slot machine payout calculation - algorithm

There's this question but it has nothing close to help me out here.
Tried to find information about it on the internet yet this subject is so swarmed with articles on "how to win" or other non-related stuff that I could barely find anything. None worth posting here.
My question is how would I assure a payout of 95% over a year?
Theoretically, of course.
So far I can think of three obvious variables to consider within the calculation: Machine payout term (year in my case), total paid and total received in that term.
Now I could simply shoot a random number between the paid/received gap and fix slots results to be shown to the player but I'm not sure this is how it's done.
This method however sounds reasonable, although it involves building the slots results backwards..
I could also make a huge list of all possibilities, save them in a database randomized by order and simply poll one of them each time.
This got many flaws - the biggest one is the huge list I'm going to get (millions/billions/etc' records).
I certainly hope this question will be marked with an "Answer" (:

You have to make reel strips instead of huge database. Here is brief example for very basic 3-reel game containing 3 symbols:
Paytable:
3xA = 5
3xB = 10
3xC = 20
Reels-strip is a sequence of symbols on each reel. For the calculations you only need the quantity of each symbol per each reel:
A = 3, 1, 1 (3 symbols on 1st reel, 1 symbol on 2nd, 1 symbol on 3rd reel)
B = 1, 1, 2
C = 1, 1, 1
Full cycle (total number of all possible combinations) is 5 * 3 * 4 = 60
Now you can calculate probability of each combination:
3xA = 3 * 1 * 1 / full cycle = 0.05
3xB = 1 * 1 * 2 / full cycle = 0.0333
3xC = 1 * 1 * 1 / full cycle = 0.0166
Then you can calculate the return for each combination:
3xA = 5 * 0.05 = 0.25 (25% from AAA)
3xB = 10 * 0.0333 = 0.333 (33.3% from BBB)
3xC = 20 * 0.0166 = 0.333 (33.3% from CCC)
Total return = 91.66%
Finally, you can shuffle the symbols on each reel to get the reels-strips, e.g. "ABACA" for the 1st reel. Then pick a random number between 1 and the length of the strip, e.g. 1 to 5 for the 1st reel. This number is the middle symbol. The upper and lower ones are from the strip. If you picked from the edge of the strip, use the first or last one to loop the strip (it's a virtual reel). Then score the result.
In real life you might want to have Wild-symbols, free spins and bonuses. They all are pretty complicated to describe in this answer.
In this sample the Hit Frequency is 10% (total combinations = 60 and prize combinations = 6). Most of people use excel to calculate this stuff, however, you may find some good tools for making slot math.
Proper keywords for Google: PAR-sheet, "slot math can be fun" book.
For sweepstakes or Class-2 machines you can't use this stuff. You have to display a combination by the given prize instead. This is a pretty different task, so you may try to prepare a database storing the combinations sorted by the prize amount.

Well, the first problem is with the keyword assure, if you are dealing with random, you cannot assure, unless you change the logic of the slot machine.
Consider the following algorithm though. I think this style of thinking is more reliable then plotting graphs of averages to achive 95%;
if( customer_able_to_win() )
{
calculate_how_to_win();
}
else
no_win();
customer_able_to_win() is your data log that says how much intake you have gotten vs how much you have paid out, if you are under 95%, payout, then customer_able_to_win() returns true; in that case, calculate_how_to_win() calculates how much the customer would be able to win based on your %, so, lets choose a sampling period of 24 hours. If over the last 24 hours i've paid out 90% of the money I've taken in, then I can pay out up to 5%.... lets give that 5% a number such as 100$. So calculate_how_to_win says I can pay out up to 100$, so I would find a set of reels that would pay out 100$ or less, and that user could win. You could add a little random to it, but to ensure your 95% you'll have to have some other rules such as a forced max payout if you get below say 80%, and so on.
If you change the algorithm a little by adding random to the mix you will have to have more of these caveats..... So to make it APPEAR random to the user, you could do...
if( customer_able_to_win() && payout_percent() < 90% )
{
calculate_how_to_win(); // up to 5% payout
}
else
no_win();
With something like that, it will go on a losing streak after you hit 95% until you reach 90%, then it will go on a winning streak of random increments until you reach 95%.
This isn't a full algorithm answer, but more of a direction on how to think about how the slot machine works.
I've always envisioned this is the way slot machines work especially with video poker. Because the no_win() function would calculate how to lose, but make it appear to be 1 card off to tease you to think you were going to win, instead of dealing with a 'fair' game and the random just happens to be like that....
Think of the entire process of.... first thinking if you are going to win, how are you going to win, if you're not going to win, how are you going to lose, instead of random number generators determining if you will win or not.

I worked many years ago for an internet casino in Australia, this one being the only one in the world that was regulated completely by a government body. The algorithms you speak of that produce "structured randomness" are obviously extremely complex especially when you are talking multiple lines in all directions, double up, pick the suit, multiple progressive jackpots and the like.
Our poker machine laws for our state demand a payout of 97% of what goes in. For rudely to be satisfied that our machine did this, they made us run 10 million mock turns of the machine and then wanted to see that our game paid off at what the law states with the tiniest range of error (we had many many machines running a script to auto playing using a script to simulate the click for about a week before we hit the 10 mil).
Anyhow the algorithms you speak of are EXPENSIVE! They range from maybe $500k to several million per machine so as you can understand, no one is going to hand them over for free, that's for sure. If you wanted a single line machine it would be easy enough to do. Just work out you symbols/cards and what pay structure you want for each. Then you could just distribute those payouts amongst non-payouts till you got you respective figure. Obviously the more options there are means the longer it will take to pay out at that respective rate, it may even payout more early in the piece. Hit frequency and prize size are also factors you may want to consider

A simple way to do it, if you assume that people win a constant number of times a time period:
Create a collection of all possible tumbler combinations with how much each one pays out.
The first time someone plays, in that time period, you can offer all combinations at equal probability.
If they win, take that amount off the total left for the time period, and remove from the available options any combination that would payout more than you have left.
Repeat with the reduced combinations until all the money is gone for that time period.
Reset and start again for the next time period.

Related

Feedback on ranking algorithm options for my website

I am currently working on writing an algorithm for my new site I plan to launch soon. The index page will display the "hottest" posts at the moment.
Variables to consider are:
Number of votes
How controversial the post is (# between 0-1)
Time since post
I have come up with two possible algorithms, the first and most simple is:
controversial * (numVotesThisHour / (numVotesTotal - numVotesThisHour)
Denom = numVotesTuisHour if numVotesTotal - numVotesThisHour == 0
Highest number is hottest
My other option is to use an algorithm similar to Reddit's (except that the score decreases as time goes by):
[controversial * log(x)] - (TimePassed / interval)
x = { numVotesTotal if numVotesTotal >= 10, 10 if numVotesTotal < 10
Highest number is hottest
The first algorithm would allow older posts to become "hot" again in the future while the second one wouldn't.
So my question is, which one of these two algorithms do you think is more effective? Which one do you think will display the truly "hot" topics at the moment? Can you think of any advantages or disadvantages to using one over the other? I just want to make sure I don't overlook anything so that I can ensure the content is as relevant as possible. Any feedback would be great! Thanks!
Am I missing something. In the first formula you have numVotesTotal in the denominator. So higher number of votes all time will mean it will never be so hot even if it is not so old.
For example if I have two posts - P1 and P2 (both equally controversial). Say P1 has numVotesTotal = 20, and P2 has numVotesTotal = 1000. Now in the last one hour P1 gets numVotesThisHour = 10 and P2 gets numVotesThisHour = 200.
According to the algorithm, P1 is more famous than P2. It doesn't make sense to me.
I think the first algorithm relies too heavily on instantaneous trend. Think of NASCAR, the current leader could be going 0 m.p.h. because he's at a pit stop. The second one uses the notion of average trend. I think both have their uses.
So for two posts with the same total votes and controversial rating, but where posts one receives 20 votes in the first hour and zero in the second, while the other receives 10 in each hour. The first post will be buried by the first algorithm but the second algorithm will rank them equally.
YMMV, but I think the 'hotness' is entirely dependent on the time frame, and not at all on the total votes unless your time frame is 'all time'. Also, it seems to me that the proportion of all votes in the relevant time frame, rather than the absolute number of them, is the important figure.
You might have several categories of hot:
Hottest this hour
Hottest this week
Hottest since your last visit
Hottest all time
So, 'Hottest in the last [whatever]' could be calculated like this:
votes_for_topic_in_timeframe / all_votes_in_timeframe
if you especially want a number between 0 and 1, (useful for comparing across categories) or, if you only want the ones in a specific timeframe, just take the votes_for_topic_in_timeframe values and sort into descending order.
If you don't want the user explicitly choosing the time frame, you may want to calculate all (say) four versions (or perhaps just the top 3), assign a multiplier to each category to give each category a relative importance, and calculate total values for each topic to take the top n. This has the advantage of potentially hiding from the user that no-one at all has voted in the last hour ;)

An algorithm for economic simulation?

I would like to create a game where the players create differents products with different prices (call it offers), and I give them a certain number of customers (call it demands).
Now, I want an algorithm to decid what's the market share of each players. Of course, I could just make mine right now, using random. But before doing this, I prefer to ask, because I'm sure that's a lot of people already tried to do this before me!
My question is not really precise, it's because your answer doesn't need to be precise too ;)
Thank you in advance!
It really depends on the variables you have set up, and the kind of "market" you want to create. You could start with the following simple formula below (which fundamentally reduces market share to a question of profits) as a start, and I'll go through what I mean by "kind of market" after.
marketShare = totalCompanyProfit/allMoneyInProductCategory;
marketShare = ( (productSalePrice * demand)-(productManufactureCost * supply) ) / allMoneyInProductCategory;
It gets interesting here because the "kind of market" is determined by your definition of demand. For example, say the product was ferraris, and the market you were trying to simulate was the Republic of Congo, which had a GDP of $189/capita.
targetMarketSize = (percentOfFittingDemographic * totalPopulation)
percentWhoHateYourProduct = AVERAGE( ( ABS(productVariable1 - variableIdeal1) / variableIdeal1 ), ( ABS(productVariable2 - variableIdeal2) / variableIdeal2 ), etc )
demand = (targetMarketSize) * ( 1- percentWhoHateYourProduct )
percentOfFittingDemographic is the percent of the population which fits into the demographic which would buy such a product (i.e people with enough disposable income to afford $100,000 car), which in the Congo example above could be something like .001 .
The average of the absolute value of the difference of certain product attributes (productVariable) from their ideals (variableIdeals) over their ideals give the % of the population which are going to be turned off by the product not being what they want. Subtracting that from 1 gives the percent of people who DO want to buy your product, and multiplying that by targetMarketSize gives you the people who want to buy your product- ie demand. If the product is perfect, it becomes the average of 0's, and the whole target market becomes a user of the product.
One could also add weighting to the average to say, for example, that the market prefers a lower price over a bigger screen size. To imply that more of one attribute increases the desire for the product in a population (i.e instead of "one month of free service", you give away "6 months of free service", and people want it more), you could add it into the average with
percentLikesProductNow = 1 - e^(-1 * infinitelyLikedAttribute)
This goes from 0% at infinitelyLikedAttribute=0, to about 0.005% at infintelyLikedAttribute=10, so you could play around and find a way to "scale" that attribute to roughly be between 1 and 10. This does sort of make sense with real life, because there are products I would never have bought if they didnt have a free trial. For example: 3 free months of verizon internet. I would have probably gone with comcast otherwise, as I only was living there for 6 months, but saving 100 bucks was pretty big at the time. At the other extreme however, if verizon were to offer me 100 free years of internet, another 50 extra years on top of that (assuming it's not transferable, etc) really doesn't add much more to the attractiveness of the offer.
You can always multiply all of these things with a random number generator as well, to maybe give it a +/- 15% variance, and keep everyone guessing :)
I hope this was even remotely useful :)

What is the correct way to write a sweepstakes algorithm?

For example, if I wanted to ensure that I had one winner every four hours, and I expected to have 125 plays per hour, what is the best way to provide for the highest chance of having a winner and the lowest chance of having no winners at the end of the four hour period?
The gameplay is like a slot-machine, not a daily number. i.e. the entrant enters the game and gets notified right away if they have won or lost.
Sounds like a homework problem, I know, but it's not :)
Thanks.
There's really only so much you can do to keep things fair (i.e. someone who enters at the beginning of a four hour period has the same odds of winning as someone who enters at the end) if you want to enforce this constraint. In general, the best you can do while remaining legal is to take a guess at how many entrants you're going to have and set the probability accordingly (and if there's no winner at the end of a given period, give it to a random entrant from that period).
Here's what I'd do to adjust your sweepstakes probability as you go (setting aside the legal ramifications of doing so):
For each period, start the probability at 1 / (number of expected entries * 2)
At any time, if you get a winner, the probability goes to 0 for the rest of that period.
Every thirty minutes, if you're still without a winner, set the probability at 1 / ((number of expected entries * (1 - percentage of period complete)) * 2). So here, the percentage of period complete is the number of hours elapsed in that current period / number of total hours in the period (4). Basically as you go, the probability will scale upwards.
Practical example: expected entries is 200.
Starting probability = 1 / 400 = 0.0025.
After first half hour, we don't have a winner, so we reevaluate probability:
probability = 1 / ((200 * (1 - 0.125) * 2) = 1 / (200 * 2 * 0.875) = 1/350
This goes down all the way until the probability is a maximum of 1/50, assuming no winner occurs before then.
You can adjust these parameters if you want to maximize the acceleration or whatever. But I'd be remiss if I didn't emphasize that I don't believe running a sweepstakes like this is legal. I've done a few sweepstakes for my company and am somewhat familiar with the various laws and regulations, and the general rule of thumb, as I understand it, is that no one entrant should have an advantage over any other entrant that the other entrant doesn't know about. I'm no expert, but consult with your lawyer before running a sweepstakes like this. That said, the solution above will help you maximize your odds of giving away a prize.
If you're wanting a winner for every drawing, you'd simply pick a random winner from your entrants.
If you're doing it like a lottery, where you don't have to have a winner for every drawing, the odds are as high or low as you care to make them based on your selection scheme. For instance, if you have 125 entries per hour, and you're picking every four hours, that's 500 entries per contest. If you generate a random number between 1 and 1000, there's a 50% chance that someone will win, 1 and 750 is a 75% chance that someone will win, and so forth. Then you just pick the entry that corresponds to the random number generated.
There's a million different ways to implement selecting a winner, in the end you just need to pick one and use it consistently.

Voting algorithm: how to calculate rank?

I am trying to figure our a way to calculate rank. Right now it simply takes ratio of wins / losses of each individual entry, so e.g. one won 99 times out of a 100, it has 99% winning rank. BUT if an entry won 1 out of total 1 votes, it will have a 100% winning rank, but definitely it can't be higher that of the one that won 99 times. What would be a better way to do this?
Try something like this:
votes = wins + losses
score = votes * ( wins / votes )
That way, something with 50% wins, but a million votes would still be ahead of something with 100% wins but only one vote.
You can add in an extra weight based on age (in days in this example), too, something like
if age < 5:
score = score + ((highest real score on site) * ((5 - age) / 5)
This will put brand new entries right at the top of the first page, and then they will move slowly down the list over the course of the next 5 days (I'm assuming age is a fractional number, not just an integer). After the 5 days are up, they will be put in the list based solely on the score from the previous bit of pseudo-code.
Depending on how complicated you want to make it, the Elo system chess uses (or something similar) may be what you want: http://en.wikipedia.org/wiki/Elo_rating_system
Even if a person has won 1/1 matches, his rating would be far below someone who has won/lost hundreds of matches against tough opponents, for instance.
You could always use a point system rather than win/loss ratio. Winning would always give points and then you could play around with either removing points for losing, not awarding points at all for losing, or awarding less points for losing. It all depends on exactly how you want people to be ranked. For example you may want to give 2 points for winning and 1 point for losing if you want to favor people who participate over those who do not (which sounds kind of like what you were talking about in your example of the person playing 100 games vs 1 game). The NHL uses a similar technique for rankings (2 points for a win, 1 point for an overtime loss, 0 points for a regular loss). That might give you some more flexibility.
if i understand the question correctly, then whoever gets more votes has the higher rank.
Would it make sense to add more rank to winning entry if losing entry originally had a much higher rank, e.g. much stronger competitor?

How to rank stories based on "controversy"?

I'd like to rank my stories based on "controversy" quotient. For example, reddit.com currently has "controversial" section: http://www.reddit.com/controversial/
When a story has a lot of up and a lot of down votes, it's controversial even though the total score is 0 (for example). How should I calculate this quotient score so that when there's a lot of people voting up and down, I can capture this somehow.
Thanks!!!
Nick
I would recommend using the standard deviation of the votes.
A controversial vote that's 100% polarised would have equal numbers of -1 and +1 votes, so the mean would be 0 and the stddev would be around 1.0
Conversely a completely consistent set of votes (with no votes in the opposite direction) would have a mean of 1 or -1 and a stddev of 0.0.
Votes that aren't either completely consistent or completely polarised will produce a standard deviation figure between 0 and ~1.0 where that value will indicate the degree of controversy in the vote.
The easiest method is to count the number of upvote/downvote pairings for a given comment within the timeframe (e.g. 1 week, 48 hours etc), and have comments with the most parings appear first. Anything more complex requires trial-and-error or experimentation on the best algorithm - as always, it varies on the content of the site and how you want it weighted.
Overall, it's not much different than a hotness algorithm, which works by detecting the most upvotes or views within a timeframe.
What about simply getting the smaller of the two values (up or down) of a point in time? If it goes up a lot and goes down a little, or the other way around it, is not controversial.
If for example the items has 10 ups and 5 downs, the "controversiality level" is 5, since there is 5 people disagreeing about liking it or not. On the other hand if it has either 10 ups or 10 downs, the "controversiality level" is 0, since no one is disagreeing.
So in the end the smaller of both items in this case defines the "hotness" or the "controversiality". Does this make sense?
// figure out if up or down is winning - doesn't matter which
if (up_votes > down_votes)
{
win_votes = up_votes;
lose_votes = down_votes;
}
else
{
win_votes = down_votes;
lose_votes = up_votes;
}
// losewin_ratio is always <= 1, near 0 if win_votes >> lose_votes
losewin_ratio = lose_votes / win_votes;
total_votes = up_votes + down_votes;
controversy_score = total_votes * losewin_ratio; // large means controversial
This formula will produce high scores for stories that have a lot of votes and a near 50/50 voting split, and low scores for stories that have either few votes or many votes for one choice.

Resources