Custom polling vs JMS MessageListener - performance

Sorry, if it is a duplicate question.
I have a legacy web application which uses Queues (yes. normal Java Queue) and custom polling (every 500ms). A REST web service (/message) will be called, which will return the message if any otherwise empty string.
My need: If any message is available in Queue, in Real-Time, the client should get the message. So I can save 500ms.
Is there any advantage to moving to JMS from current approach? From this link JMS MessageConsumer's messageListener makes push or pull? it seems, MessageListener (process is asynchronous) uses polling which is no different from current approach.
If it is vendor based, how HornetQ/ActiveMQ supports MessageListener?
EDIT:
The queue is used for integration of two systems. A web app & standlone java program.

Either receive or a MessageListener will be asynchronous and will be called as soon as you receive a message.
you could control the pre-fetch size of your client.
Now, if all you need is to avoid the delay of poling every 500 ms, using a Queue system may be an overkill? It's perfect fine to use java.util.Queue (or any other subclass).
If all you need is to block until an element of a java.util.Queue is available, and you don't need distributed messaging, persistence or anything like you could simply using BlockingDequeue and your thread would unblock as soon as you have a message..
Look at this:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingDeque.html

The Async MessageListener is implemented using a push based model. In ActiveMQ the broker sends a number of messages to the client based in it's set prefetch value so that messages are ready for consumption. Whether or not this helps with your particular use case is a question you need to answer for yourself.

Related

Using transactional bus inside consumer

I have REST API gateway which calls one of the microservices with MassTransit request client. This request is not durable and is meant to live for a short time - essentially it's just replacement of "traditional" synchronous (via HTTP/GRPC/etc) gateway-microservice communication.
On microservice side I have consumer which under the hood uses DbContext and Transaction (EFC) to perform some work in database. After the work is done it should publish "WorkDoneEvent" (to be consumed later by other microservices) and return result of the work to api gateway. Event must be published atomically along with transaction used to perform the work. It does not matter if ApiGateway will receive response / will retry request - as soon as transaction is commited both work result and sending "WorkDoneEvent" must be guaranteed.
Normally this is done with transactional outbox which first saves published event to database within same transaction as the work is done. (And then some process constantly "polls" outbox and tries send message to the broker, when done it removes message from outbox). As far as I know.
MassTransit seems to have transactional outbox built in: https://masstransit-project.com/advanced/middleware/transactions.html#transactional-bus.
However in docs it clearly states:
Never use the TransactionalBus or TransactionalEnlistmentBus when writing consumers. These tools are very specific and should be used only in the scenarios described.
And this is exactly what I want to do...
Why I should not do it?
I'd suggest using the InMemoryOutbox, which is part of MassTransit. It's significantly lighter weight, is designed to work in a consumer, and will not publish your events until after the consumer has completed (but prior to acknowledging the message at the broker). The only consideration is that your consumer should be idempotent (which needs to be the case in your approach as well) and if the operation was already performed on a retry, it should republish the events.
There are videos, articles, and a sample to go along with it.

JMS consumer inside a Netty handler?

I'm designing a quite complicated system and was wondering what the best way is to put a jms consumer (activemq, vm protocol, non persitent) inside a netty handler.
Let me explain, i have several clients connecting to my netty server using websockets. For every client connection i create a jms consumer that listens for interesting messages on one or more topics. If a interesting message arrives i need to do a extra step (additional filtering) before sending the message to the client using the websocket.
Is the following a good way to do this:
inside a SimpleChannelInboundHandler i declare a private non static consumer
the consumer is initialized in channelActive
the consumer is destroyed in channelInactive
when a message is received by consumer i do the extra filter a send it using ctx.channel().write()
In this setup i'm a bit worried that the consumer might turn into slow consumer and slow everything down, cause the websocket goes over the internet.
I came up with a more complex one to decouple the "receiving of message by consumer" and "sending of message through a websocket".
inside a SimpleChannelInboundHandler i declare a private non static consumer
the consumer is initialized in channelActive
the consumer is destroyed in channelInactive
when a message is received by consumer i put it in a blockedqueue
every minute i let a thread (created for every client) look in the queue and send the found messages to the client using ctx.channel().write().
At this point i'm a bit worried about the extra thread per client.
Or is there maybe a better way to accomplish this task?
This is a classic slow consumer problem and the first step to resolving it is to determine what the appropriate action is when a slow consumer is detected. If it is acceptable that the slow consumer misses messages then the solution is some variation on dropping messages or unsubscribing them from the feed. For example, if it's acceptable that the client misses messages then, when one is received from JMS, check if the channel is writable. If it isn't, drop the message. If you want to give yourself a bit more of a buffer (although OS buffers are quite large) you can track the number of write completion future's that haven't completed (ie the messages haven't been written to the OS send buffer) and drop messages if there are too many outstanding write requests.
If the client may not miss messages, and is consistently slow, then the problem is more difficult. One option might be to divert messages to a JMS queue with a specific header value, then open a new consumer that reads messages from that queue using a JMS selector. This will put more load on the JMS server but might be appropriate for temporary slowness and hopefully it won't interfere with you main topic feeds. Alternatively you might want to stash the messages in a different store, such as a database, so you can poll for messages when they can be sent. If you do this right a single polling thread can cope with many clients (query for clients which have outstanding messages, then for each client, load a bunch of messages). However this isn't as convenient as using JMS.
I wouldn't go with option 2 because the blocking queue is only going to solve the problem temporarily, and you can achieve the same thing by tracking how many write operations are waiting to complete.

Synchronous request-reply pattern in a Java EE container

I am looking to implement an synchronous request-reply pattern using JMS inside a Java EE container. The sequence would be something like this
Browser makes a request to web application for data. This is a blocking request (say on thread T1).
The web app needs to connect to a remote web service to fulfill the above request. So it forms a request and places it on a queue (with a reply-to queue also declared).
The remote service processes the requests and places the response on to the reply-to queue declared in step 2
The response is read from the reply-to Q in the web app and made available to the blocking thread T1 of step 1.
I have followed the answer provided by T.Rob (How to match MQ Server reply messages to the correct request)
QueueReceiver queueReceiver =
session.createReceiver(destination, "JMSCorrelationID='customMessageId'");
TextMessage receivedMessage = (TextMessage)queueReceiver.receive( 15000 );
Is the above solution valid when running in a Java EE container (web module) where there could be multiple concurrent requests coming in?
This depends on the perception of "valid": It will probably compile and work. But from the design perspective, one could say that you can really improve it.
If your thread is blocking, any asynchronous communication won't add any value. Instead it will make it slow, it will consume resources, and it might even create trouble (see link below).
Whatever service is exposed by the the system processing the messages (possibly an MDB), extract it into a separate service class, and provide another frontend in the shape of a stateless session bean. So your service is exposed both by an sync and async interface, and the client can choose.
In your scenario your servlet just calls an EJB synchronously.
As for the problems which may happen otherwise: Have a look at JMS request/response pattern in transactional environment (this approach uses a temporary queue).
Using a single queue (the way you have quoted in your question), you need a selector (the condition) to get relevant messages: This might be slow, depending on the volume in the queue.
On the other hand, if you implement your servlet with asynchronous support as well (using #WebServlet(asyncSupported = true)), it's something different. In that case I would say it's a valid approach.
In that scenario you can save resources (namely threads; but the HTTP connections remain open), because one background thread listening on a queue can serve multiple clients. Consider this if you have performance or resource problems. Until then I suggest the synchronous way, because it is easier to implement.
The JMS Request/Reply of the EAI Patterns might fit for you.
It's well explained and there's also samples in Java:
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReplyJmsExample.html

About JMS system structure

I’m writing a server/client game, a typical scenario looks like this: one client (clientA) send a message to the server, there is a MessageDrivenBean in server to handle such messages. After the MDB finished its job, it sends the result message back to another client (clientB).
In my opinion I only need two queues for such communication, one for input the other for output. Creating new queue for each connection is not a good idea, right?
The Input queue is relative clear, if more clients are sending message at the same time, the messages are just waiting in the queue, while there are more MDB instances in server, that should not a big performance issue.
But on the other side I am not quite clear about the output queue, should I use a topic instead of a queue? Every client is listening the output queue, one of them gets the new message and checks the property to determine if the message is to it, if not, it rollback the transaction, the message goes back to queue and be ready for other client … It should work but must be very slow. If I use topic instead, every client gets a copy of the message, if it’s not to it, just ignores the message. It should be better, right?
I’m new about message system. Is there any suggestion about my implementation? Thanks!
To begin with, choosing JMS as a gaming platform is, well, unusual — businesses use JMS brokers for delivery reliability and transaction support. Do you really need this heavy lifiting in a game? Shouldn't you resort to your own HTTP-based protocol, for example?
That said, two queues are a standard pattern for point-to-point communication. Creating a queue for a new connection is definitely not OK — message-driven beans are attached to queues at deployment time, so you won't be able to respond to queue creation events. Besides, queues are not meant to be created and destroyed in short cycles, they're rather designed to be long-living entities. If you need to deliver a message to one precise client, have the client listen on the server response queue with a message selector set to filter only the messages intended for this client (see javax.jms.Message API).
With topics it's exactly as you noted — each connected client will get a copy of the message — so again, it's not a good pattern to send to n clients a message that has to be discarded by n-1 clients.
MaDa;
You could stick one output queue (or topic) and simply tag the message with a header that identifies the intended client. Then, clients can listen on the queue/topic using a selector. Hopefully your JMS implementation has efficient server-side listener evaluation.

Spring's JMS Design Question : Decouple processing of messages

I'm using a message listener to process some messages from MQ based on Spring's DefaultMessageListenerContainer. After I receive a message, I have to make a Web Service (WS) call. However, I don't want to do this in the onMessage method because it would block the onMessage method until the invocation of WS is successful and this introduces latency in dequeuing of messages from the queue. How can I decouple the invocation of the Web Service by calling it outside of the onMesage method or without impacting the dequeuing of messages?
Thanks,
I think you might actually want to invoke the web service from your onMessage. Why do you want to dequeue messages quickly, then delay further processing? If you do what you're saying, you'd probably have to introduce another level of queueing, or some sort of temporary "holding" collection, which is redundant. The point of the queue is to hold messages, and your message listener will pull them off and process them as quickly as possible.
If you are looking for a way to maximize throughput on the queue, you might think about making it multi-threaded, so that you have multiple threads pulling messages off the queue to invoke the web service. You can easily do this by setting the "concurrentConsumers" configuration on the DefaultMessageListenerContainer. If you set concurrentConsumers to 5, you'll have 5 threads pulling messages off the queue to process. It does get tricky if you have to maintain ordering on the messages, but there may be solutions to that problem if that's the case.
I agree with answer provided before me , however I can see a usecase similar to this very common in practice. I'm adding my two cents It might be valid in some cases that you don't want to do time consuming work in your onMessage Thread (which is pulling message from Q)
We have something similar in one workflow, where if user selects some XYZ option on GUI that means at server we need to connect to another external webservice to get ABCD in this case we do not make call to webservice in onMessage Thread and use ThreadPool to dispatch and handle that call.
If something wrong happens during webservice call we broadcast that to GUI as separate Message , there is concept of request id which is preserved across messages so that GUI can relate error messages. You can use ExecutorService implementation to submit task.
hope it helps.

Resources