Median of an array in Ruby not floating - ruby

OK folks...I could use some help on getting the median of an array in ruby
Here is my code:
def median(array)
array.sort! # sort the array
elements = array.count # count the elements in the array
center = elements/2 # find the center of the array
elements.even? ? (array[center] + array[center+1])/2 : array[center] # if elements are even take both the center numbers of array and divide in half, if odd...get the center number
end
Just not certain where to apply the .to_f since it wont return anything needing a float.
Thanks

I realized you've solved your own problem already, but this version is a little cleaner and safer:
def median(array)
raise ArgumentError, 'Cannot find the median on an empty array' if array.size == 0
sorted = array.sort
midpoint, remainder = sorted.length.divmod(2)
if remainder == 0 # even count, average middle two
sorted[midpoint-1,2].inject(:+) / 2.0
else
sorted[midpoint]
end
end

Use enumerable-statistics.
https://github.com/mrkn/enumerable-statistics
This gem was created by the Ruby committer as a C extension.
I think it is reliable and fast.
It Returns int if the number of array elements is odd. If the number of array elements is even, it returns a float.
require "enumerable/statistics"
arr = [1, 2, 3, 4, 5]
arr.median # => 3
arr.median.class # => Integer
arr = [1,2,3,4,5,6]
arr.median # => 3.5
Other useful methods are also available.
mean, variance, stdev, mean_variance, mean_stdev, percentile, value_counts histogram

Related

Find the odd int - Ruby Nested Loop Error

I was doing this question on codewars: "Given an array, find the int that appears an odd number of times. There will always be only one integer that appears an odd number of times."
Code:
def find_it(seq)
int = []
for a in seq do
count = 0
for b in seq do
if a == b
count += 1
end
end
if count % 2.0 != 0
int << b
end
end
puts int.uniq[0].to_i
end
It was tested against a couple inputs, but the answers were wrong for these two arrays:
find_it([1,1,2,-2,5,2,4,4,-1,-2,5]) - returns 5 instead of -1
find_it([1,1,1,1,1,1,10,1,1,1,1]) - returns 1 instead of 10
What went wrong with my code?
if count % 2.0 != 0
int << b
end
The problem you have here is that your pushing b instead of a into the integer array, so what's happening is that instead of the value that you counted being pushed in, your pushing in the last value of b which is the last value element in the array regardless as long as the condition that the counter is an odd number, although b and counter have nothing to do with each other. so to fix it you replace b with a so that it pushes in the value you are testing comparing with the other elements in the second loop
fix:
if count % 2.0 != 0
int << a
end
a similar yet simpler code that does a similar job except in a shorter and more understandable way is:
def find_it(seq)
numberWithOddCount = 0
seq.each do |currentElement|
counter = 0
seq.each { |elementToCompare| counter += 1 if currentElement == elementToCompare}
numberWithOddCount = currentElement if counter % 2 != 0
end
numberWithOddCount
end
Just added a few tid-bits that you could also utilize to shorten and simplify code.
Happy Coding!
Note:
You could utilize built in ruby methods in creative ways to make the code do what you want in very few lines (or even one line) such as what #iGian did in the questions comments, but if your still new to ruby then its best to utilize those methods one by one when learning them otherwise you'll be confused. But if your willing to take the time now to learn them, I suggest you take his code and separate each method execution into its own line and output what each method had done to know what's doing what. and practice using each separately.
#aimen_alt is right about your mistake
but let's decompose your problem.
First, you need to calculate the appearances of each number.
Second, you need to find the one with the odd count of the appearances.
Accordingly to the problem, there is only one such number, so you can return it right away.
You can go your way and do it in O(N^2) complexity by scanning your sequence for each item in the sequence (so N items in the sequence multiply by the size of the sequence N = N*N). You can do it linearly* by constructing a Hash and than you'll be able to get the key with odd value:
def find_it(seq)
numbers = {}
seq.each do |item|
numbers[item] = numbers[item].to_i + 1
end
numbers.select{ |k,v| v.odd? }.first.first
end
to be more idiomatic you can use group_by to group the numbers themselves:
seq = [1, 2, 6, 1, 2]
seq.group_by{ |item| item }
#=> {1=>[1, 1], 2=>[2, 2], 6=>[6]}
You can see that each value is an Array, and you just need to get one with the odd amount of items:
seq = [1, 2, 6, 1, 2]
seq.group_by{ |item| item }.select{ |k, v| v.size.odd? }
#=> {6=>[6]}
And the last thing you would like to do is to get the value of the key:
seq.group_by{ |item| item }.select{ |k, v| v.size.odd? }.keys.first
So, the final solution would be
def find_it(seq)
seq.group_by{ |item| item }
.select{ |k, v| v.size.odd? }
.keys
.first
end
as #pascalbetz mentioned:
def find_it(seq)
seq.group_by{ |item| item }
.find{ |k, v| v.size.odd? }
.first
end
def find_it(seq)
seq.group_by{|x| x}.select{|k, v| (v.count % 2.0 !=0)}.first[0]
end
The above code will take a sequence in an array. Here we are grouping by elements:
For example:
[1,1,2,-2,5,2,4,4,-1,-2,5].group_by{|x| x}
# => {1=>[1, 1], 2=>[2, 2], -2=>[-2, -2], 5=>[5, 5], 4=>[4, 4], -1=>[-1]}
after getting the above results, we are finding the whose elements count not odd with the select condition.
ex:
[1,1,2,-2,5,2,4,4,-1,-2,5].group_by{|x| x}.select{|k, v| (v.count % 2.0 !=0)}
we will get the results as {-1=>[-1]}
we are taking the key as result element.
What about this one
def find_it(seq)
seq.reduce(:^)
end
^ -> this symbol is bitwise XOR.
reduce function is taking each value and doing whatever work assigned inside. In this case, it's taking each element and doing an XOR operation. the first element is doing XOR with zero and the next element doing XOR with the previous result and so on.
In this way, we found the odd element.
How XOR operation work
0 ^ 2 = 2
4 ^ 4 = 0
If you want to know more about XOR. kindly refer to this.
Thank you for all the detailed answers, I'm going over everyone's answers now. I'm new to Ruby, and I'm still in the process of learning the methods/rules of using them/Big O notation, so I much appreciated everyone's input. Codewar listed some top ranked solutions. This seems to be the fastest so far:
def find_it(seq)
seq.detect { |n| seq.count(n).odd? }
end

Please walk me through this code from ruby monk

def random_select(array, n)
result = []
n.times do
# I do not fully understand how this line below works or why. Thank you
result.push array[rand(array.length)]
end
result
end
You are probably confused by this part:
n.times do
result.push(array[rand(array.length)])
end
n.times says it should loop n times.
result.push says to basically "push" or "put" something in the array. For example:
a = []
a.push(1)
p a #=> [1]
In array[rand(array.length)] , rand(array.length) will produce a random number as an index for the array. Why? rand(n) produces a number from 0 to n-1. rand(5) will produce either 0,1,2,3 or 4, for example.
Arrays use 0-based indexing, so if you have an array, say a = ['x', 'y', 'z'], to access 'x' you do a[0], to access y you do a[1] and so on. If you want to access a random element from a, you do a[rand(array.length)], because a.length in this case is 3, and rand(3) will produce a number that is either 0, 1 or 2. 0 is the smallest index and 2 is the largest index of our example array.
So suppose we call this method:
random_select([6,3,1,4], 2)
Try to see this code from the inside out. When the code reaches this part:
result.push(array[rand(array.length)])
it will first execute array.length which will produce 4. It will then execute rand(array.length) or rand(4) which will get a number between 0 and 3. Then, it will execute array[rand(array.length)] or array(some_random_number_between_0_and_3) which will get you a random element from the array. Finally, result.push(all_of_that_code_inside_that_got_us_a_random_array_element) will put the random element from the array in the method (in our example, it will be either 6, 3, 1 or 4) in the results array. Then it will repeat this same process once again (remember, we told it to go 2 times through the iteration).
The code can be rewritten to be much simpler, using the block-form Array constructor:
def random_select(array, n)
Array.new(n) {array.sample}
end
This creates a new array of size n and fills it with random samples from the array.
Note that the above solution, like your sample code, selects from the entire array each time which allows duplicate selections. If you don't want any duplicate selections, it's even simpler, since it is the default behavior of Array#sample:
def random_select(array, n)
array.sample(n)
end

Find element(s) closest to average of array

What would be a 'ruby' way to do the following; I'm still thinking in more imperative style programming and not really adapting to thinking in ruby. What I want to do is find the closest element in size to the average of an array, for example, consider the following array
[1,2,3]
The average is 2.0. The method I want to write returns the element closest to the average from above and below it, in this case 1 and 3.
Another example will illustrate this better:
[10,20,50,33,22] avg is 27.0 method would return 22 and 33.
This is not the most efficient, but it is (in my humble opinion) rather Ruby-esque.
class Array
# Return the single element in the array closest to the average value
def closest_to_average
avg = inject(0.0,:+) / length
min_by{ |v| (v-avg).abs }
end
end
[1,2,3].closest_to_average
#=> 2
[10,20,50,33,22].closest_to_average
#=> 22
If you really want the n closest items, then:
class Array
# Return a number of elements in the array closest to the average value
def closest_to_average(results=1)
avg = inject(0.0,:+) / length
sort_by{ |v| (v-avg).abs }[0,results]
end
end
[10,20,50,33,22].closest_to_average #=> [22]
[10,20,50,33,22].closest_to_average(2) #=> [22, 33]
[10,20,50,33,22].closest_to_average(3) #=> [22, 33, 20]
How this Works
avg = inject(0.0,:+) / length
is shorthand for:
avg = self.inject(0.0){ |sum,n| sum+n } / self.length
I start off with a value of 0.0 instead of 0 to ensure that the sum will be a floating point number, so that dividing by the length does not give me an integer-rounded value.
sort_by{ |v| (v-avg).abs }
sorts the array based on the difference between the number and average (lowest to highest), and then:
[0,results]
selects the first results number of entries from that array.
I assume that what is desired is the largest element of the array that is smaller than the average and the smallest value of the array that is larger than the average. Such values exist if and only if the array has at least two elements and they are not all the same. Assuming that condition applies, we need only convert it from words to symbols:
avg = a.reduce(:+)/a.size.to_f
[ a.select { |e| e < avg }.max, a.select { |e| e > avg }.min ]
Another way, somewhat less efficient:
avg = a.reduce(:+)/a.size.to_f
b = (a + [avg]).uniq.sort
i = b.index(avg)
[ b[i-1], b[i+1] ]

Code to write a random array of x numbers with no duplicates [duplicate]

This is what I have so far:
myArray.map!{ rand(max) }
Obviously, however, sometimes the numbers in the list are not unique. How can I make sure my list only contains unique numbers without having to create a bigger list from which I then just pick the n unique numbers?
Edit:
I'd really like to see this done w/o loop - if at all possible.
(0..50).to_a.sort{ rand() - 0.5 }[0..x]
(0..50).to_a can be replaced with any array.
0 is "minvalue", 50 is "max value"
x is "how many values i want out"
of course, its impossible for x to be permitted to be greater than max-min :)
In expansion of how this works
(0..5).to_a ==> [0,1,2,3,4,5]
[0,1,2,3,4,5].sort{ -1 } ==> [0, 1, 2, 4, 3, 5] # constant
[0,1,2,3,4,5].sort{ 1 } ==> [5, 3, 0, 4, 2, 1] # constant
[0,1,2,3,4,5].sort{ rand() - 0.5 } ==> [1, 5, 0, 3, 4, 2 ] # random
[1, 5, 0, 3, 4, 2 ][ 0..2 ] ==> [1, 5, 0 ]
Footnotes:
It is worth mentioning that at the time this question was originally answered, September 2008, that Array#shuffle was either not available or not already known to me, hence the approximation in Array#sort
And there's a barrage of suggested edits to this as a result.
So:
.sort{ rand() - 0.5 }
Can be better, and shorter expressed on modern ruby implementations using
.shuffle
Additionally,
[0..x]
Can be more obviously written with Array#take as:
.take(x)
Thus, the easiest way to produce a sequence of random numbers on a modern ruby is:
(0..50).to_a.shuffle.take(x)
This uses Set:
require 'set'
def rand_n(n, max)
randoms = Set.new
loop do
randoms << rand(max)
return randoms.to_a if randoms.size >= n
end
end
Ruby 1.9 offers the Array#sample method which returns an element, or elements randomly selected from an Array. The results of #sample won't include the same Array element twice.
(1..999).to_a.sample 5 # => [389, 30, 326, 946, 746]
When compared to the to_a.sort_by approach, the sample method appears to be significantly faster. In a simple scenario I compared sort_by to sample, and got the following results.
require 'benchmark'
range = 0...1000000
how_many = 5
Benchmark.realtime do
range.to_a.sample(how_many)
end
=> 0.081083
Benchmark.realtime do
(range).sort_by{rand}[0...how_many]
end
=> 2.907445
Just to give you an idea about speed, I ran four versions of this:
Using Sets, like Ryan's suggestion.
Using an Array slightly larger than necessary, then doing uniq! at the end.
Using a Hash, like Kyle suggested.
Creating an Array of the required size, then sorting it randomly, like Kent's suggestion (but without the extraneous "- 0.5", which does nothing).
They're all fast at small scales, so I had them each create a list of 1,000,000 numbers. Here are the times, in seconds:
Sets: 628
Array + uniq: 629
Hash: 645
fixed Array + sort: 8
And no, that last one is not a typo. So if you care about speed, and it's OK for the numbers to be integers from 0 to whatever, then my exact code was:
a = (0...1000000).sort_by{rand}
Yes, it's possible to do this without a loop and without keeping track of which numbers have been chosen. It's called a Linear Feedback Shift Register: Create Random Number Sequence with No Repeats
[*1..99].sample(4) #=> [64, 99, 29, 49]
According to Array#sample docs,
The elements are chosen by using random and unique indices
If you need SecureRandom (which uses computer noise instead of pseudorandom numbers):
require 'securerandom'
[*1..99].sample(4, random: SecureRandom) #=> [2, 75, 95, 37]
How about a play on this? Unique random numbers without needing to use Set or Hash.
x = 0
(1..100).map{|iter| x += rand(100)}.shuffle
You could use a hash to track the random numbers you've used so far:
seen = {}
max = 100
(1..10).map { |n|
x = rand(max)
while (seen[x])
x = rand(max)
end
x
}
Rather than add the items to a list/array, add them to a Set.
If you have a finite list of possible random numbers (i.e. 1 to 100), then Kent's solution is good.
Otherwise there is no other good way to do it without looping. The problem is you MUST do a loop if you get a duplicate. My solution should be efficient and the looping should not be too much more than the size of your array (i.e. if you want 20 unique random numbers, it might take 25 iterations on average.) Though the number of iterations gets worse the more numbers you need and the smaller max is. Here is my above code modified to show how many iterations are needed for the given input:
require 'set'
def rand_n(n, max)
randoms = Set.new
i = 0
loop do
randoms << rand(max)
break if randoms.size > n
i += 1
end
puts "Took #{i} iterations for #{n} random numbers to a max of #{max}"
return randoms.to_a
end
I could write this code to LOOK more like Array.map if you want :)
Based on Kent Fredric's solution above, this is what I ended up using:
def n_unique_rand(number_to_generate, rand_upper_limit)
return (0..rand_upper_limit - 1).sort_by{rand}[0..number_to_generate - 1]
end
Thanks Kent.
No loops with this method
Array.new(size) { rand(max) }
require 'benchmark'
max = 1000000
size = 5
Benchmark.realtime do
Array.new(size) { rand(max) }
end
=> 1.9114e-05
Here is one solution:
Suppose you want these random numbers to be between r_min and r_max. For each element in your list, generate a random number r, and make list[i]=list[i-1]+r. This would give you random numbers which are monotonically increasing, guaranteeing uniqueness provided that
r+list[i-1] does not over flow
r > 0
For the first element, you would use r_min instead of list[i-1]. Once you are done, you can shuffle the list so the elements are not so obviously in order.
The only problem with this method is when you go over r_max and still have more elements to generate. In this case, you can reset r_min and r_max to 2 adjacent element you have already computed, and simply repeat the process. This effectively runs the same algorithm over an interval where there are no numbers already used. You can keep doing this until you have the list populated.
As far as it is nice to know in advance the maxium value, you can do this way:
class NoLoopRand
def initialize(max)
#deck = (0..max).to_a
end
def getrnd
return #deck.delete_at(rand(#deck.length - 1))
end
end
and you can obtain random data in this way:
aRndNum = NoLoopRand.new(10)
puts aRndNum.getrnd
you'll obtain nil when all the values will be exausted from the deck.
Method 1
Using Kent's approach, it is possible to generate an array of arbitrary length keeping all values in a limited range:
# Generates a random array of length n.
#
# #param n length of the desired array
# #param lower minimum number in the array
# #param upper maximum number in the array
def ary_rand(n, lower, upper)
values_set = (lower..upper).to_a
repetition = n/(upper-lower+1) + 1
(values_set*repetition).sample n
end
Method 2
Another, possibly more efficient, method modified from same Kent's another answer:
def ary_rand2(n, lower, upper)
v = (lower..upper).to_a
(0...n).map{ v[rand(v.length)] }
end
Output
puts (ary_rand 5, 0, 9).to_s # [0, 8, 2, 5, 6] expected
puts (ary_rand 5, 0, 9).to_s # [7, 8, 2, 4, 3] different result for same params
puts (ary_rand 5, 0, 1).to_s # [0, 0, 1, 0, 1] repeated values from limited range
puts (ary_rand 5, 9, 0).to_s # [] no such range :)

How do I generate a list of n unique random numbers in Ruby?

This is what I have so far:
myArray.map!{ rand(max) }
Obviously, however, sometimes the numbers in the list are not unique. How can I make sure my list only contains unique numbers without having to create a bigger list from which I then just pick the n unique numbers?
Edit:
I'd really like to see this done w/o loop - if at all possible.
(0..50).to_a.sort{ rand() - 0.5 }[0..x]
(0..50).to_a can be replaced with any array.
0 is "minvalue", 50 is "max value"
x is "how many values i want out"
of course, its impossible for x to be permitted to be greater than max-min :)
In expansion of how this works
(0..5).to_a ==> [0,1,2,3,4,5]
[0,1,2,3,4,5].sort{ -1 } ==> [0, 1, 2, 4, 3, 5] # constant
[0,1,2,3,4,5].sort{ 1 } ==> [5, 3, 0, 4, 2, 1] # constant
[0,1,2,3,4,5].sort{ rand() - 0.5 } ==> [1, 5, 0, 3, 4, 2 ] # random
[1, 5, 0, 3, 4, 2 ][ 0..2 ] ==> [1, 5, 0 ]
Footnotes:
It is worth mentioning that at the time this question was originally answered, September 2008, that Array#shuffle was either not available or not already known to me, hence the approximation in Array#sort
And there's a barrage of suggested edits to this as a result.
So:
.sort{ rand() - 0.5 }
Can be better, and shorter expressed on modern ruby implementations using
.shuffle
Additionally,
[0..x]
Can be more obviously written with Array#take as:
.take(x)
Thus, the easiest way to produce a sequence of random numbers on a modern ruby is:
(0..50).to_a.shuffle.take(x)
This uses Set:
require 'set'
def rand_n(n, max)
randoms = Set.new
loop do
randoms << rand(max)
return randoms.to_a if randoms.size >= n
end
end
Ruby 1.9 offers the Array#sample method which returns an element, or elements randomly selected from an Array. The results of #sample won't include the same Array element twice.
(1..999).to_a.sample 5 # => [389, 30, 326, 946, 746]
When compared to the to_a.sort_by approach, the sample method appears to be significantly faster. In a simple scenario I compared sort_by to sample, and got the following results.
require 'benchmark'
range = 0...1000000
how_many = 5
Benchmark.realtime do
range.to_a.sample(how_many)
end
=> 0.081083
Benchmark.realtime do
(range).sort_by{rand}[0...how_many]
end
=> 2.907445
Just to give you an idea about speed, I ran four versions of this:
Using Sets, like Ryan's suggestion.
Using an Array slightly larger than necessary, then doing uniq! at the end.
Using a Hash, like Kyle suggested.
Creating an Array of the required size, then sorting it randomly, like Kent's suggestion (but without the extraneous "- 0.5", which does nothing).
They're all fast at small scales, so I had them each create a list of 1,000,000 numbers. Here are the times, in seconds:
Sets: 628
Array + uniq: 629
Hash: 645
fixed Array + sort: 8
And no, that last one is not a typo. So if you care about speed, and it's OK for the numbers to be integers from 0 to whatever, then my exact code was:
a = (0...1000000).sort_by{rand}
Yes, it's possible to do this without a loop and without keeping track of which numbers have been chosen. It's called a Linear Feedback Shift Register: Create Random Number Sequence with No Repeats
[*1..99].sample(4) #=> [64, 99, 29, 49]
According to Array#sample docs,
The elements are chosen by using random and unique indices
If you need SecureRandom (which uses computer noise instead of pseudorandom numbers):
require 'securerandom'
[*1..99].sample(4, random: SecureRandom) #=> [2, 75, 95, 37]
How about a play on this? Unique random numbers without needing to use Set or Hash.
x = 0
(1..100).map{|iter| x += rand(100)}.shuffle
You could use a hash to track the random numbers you've used so far:
seen = {}
max = 100
(1..10).map { |n|
x = rand(max)
while (seen[x])
x = rand(max)
end
x
}
Rather than add the items to a list/array, add them to a Set.
If you have a finite list of possible random numbers (i.e. 1 to 100), then Kent's solution is good.
Otherwise there is no other good way to do it without looping. The problem is you MUST do a loop if you get a duplicate. My solution should be efficient and the looping should not be too much more than the size of your array (i.e. if you want 20 unique random numbers, it might take 25 iterations on average.) Though the number of iterations gets worse the more numbers you need and the smaller max is. Here is my above code modified to show how many iterations are needed for the given input:
require 'set'
def rand_n(n, max)
randoms = Set.new
i = 0
loop do
randoms << rand(max)
break if randoms.size > n
i += 1
end
puts "Took #{i} iterations for #{n} random numbers to a max of #{max}"
return randoms.to_a
end
I could write this code to LOOK more like Array.map if you want :)
Based on Kent Fredric's solution above, this is what I ended up using:
def n_unique_rand(number_to_generate, rand_upper_limit)
return (0..rand_upper_limit - 1).sort_by{rand}[0..number_to_generate - 1]
end
Thanks Kent.
No loops with this method
Array.new(size) { rand(max) }
require 'benchmark'
max = 1000000
size = 5
Benchmark.realtime do
Array.new(size) { rand(max) }
end
=> 1.9114e-05
Here is one solution:
Suppose you want these random numbers to be between r_min and r_max. For each element in your list, generate a random number r, and make list[i]=list[i-1]+r. This would give you random numbers which are monotonically increasing, guaranteeing uniqueness provided that
r+list[i-1] does not over flow
r > 0
For the first element, you would use r_min instead of list[i-1]. Once you are done, you can shuffle the list so the elements are not so obviously in order.
The only problem with this method is when you go over r_max and still have more elements to generate. In this case, you can reset r_min and r_max to 2 adjacent element you have already computed, and simply repeat the process. This effectively runs the same algorithm over an interval where there are no numbers already used. You can keep doing this until you have the list populated.
As far as it is nice to know in advance the maxium value, you can do this way:
class NoLoopRand
def initialize(max)
#deck = (0..max).to_a
end
def getrnd
return #deck.delete_at(rand(#deck.length - 1))
end
end
and you can obtain random data in this way:
aRndNum = NoLoopRand.new(10)
puts aRndNum.getrnd
you'll obtain nil when all the values will be exausted from the deck.
Method 1
Using Kent's approach, it is possible to generate an array of arbitrary length keeping all values in a limited range:
# Generates a random array of length n.
#
# #param n length of the desired array
# #param lower minimum number in the array
# #param upper maximum number in the array
def ary_rand(n, lower, upper)
values_set = (lower..upper).to_a
repetition = n/(upper-lower+1) + 1
(values_set*repetition).sample n
end
Method 2
Another, possibly more efficient, method modified from same Kent's another answer:
def ary_rand2(n, lower, upper)
v = (lower..upper).to_a
(0...n).map{ v[rand(v.length)] }
end
Output
puts (ary_rand 5, 0, 9).to_s # [0, 8, 2, 5, 6] expected
puts (ary_rand 5, 0, 9).to_s # [7, 8, 2, 4, 3] different result for same params
puts (ary_rand 5, 0, 1).to_s # [0, 0, 1, 0, 1] repeated values from limited range
puts (ary_rand 5, 9, 0).to_s # [] no such range :)

Resources