce function?
Basically WordCount example resembles very well what you are trying to achieve. Instead of initializing the count per each word, you should have a condition to check if the tokenized String has required value and only in that case you write to context. This will work, since Mapper will receive each line of the CSV separately.
Now Reducer will receive the list of the values, already organized per key. In Reducer, instead of having IntWritable as output value type, you can use NullWritable for return value type, so your code will only output the keys. Also you do not need the cycle in Reducer, since you only would like to output the keys.
I do not provide you any code in my answer, since you will learn nothing from that. Make you way from the recommendations.
EDIT: since you modified you question with request for Reducer, here are some tips how you can achieve what you want.
One of the possibilities for achiving desired result is: in Mapper, after splitting (or tekenizing) the line, you write to context column 3 as key and column 0 as value. Your Reducer, since you do not need to any kind of aggregation, can simply write the keys and values produced by Mappers (yep, your Reducer code will end up with a single line of code). You can check one of my previous answers, the figure there explains quite well what Map and Reduce phases are doing.
Does mapreduce and any of the other hadoop technologies (HBase, Hive, pig etc) lend themselves well to situations where you have multiple input files and where data needs to be compared between the different datasources.
In the past I've written a few mapreduce jobs using Hadoop and Pig. However these tasks were quite simple since they involved manipulating only a single dataset. The requirements we have now, dictates that we read data from multiple sources and perform comparisons on various data elements on another datasource. We then report on the differences. The datasets we are working with are in the region of 10million - 60million records and so far we haven't manage to make these jobs fast enough.
Is there a case for using mapreduce in order to solve such issues or am I going down the wrong route.
Any suggestions are much appreciated.
I guess I'd preprocess the different datasets into a common format (being sure to include a "data source" id column with a single unique value for each row coming from the same dataset). Then move the files into the same directory, load the whole dir and treat it as a single data source in which you compare the properties of rows based on their dataset id.
Yes, you can join multiple datasets in a mapreduce job. I would recommend getting a copy of the book/ebook Hadoop In Action which addresses joining data from multiple sources.
When you have multiple input files you can use MapReduce API FileInputFormat.addInputPaths() in which can take a comma separated list of multiple files, as below:
FileInputFormat.addInputPaths("dir1/file1,dir2/file2,dir3/file3");
You can also pass multiple inputs into a Mapper in hadoop using Distributed Cache, more info is described here: multiple input into a Mapper in hadoop
If i am not misunderstanding you are trying to normalize the structured data in records, coming in from several inputs and then process it. Based on this, i think you really need to look at this article which helped me in past. It included How To Normalize Data Using Hadoop/MapReduce as below:
Step 1: Extract the column value pairs from the original data.
Step 2: Extract column-value Pairs Not In Master ID File
Step 3: Calculate the Maximum ID for Each Column in the Master File
Step 4: Calculate a New ID for the Unmatched Values
Step 5: Merge the New Ids with the Existing Master IDs
Step 6: Replace the Values in the Original Data with IDs
Using MultipleInputs we can do this.
MutlipleInputs.addInputPath(job, Mapper1.class, TextInputFormat.class,path1);
MutlipleInputs.addInputPath(job, Mapper2.class, TextInputFormat.class,path2);
job.setReducerClass(Reducer1.class);
//FileOutputFormat.setOutputPath(); set output path here
If both classes have a common key, then they can be joined in reducer and do the necessary logics
Imagine you have a big file stored in hdtf which contains structured data. Now the goal is to process only a portion of data in the file like all the lines in the file where second column value is between so and so. Is it possible to launch the MR job such that hdfs only stream the relevant portion of the file versus streaming everything to the mappers.
The reason is that I want to expedite the job speed by only working on the portion that I need. Probably one approach is to run a MR job to get create a new file but I am wondering if one can avoid that?
Please note that the goal is to keep the data in HDFS and I do not want to read and write from database.
HDFS stores files as a bunch of bytes in blocks, and there is no indexing, and therefore no way to only read in a portion of your file (at least at the time of this writing). Furthermore, any given mapper may get the first block of the file or the 400th, and you don't get control over that.
That said, the whole point of MapReduce is to distribute the load over many machines. In our cluster, we run up to 28 mappers at a time (7 per node on 4 nodes), so if my input file is 1TB, each map slot may only end up reading 3% of the total file, or about 30GB. You just perform the filter that you want in the mapper, and only process the rows you are interested in.
If you really need filtered access, you might want to look at storing your data in HBase. It can act as a native source for MapReduce jobs, provides filtered reads, and stores its data on HDFS, so you are still in the distributed world.
One answer is looking at the way that hive solves this problem. The data is in "tables" which are really just meta data about files on disk. Hive allows you to set columns on which a table is partitioned. This creates a separate folder for each partition so if you were partitioning a file by date you would have:
/mytable/2011-12-01
/mytable/2011-12-02
Inside of the date directory would be you actual files. So if you then ran a query like:
SELECT * FROM mytable WHERE dt ='2011-12-01'
Only files in /mytable/2011-12-01 would be fed into the job.
Tho bottom line is that if you want functionality like this you either want to move to a higher level language (hive/pig) or you need to roll your own solutions.
Big part of the processing cost - is data parsing to produce Key-Values to the Mapper. We create there (usually) one java object per value + some container. It is costly both in terms of CPU and garbage collector pressure
I would suggest the solution "in the middle". You can write input format which will read the input stream and skip non-relevant data in the early stage (for example by looking into few first bytes of the string). As a result you will read all data, but actually parse and pass to the Mapper - only portion of it.
Another approach I would consider - is to use RCFile format (or other columnar format), and take care that relevant and non relevant data will sit in the different columns.
If the files that you want to process have some unique attribute about their filename (like extension or partial filename match), you can also use the setInputPathFilter method of FileInputFormat to ignore all but the ones you want for your MR job. Hadoop by default ignores all ".xxx" and _xxx" files/dirs, but you can extend with setInputPathFilter.
As others have noted above, you will likely get sub-optimal performance out of your cluster doing something like this which breaks the "one block per mapper" paradigm, but sometimes this is acceptable. Can sometimes take more to "do it right", esp if you're dealing with a small amount of data & the time to re-architect and/or re-dump into HBase would eclipse the extra time required to run your job sub-optimally.
how do we design mapper/reducer if I have to transform a text file line-by-line into another text file.
I wrote a simple map/reduce programs which did a small transformation but the requirement is a bit more elaborate below are the details:
the file is usually structured like this - the first row contains a comma separated list of column names. Second and the rest of the rows specify values against the columns
In some rows the trailing column values might be missing ex: if there are 15 columns then values might be specified only for the first 10 columns.
I have about 5 input files which I need to transform and aggregate into one file. the transformations are specific to each of the 5 input files.
How do I pass contextual information like file name to the mapper/reducer program?
Transformations are specific to columns so how do I remember the columns mentioned in the first row and then correlate and transform values in rows?
Split file into lines, transform (map) each line in parallel, join (reduce) the resulting lines into one file?
You can not rely on the column info in the first row. If your file is larger than a HDFS block, your file will be broken into multiple splits and each split handed to a different mapper. In that case, only the mapper receiving the first split will receive the first row with column info and the rest won't.
I would suggest passing file specific meta data in separate file and distribute it as side data. Your mapper or reducer tasks could read the meta data file.
Through the Hadoop Context object, you can get hold of the name of the file being processed by a mapper. Between all these, I think you have all the context information you are referring to and you can do file specific transformation. Even though the transformation logic is different for different files, the mapper output needs to have the same format.
If you using reducer, you could set the number of reducers to one, to force all output to aggregate to one file.