Sorting People into Groups based on Votes - algorithm

I have a problem with finding a algorithm for sorting a dataset of people. I try to explain as detailed as possible:
The story starts with a survey. A bunch of people, lets say 600 can choose between 20-25 projects. They make a #1-wish, #2-wish and #3-wish, where #1 is the most wanted project they want to take part and wish 3 the "not-perfect-but-most-acceptable-choose".
These project are limited in their number of participants. Every project can join around 30 people (based on the number of people and count of projects).
The algorithm puts the people in the different projects and should find the best possible combination.
The problem is that you can't just put all the people with their number 1 wish X in the certain project and stuff all the other with also number 1 wish X in there number 2 wish because that would not be the most "happiest" situation for everybody.
You may can think of what I mean when you imagine that for everybody who get his number 1 wish you get 100 points, for everybody who get his number 2 wish 60 points, number 3 wish 30 points and who get not in one of his wishes 0 points. And you want to get as most points as possible.
I hope you get my problem. This is for a school-project day.
Is there something out there that could help me? Do you have any idea? I would be thankful for every tipp!!
Kind regards

You can solve this optimally by formulating it as a min cost network flow problem.
Add a node for each person, and one for each project.
Set cost for a flow between a person and a project according to their preferences.
(As Networkx provides a min cost flow, but not max cost flow I have set the costs to be
negative.)
For example, using Networkx and Python:
import networkx as nx
G=nx.DiGraph()
prefs={'Tom':['Project1','Project2','Project3'],
'Dick':['Project2','Project1','Project3'],
'Harry':['Project1','Project3','Project1']}
capacities={'Project1':2,'Project2':10,'Project3':4}
num_persons=len(prefs)
G.add_node('dest',demand=num_persons)
A=[]
for person,projectlist in prefs.items():
G.add_node(person,demand=-1)
for i,project in enumerate(projectlist):
if i==0:
cost=-100 # happy to assign first choices
elif i==1:
cost=-60 # slightly unhappy to assign second choices
else:
cost=-30 # very unhappy to assign third choices
G.add_edge(person,project,capacity=1,weight=cost) # Edge taken if person does this project
for project,c in capacities.items():
G.add_edge(project,'dest',capacity=c,weight=0)
flowdict = nx.min_cost_flow(G)
for person in prefs:
for project,flow in flowdict[person].items():
if flow:
print person,'joins',project
In this code Tom's number 1 choice is Project1, followed by Project2, then Project3.
The capacities dictionary specifies the upper limit on how many people can join each project.

My algorithm would be something like this:
mainloop
wishlevel = 1
loop
Distribute people into all projects according to wishlevel wish
loop through projects, counting population
If population exceeds maximum
Distribute excess non-redistributed people into their wishlevel+1 projects that are under-populated
tag distributed people as 'redistributed' to avoid moving again
endif
endloop
wishlevel = wishlevel + 1
loop until wishlevel == 3
mainloop until no project exceeds max population
This should make several passes through the data set until everything is evened out. This algorithm may result in an endless loop if you restrict redistribution of already-redistributed people in the event that one project fills up with such people as the algorithm progresses, so you might try it without that restriction.

Related

Algorithm development and optimization

I have this problem:
You need to develop a meal regime based on the data entered by the user. We have a database with the meals and their prices (meals also have a mark whether they are breakfast, cause on breakfast we eat smth different from lunch and dinner most often). The input receives the amount of money (Currency is not important) and the number of days. At the output, we must get a meal regime for a given number of days. Conditions:
Final price does not differ from the given one by more than 3%.
meals mustn't repeat more than once every 5 days.
I found this not effective solution: We are looking for an average price per day = amount of money / number of days. Then, until we reach the given number of days, we iterate throught each breakfast, then lunch and dinner (3 for loops, 2 are nested) and if price is not too different, then we end the search and add this day to the result list. So the design now looks like this:
while(daysCounter < days){
for(){
for(){
for(){
}
}
It looks scary, although there is not a lot of data (number of meals is about 150). There are thoughts that it is possible to find a more effective solution. Also i think about dynamic programming, but so far there are no ideas how to implement it.
Dynamic programming won't work because a necessary part of your state is the meals from the last 5 days. And the number of possibilities for that are astronomical.
However it is likely that there are many solutions, not just a few. And that it is easy to find a working solution by being greedy. Also that an existing solution can be improved fairly easily.
So I'd solve it like this. Replace days with an array of meals. Take the total you want to spend. Divide it up among your meals, in proportion to the median price of the options for that meal. (Breakfast is generally cheaper than dinner.) And now add up that per meal cost to get running totals.
And now for each meal choose the meal you have not had in the last 5 days that brings the running total of what has been spent as close as possible to the ideal total. Choose all of your meals, one at a time.
This is the greedy approach. Normally, but not always, it will come fairly close to the target.
And now, to a maximum of n tries or until you have the target within 3%, pick a random meal, consider all options that are not eaten within the last or next 5 days, and randomly pick one (if any such options exist) that brings the overall amount spent closer to the target.
(For a meal plan that is likely to vary more over a long period, I'd suggest trying simulated annealing. That will produce more interesting results, but it will also take longer.)

Network Coverage: Finding percentage of points within a given distance

I'll start out by framing the problem I'm trying to solve. This is a health care problem so I'll use the terms 'member' and 'provider.' Basically, we want to try to contract providers until a certain percentage of members are "covered."
With that, let me define "coverage": a member is covered if there is a contracted provider within a given number of miles (let's call this maxd for maximum distance). So if our maxd=15, and there's a provider 12 miles away from me, I'm covered by that provider. Each member only has to be covered by one provider.
The goal here is to cover a certain percentage of numbers (let's say 90%) while having to contract the fewest number of providers. In this case, it's helpful to generate a list that, given our current state (current state being our list of contracted providers), shows us which providers will cover the most members that aren't already covered.
Here's how I'm doing this so far. I have a set contracted_providers that tells me who I have contracted. It may be empty. First, I find out what members are already covered and forget about them, since members only need to be covered once.
maxd = 15 # maximum distance to be covered, 15 for example
for p in contracted_providers:
for m in members:
if dist(p,m) <= maxd:
members.remove(m)
Then I calculate each provider's coverage (percentage-wise) on the remaning set of yet-uncovered members.
uncovered_members = members # renaming this for clarity
results = dict()
for p in not_contracted_providers:
count = 0
for m in uncovered_members: # this set now just contains uncovered members
if dist(p,m) <= maxd:
count++
results[p] = count/uncovered_members.size() # percentage of uncovered members that this provider would cover.
Ok, thanks for bearing with me through that. Now I can ask my question. These data sets are pretty big. On the larger end of the scale, we might have 10,000 providers and 40,000 members. Is there any better way to do this than brute-force?
I'm thinking something along the lines of a data structure that represents a heat map and then use that to find the best providers. Basically something that allows me to cheat a little bit and not have to calculate each individual distance for every provider, member combination. I've tried to research this but I don't even know what to search for, so any sort of direction would be helpful. If it's relevant, all locations are represented by geolocation (lat,long).
And as a side note, if brute force is pretty much the only option, would something like Hadoop be a good choice to do it quickly?

Rating Algorithm

I'm trying to develop a rating system for an application I'm working on. Basically app allows you to rate an object from 1 to 5(represented by stars). But I of course know that keeping a rating count and adding the rating the number itself is not feasible.
So the first thing that came up in my mind was dividing the received rating by the total ratings given. Like if the object has received the rating 2 from a user and if the number of times that object has been rated is 100 maybe adding the 2/100. However I believe this method is not good enough since 1)A naive approach 2) In order for me to get the number of times that object has been rated I have to do a look up on db which might end up having time complexity O(n)
So I was wondering what alternative and possibly better ways to approach this problem?
You can keep in DB 2 additional values - number of times it was rated and total sum of all ratings. This way to update object's rating you need only to:
Add new rating to total sum.
Divide total sum by total times it was rated.
There are many approaches to this but before that check
If all feedback givers treated at equal or some have more weight than others (like panel review, etc)
If the objective is to provide only an average or any score band or such. Consider scenario like this website - showing total reputation score
And yes - if average is to be omputed, you need to have total and count of feedback and then have to compute it - that's plain maths. But if you need any other method, be prepared for more compute cycles. balance between database hits and compute cycle but that's next stage of design. First get your requirement and approach to solution in place.
I think you should keep separate counters for 1 stars, 2 stars, ... to calcuate the rating, you'd have to compute rating = (1*numOneStars+2*numTwoStars+3*numThreeStars+4*numFourStars+5*numFiveStars)/numOneStars+numTwoStars+numThreeStars+numFourStars+numFiveStars)
This way you can, like amazon also show how many ppl voted 1 stars and how many voted 5 stars...
Have you considered a vote up/down mechanism over numbers of stars? It doesn't directly solve your problem but it's worth noting that other sites such as YouTube, Facebook, StackOverflow etc all use +/- voting as it is often much more effective than star based ratings.

What class of algorithms can be used to solve this?

EDIT: Just to make sure someone is not breaking their head on the problem... I am not looking for the best optimal algorithm. Some heuristic that makes sense is fine.
I made a previous attempt at formulating this and realized I did not do a great job at it so I removed that question. I have taken another shot at formulating my problem. Please feel free to provide any constructive criticism that can help me improve this.
Input:
N people
k announcements that I can make
Distance that my voice can be heard (say 5 meters) i.e. I may decide to announce or not depending on the number of people within these 5 meters
Goal:
Maximize the total number of people who have heard my k announcements and (optionally) minimize the time in which I can finish announcing all k announcements
Constraints:
Once a person hears my announcement, he is be removed from the total i.e. if he had heard my first announcement, I do not count him even if he hears my second announcement
I can see the same person as well as the same set of people within my proximity
Example:
Let us consider 10 people numbered from 1 to 10 and the following pattern of arrival:
Time slot 1: 1 (payoff = 1)
Time slot 2: 2 3 4 5 (payoff = 4)
Time slot 3: 5 6 7 8 (payoff = 4 if no announcement was made previously in time slot 2, 3 if an announcement was made in time slot 2)
Time slot 4: 9 10 (payoff = 2)
and I am given 2 announcements to make. Now if I were an oracle, I would choose time slots 2 and time slots 3 because then 7 people would have heard (because 5 already heard my announcement in Time slot 2, I do not consider him anymore). I am looking for an online algorithm that will help me make these decisions on whether or not to make an announcement and if so based on what factors. Does anyone have any ideas on what algorithms can be used to solve this or a simpler version of this problem?
There should be an approach relying upon a max-flow algorithm. In essence, you're trying to push the maximum amount of messages from start->end. Though it would be multidimensional, you could have a super-sink, which connects to each value of t, then have each value of t connect to the people you can reach at this time and then have a super-sink. This way, you simply have to compute a max-flow (with the added constraint of no more than k shouts, which should be solvable with a bit of dynamic programming). It's a terrifically dirty way to solve it, but it should get the job done deterministically and without the use of heuristics.
I don't know that there is really a way to solve this or an algorithm to do it the way you have formulated it.
It seems like basically you are trying to reach the maximum number of people with exactly 2 announcements. But without knowing any information about the groups of people in advance, you can't really make any kind of intelligent decision about whether or not to use your first announcement. Your second one at least has the benefit of knowing when not to be used (i.e. if the group has no new members then you can know its not worth wasting the announcement). But it still has basically the same problem.
The only real way to solve this is to use knowledge about the type of data or the desired outcome to make guesses. If you know that groups average 100 people with a standard deviation of 10, then you could just refuse to announce if less than 90 people are present. Or, if you know you need to reach at least 100 people with two announcements, you could choose never to announce to less than 50 at once. Obviously those approaches risk never announcing at all if the actual data does not meet what you would expect. But that's always going to be a risk, since you could get 1 person in the first group and then 0 in all of the rest, no matter what you do.
Or, you could try more clearly defining the problem, I have a hard time figuring out how to relate this to computers.
Lets start my trying to solve the simplest possible variant of the problem: Lets assume N people and K timeslots, but only one possible announcement. Lets also assume that each person will only ever stay for one timeslot and that each person who hasn't yet shown up has an equally probable chance of showing up at any future timeslot.
Given these simplifications, at each timeslot you look at the payoff of announcing at the current timeslot and compare to the chance of a future timeslot having a higher payoff, eg, lets assume 4 people 3 timeslots:
Timeslot 1: Person 1 shows up, so you know you could get a payoff of 1 by announcing, but then you have 3 people to show up in 2 remaining timeslots, so at least one of those timeslots is guaranteed to have 2 people, so don't announce..
So at each timeslot, you can calculate the chance that a later timeslot will have a higher payoff than the current by treating the remaining (N) people and (K) timeslots as being N independent random numbers each from 1..k, and calculate the chance of at least one value k being hit more than or equal to the current-payoff times. (Similar to the Birthday problem, but for more than 1 collision) and then you need to decide hwo much to discount based on expected variances. (bird in the hand, etc)
Generalization of this solution to the original problem is left as an exercise for the reader.

slot machine payout calculation

There's this question but it has nothing close to help me out here.
Tried to find information about it on the internet yet this subject is so swarmed with articles on "how to win" or other non-related stuff that I could barely find anything. None worth posting here.
My question is how would I assure a payout of 95% over a year?
Theoretically, of course.
So far I can think of three obvious variables to consider within the calculation: Machine payout term (year in my case), total paid and total received in that term.
Now I could simply shoot a random number between the paid/received gap and fix slots results to be shown to the player but I'm not sure this is how it's done.
This method however sounds reasonable, although it involves building the slots results backwards..
I could also make a huge list of all possibilities, save them in a database randomized by order and simply poll one of them each time.
This got many flaws - the biggest one is the huge list I'm going to get (millions/billions/etc' records).
I certainly hope this question will be marked with an "Answer" (:
You have to make reel strips instead of huge database. Here is brief example for very basic 3-reel game containing 3 symbols:
Paytable:
3xA = 5
3xB = 10
3xC = 20
Reels-strip is a sequence of symbols on each reel. For the calculations you only need the quantity of each symbol per each reel:
A = 3, 1, 1 (3 symbols on 1st reel, 1 symbol on 2nd, 1 symbol on 3rd reel)
B = 1, 1, 2
C = 1, 1, 1
Full cycle (total number of all possible combinations) is 5 * 3 * 4 = 60
Now you can calculate probability of each combination:
3xA = 3 * 1 * 1 / full cycle = 0.05
3xB = 1 * 1 * 2 / full cycle = 0.0333
3xC = 1 * 1 * 1 / full cycle = 0.0166
Then you can calculate the return for each combination:
3xA = 5 * 0.05 = 0.25 (25% from AAA)
3xB = 10 * 0.0333 = 0.333 (33.3% from BBB)
3xC = 20 * 0.0166 = 0.333 (33.3% from CCC)
Total return = 91.66%
Finally, you can shuffle the symbols on each reel to get the reels-strips, e.g. "ABACA" for the 1st reel. Then pick a random number between 1 and the length of the strip, e.g. 1 to 5 for the 1st reel. This number is the middle symbol. The upper and lower ones are from the strip. If you picked from the edge of the strip, use the first or last one to loop the strip (it's a virtual reel). Then score the result.
In real life you might want to have Wild-symbols, free spins and bonuses. They all are pretty complicated to describe in this answer.
In this sample the Hit Frequency is 10% (total combinations = 60 and prize combinations = 6). Most of people use excel to calculate this stuff, however, you may find some good tools for making slot math.
Proper keywords for Google: PAR-sheet, "slot math can be fun" book.
For sweepstakes or Class-2 machines you can't use this stuff. You have to display a combination by the given prize instead. This is a pretty different task, so you may try to prepare a database storing the combinations sorted by the prize amount.
Well, the first problem is with the keyword assure, if you are dealing with random, you cannot assure, unless you change the logic of the slot machine.
Consider the following algorithm though. I think this style of thinking is more reliable then plotting graphs of averages to achive 95%;
if( customer_able_to_win() )
{
calculate_how_to_win();
}
else
no_win();
customer_able_to_win() is your data log that says how much intake you have gotten vs how much you have paid out, if you are under 95%, payout, then customer_able_to_win() returns true; in that case, calculate_how_to_win() calculates how much the customer would be able to win based on your %, so, lets choose a sampling period of 24 hours. If over the last 24 hours i've paid out 90% of the money I've taken in, then I can pay out up to 5%.... lets give that 5% a number such as 100$. So calculate_how_to_win says I can pay out up to 100$, so I would find a set of reels that would pay out 100$ or less, and that user could win. You could add a little random to it, but to ensure your 95% you'll have to have some other rules such as a forced max payout if you get below say 80%, and so on.
If you change the algorithm a little by adding random to the mix you will have to have more of these caveats..... So to make it APPEAR random to the user, you could do...
if( customer_able_to_win() && payout_percent() < 90% )
{
calculate_how_to_win(); // up to 5% payout
}
else
no_win();
With something like that, it will go on a losing streak after you hit 95% until you reach 90%, then it will go on a winning streak of random increments until you reach 95%.
This isn't a full algorithm answer, but more of a direction on how to think about how the slot machine works.
I've always envisioned this is the way slot machines work especially with video poker. Because the no_win() function would calculate how to lose, but make it appear to be 1 card off to tease you to think you were going to win, instead of dealing with a 'fair' game and the random just happens to be like that....
Think of the entire process of.... first thinking if you are going to win, how are you going to win, if you're not going to win, how are you going to lose, instead of random number generators determining if you will win or not.
I worked many years ago for an internet casino in Australia, this one being the only one in the world that was regulated completely by a government body. The algorithms you speak of that produce "structured randomness" are obviously extremely complex especially when you are talking multiple lines in all directions, double up, pick the suit, multiple progressive jackpots and the like.
Our poker machine laws for our state demand a payout of 97% of what goes in. For rudely to be satisfied that our machine did this, they made us run 10 million mock turns of the machine and then wanted to see that our game paid off at what the law states with the tiniest range of error (we had many many machines running a script to auto playing using a script to simulate the click for about a week before we hit the 10 mil).
Anyhow the algorithms you speak of are EXPENSIVE! They range from maybe $500k to several million per machine so as you can understand, no one is going to hand them over for free, that's for sure. If you wanted a single line machine it would be easy enough to do. Just work out you symbols/cards and what pay structure you want for each. Then you could just distribute those payouts amongst non-payouts till you got you respective figure. Obviously the more options there are means the longer it will take to pay out at that respective rate, it may even payout more early in the piece. Hit frequency and prize size are also factors you may want to consider
A simple way to do it, if you assume that people win a constant number of times a time period:
Create a collection of all possible tumbler combinations with how much each one pays out.
The first time someone plays, in that time period, you can offer all combinations at equal probability.
If they win, take that amount off the total left for the time period, and remove from the available options any combination that would payout more than you have left.
Repeat with the reduced combinations until all the money is gone for that time period.
Reset and start again for the next time period.

Resources