How to prevent deadlock? Is there any algorithm can do this? I have two processes: one holds a semaphore and the other waits for the semaphore. When the process which holds the semaphore is dead, the deadlock occurs. My question is there is anyway (in semaphore or
operating systme) to avoid such situation? Thanks!
Because threads can become blocked and because objects can have synchronized methods that prevent threads from accessing that object util waiting for another thread, it is possible for one thread to get stuck waiting for another thread, which in turn waits for another thread, etc.
Related
When using a globally named mutex to synchronize across two processes, and one of the two processes are killed (say in Task Manager, or due to a fault), the other process returns from WaitForSingleObject() with the appropriate error code and can continue.
When using a globally name semaphore, it does not release the waiting process if the other process is killed / terminated. WaitForSingleObject() will wait until it times out (which may be INFINITE or hours).
How do I stop WaitForSingleObject() from waiting when the other process is killed or terminated?
In this case, there is a single count on the semaphore used to control read/write requests of a shared buffer. The Requester signals the Provider to provide certain data, the Provider updates the buffer and signals back to the Requester that it can now read the buffer.
I suggest that you switch to using WaitForMultipleObjects and wait for the handle of the process that might get terminated (or thread if you want to do this within a single process) in addition to your semaphore handle. That way you can continue to use INFINITE timeouts. Just have to check the return value to see which object was signalled.
Also, I would consider a process terminating while holding a semaphore somewhat of a bug, particularly a semaphore used for actual inter-process communication.
Adding to the accepted answer.
I added logic if the waitms was going to be longer than some value maxwaitms then the requester/provider exchange the providers process id (GetCurrentProcessId()) before the long process. The requester opens a handle (OpenHandle()) to the provider process and waits on both the semaphore and the process handle to know when writing is done (or process terminated).
I have hand-made thread pool. Threads read from completion port and do some other stuff. One particular thread has to be ended. How to interrupt it's waiting if it hangs on GetQueuedCompletionStatus() or GetQueuedCompletionStatusEx()?
Finite timeout (100-1000 ms) and exiting variable are far from elegant, cause delays and left as last resort.
CancelIo(completionPortHandle) within APC in target thread causes ERROR_INVALID_HANDLE.
CancelSynchronousIo(completionPortHandle) causes ERROR_NOT_FOUND.
PostQueuedCompletionStatus() with termination packet doesn't allow to choose thread.
Rough TerminateThread() with mutex should work. (I haven't tested it.) But is it ideologically good?
I tried to wait on special event and completion port. WaitForMultipleObjects() returned immediately as if completion port was signalled. GetQueuedCompletionStatus() shows didn't return anything.
I read Overlapped I/O: How to wake a thread on a completion port event or a normal event? and googled a lot.
Probably, the problem itself – ending thread's work – is sign of bad design and all my threads should be equal and compounded into normal thread pool. In this case, PostQueuedCompletionStatus() approach should work. (Although I have doubts that this approach is beautiful and laconic especially if threads use GetQueuedCompletionStatusEx() to get multiple packets at once.)
If you just want to reduce the size of the thread pool it doesn't matter which thread exits.
However if for some reason you need to signal to an particular thread that it needs to exit, rather than allowing any thread to exit, you can use this method.
If you use GetQueuedCompletionStatusEx you can do an alertable wait, by passing TRUE for fAlertable. You can then use QueueUserAPC to queue an APC to the thread you want to quit.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684954(v=vs.85).aspx
If the thread is busy then you will still have to wait for the current work item to be completed.
Certainly don't call TerminateThread.
Unfortunately, I/O completion port handles are always in a signaled state and as such cannot really be used in WaitFor* functions.
GetQueuedCompletionStatus[Ex] is the only way to block on the completion port. With an empty queue, the function will return only if the thread becomes alerted. As mentioned by #Ben, the QueueUserAPC will make the the thread alerted and cause GetQueuedCompletionStatus to return.
However, QueueUserAPC allocates memory and thus can fail in low-memory conditions or when memory quotas are in effect. The same holds for PostQueuedCompletionStatus. As such, using any of these functions on an exit path is not a good idea.
Unfortunately, the only robust way seems to be calling the undocumented NtAlertThread exported by ntdll.dll.
extern "C" NTSTATUS __stdcall NtAlertThread(HANDLE hThread);
Link with ntdll.lib. This function will put the target thread into an alerted state without queuing anything.
I learned about synchronization in class recently, and I'm a little confused about the difference between signal and broadcast. I know for signal, when it happens it wakes up the first thread in its waitlist. That thread will claim the lock after the signal thread unlocks. Then what happens to broadcast? when broadcast is called all the waiting threads are woken up. Then when the broadcast thread unlocks, which of these threads get to take that lock?
All the threads are unblocked. All of them try to acquire the lock. Whichever one succeeds first returns from its wait function holding the lock. When that thread later releases the lock, one of the threads still trying to acquire it, will get it.
In practice I suspect that on a broadcast the OS will move the waitlist directly across and add it to the list of threads waiting to acquire the lock (accounting for priority if it orders such lists by priority). But that's an implementation detail.
If I have an app that is creating threads which do their work and then exit, and one or more threads get themselves into a deadlock (possibly through no fault of my own!), is there a way of programmatically forcing one of the threads to advance past the WaitForSingleObject it might be stuck at, and thus resolving the deadlock?
I don't necessarily want to terminate the thread, I just want to have it move on (and thus allow the threads to exit "gracefully".
(yes, I know this sounds like a duplicate of my earlier question Delphi 2006 - What's the best way to gracefully kill a thread and still have the OnTerminate handler fire?, but the situation is slightly different - what I'm asking here is whether it is possible to make a WaitForSingleObject (Handle, INFINTE) behave like a WaitForSingleObject (Handle, ItCantPossiblyBeWorkingProperlyAfterThisLong)).
Please be gentle with me.
* MORE INFO *
The problem is not necessarily in code I have the source to. The actual situation is a serial COM port library (AsyncFree) that is thread based. When the port is USB-based, the library seems to have a deadlock between two of the threads it creates on closing the port. I've already discussed this at length in this forum. I did recode one of the WaitForSingleObject calls to not be infinite, and that cured that deadlock, but then another one appeared later in the thread shutdown sequence, this time in the Delphi TThread.Destroy routine.
So my rationale for this is simple: when my threads deadlock, I fix the code if I can. If I can't, or one appears that I don't know about, I just want the thread to finish. I doesn't have to be pretty. I can't afford to have my app choke.
You can make a handle used in WaitForSingleObject invalid by closing it (from some other thread). In this case WaitForSingleObject should return WAIT_FAILED and your thread will be 'moved on'
If you don't use INFINITE but just set a given timeout time, you can check if the call returned because the time out time expired or because the handle you were waiting for got into the signalled state. Then your code can decide what to do next. Enter another waiting cycle, or simply exit anyway maybe showing somewhere 'hey, I was waiting but it was too long and I terminated anyway).
Another options is to use WaitForMultipleObjects and use something alike an event to have the wait terminate if needed. The advantage it doesn't need the timeout to expire.
Of course one the thread is awaken it must be able to handle the "exceptional" condition of continuing even if the "main" handle it was waiting for didn't return in time.
can somebody please explain what is the difference if I do
mutex = createMutex
waitForSingleObject
Release(mutex)
and
event = createEvent
waitForSingleObject
Release(event)
I'm so confused, can I use both versions for the synchronization? thanks in advance for any help
You use a mutex to ensure that only one thread of execution can be accessing something. For example, if you want to update a list that can potentially be used by multiple threads, you'd use a mutex:
acquire mutex
update list
release mutex
With a mutex, only one thread at a time can be executing the "update list".
You use a manual reset event if you want multiple threads to wait for something to happen before continuing. For example, you started multiple threads, but they're all paused waiting for some other event before they can continue. Once that event happens, all of the threads can start running.
The main thread would look like this:
create event, initial value false (not signaled)
start threads
do some other initialization
signal event
Each thread's code would be:
do thread initialization
wait for event to be signaled
do thread processing
Yes, both can be used for synchronization but in different ways.
Mutex is a mutual exclusion object and can be acquired only by a single instance at a time. It is used to avoid the simultaneous use of a common resource, such as a global variable, by pieces of computer code
Event is an objet that can be explicitly set to a state by use of the SetEvent function.