Parallel multiplication of many small matrices by fixed vector - matrix

Situation is the following: I have a number (1000s) of elements which are given by small matrices of dimensions 4x2, 9x3 ... you get the idea. All matrices have the same dimension.
I want to multiply each of these matrices with a fixed vector of precalculated values. In short:
for(i = 1...n)
X[i] = M[i] . N;
What is the best approach to do this in parallel using Thrust? How do I lay out my data in memory?
NB: There might be specialized, more suitable libraries to do this on GPUs. I'm interested in Thrust because it allows me to deploy to different backends, not just CUDA.

One possible approach:
flatten the arrays (matrices) into a single data vector. This is an advantageous step for enabling general thrust processing anyway.
use a strided range mechanism to take your scaling vector and extend it to the overall length of your flattened data vector
use thrust::transform with thrust::multiplies to multiply the two vectors together.
If you need to access the matrices later out of your flattened data vector (or result vector), you can do so with pointer arithmetic, or a combination of fancy iterators.
If you need to re-use the extended scaling vector, you may want to use the method outlined in step 2 exactly (i.e. create an actual vector using that method, length = N matrices, repeated). If you are only doing this once, you can achieve the same effect with a counting iterator, followed by a transform iterator (modulo the length of your matrix in elements), followed by a permutation iterator, to index into your original scaling vector (length = 1 matrix).
The following example implements the above, without using the strided range iterator method:
#include <iostream>
#include <stdlib.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/functional.h>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/transform.h>
#define N_MAT 1000
#define H_MAT 4
#define W_MAT 3
#define RANGE 1024
struct my_modulo_functor : public thrust::unary_function<int, int>
{
__host__ __device__
int operator() (int idx) {
return idx%(H_MAT*W_MAT);}
};
int main(){
thrust::host_vector<int> data(N_MAT*H_MAT*W_MAT);
thrust::host_vector<int> scale(H_MAT*W_MAT);
// synthetic; instead flatten/copy matrices into data vector
for (int i = 0; i < N_MAT*H_MAT*W_MAT; i++) data[i] = rand()%RANGE;
for (int i = 0; i < H_MAT*W_MAT; i++) scale[i] = rand()%RANGE;
thrust::device_vector<int> d_data = data;
thrust::device_vector<int> d_scale = scale;
thrust::device_vector<int> d_result(N_MAT*H_MAT*W_MAT);
thrust::transform(d_data.begin(), d_data.end(), thrust::make_permutation_iterator(d_scale.begin(), thrust::make_transform_iterator(thrust::counting_iterator<int>(0), my_modulo_functor())) ,d_result.begin(), thrust::multiplies<int>());
thrust::host_vector<int> result = d_result;
for (int i = 0; i < N_MAT*H_MAT*W_MAT; i++)
if (result[i] != data[i] * scale[i%(H_MAT*W_MAT)]) {std::cout << "Mismatch at: " << i << " cpu result: " << (data[i] * scale[i%(H_MAT*W_MAT)]) << " gpu result: " << result[i] << std::endl; return 1;}
std::cout << "Success!" << std::endl;
return 0;
}
EDIT: Responding to a question below:
The benefit of fancy iterators (i.e. transform(numbers, iterator)) is that they often allow for eliminaion of extra data copies/data movement, as compared to assembling other number (which requires extra steps and data movement) and then passing it to transform(numbers, other numbers). If you're only going to use other numbers once, then the fancy iterators will generally be better. If you're going to use other numbers again, then you may want to assemble it explicitly. This preso is instructive, in particular "Fusion".
For a one-time use of other numbers the overhead of assembling it on the fly using fancy iterators and the functor is generally lower than explicitly creating a new vector, and then passing that new vector to the transform routine.

When looking for a software library which is concisely made for multiplying small matrices, then one may have a look at https://github.com/hfp/libxsmm. Below, the code requests a specialized matrix kernel according to the typical GEMM parameters (please note that some limitations apply).
double alpha = 1, beta = 1;
const char transa = 'N', transb = 'N';
int flags = LIBXSMM_GEMM_FLAGS(transa, transb);
int prefetch = LIBXSMM_PREFETCH_AUTO;
libxsmm_blasint m = 23, n = 23, k = 23;
libxsmm_dmmfunction xmm = NULL;
xmm = libxsmm_dmmdispatch(m, n, k,
&m/*lda*/, &k/*ldb*/, &m/*ldc*/,
&alpha, &beta, &flags, &prefetch);
Given the above code, one can proceed and run "xmm" for an entire series of (small) matrices without a particular data structure (below code also uses "prefetch locations").
if (0 < n) { /* check that n is at least 1 */
# pragma parallel omp private(i)
for (i = 0; i < (n - 1); ++i) {
const double *const ai = a + i * asize;
const double *const bi = b + i * bsize;
double *const ci = c + i * csize;
xmm(ai, bi, ci, ai + asize, bi + bsize, ci + csize);
}
xmm(a + (n - 1) * asize, b + (n - 1) * bsize, c + (n - 1) * csize,
/* pseudo prefetch for last element of batch (avoids page fault) */
a + (n - 1) * asize, b + (n - 1) * bsize, c + (n - 1) * csize);
}
In addition to the manual loop control as shown above, libxsmm_gemm_batch (or libxsmm_gemm_batch_omp) can be used (see ReadTheDocs). The latter is useful if data structures exist that describe the series of operands (A, B, and C matrices).
There are two reasons why this library gives superior performance: (1) on-the-fly code specialization using an in-memory code generation technique, and (2) loading the next matrix operands while calculating the current product.
( Given one is looking for something that blends well with C/C++, this library supports it. However, it does not aim for CUDA/Thrust. )

Related

Fast random/mutation algorithms (vector to vector) [duplicate]

I've been trying to create a generalized Gradient Noise generator (which doesn't use the hash method to get gradients). The code is below:
class GradientNoise {
std::uint64_t m_seed;
std::uniform_int_distribution<std::uint8_t> distribution;
const std::array<glm::vec2, 4> vector_choice = {glm::vec2(1.0, 1.0), glm::vec2(-1.0, 1.0), glm::vec2(1.0, -1.0),
glm::vec2(-1.0, -1.0)};
public:
GradientNoise(uint64_t seed) {
m_seed = seed;
distribution = std::uniform_int_distribution<std::uint8_t>(0, 3);
}
// 0 -> 1
// just passes the value through, origionally was perlin noise activation
double nonLinearActivationFunction(double value) {
//return value * value * value * (value * (value * 6.0 - 15.0) + 10.0);
return value;
}
// 0 -> 1
//cosine interpolation
double interpolate(double a, double b, double t) {
double mu2 = (1 - cos(t * M_PI)) / 2;
return (a * (1 - mu2) + b * mu2);
}
double noise(double x, double y) {
std::mt19937_64 rng;
//first get the bottom left corner associated
// with these coordinates
int corner_x = std::floor(x);
int corner_y = std::floor(y);
// then get the respective distance from that corner
double dist_x = x - corner_x;
double dist_y = y - corner_y;
double corner_0_contrib; // bottom left
double corner_1_contrib; // top left
double corner_2_contrib; // top right
double corner_3_contrib; // bottom right
std::uint64_t s1 = ((std::uint64_t(corner_x) << 32) + std::uint64_t(corner_y) + m_seed);
std::uint64_t s2 = ((std::uint64_t(corner_x) << 32) + std::uint64_t(corner_y + 1) + m_seed);
std::uint64_t s3 = ((std::uint64_t(corner_x + 1) << 32) + std::uint64_t(corner_y + 1) + m_seed);
std::uint64_t s4 = ((std::uint64_t(corner_x + 1) << 32) + std::uint64_t(corner_y) + m_seed);
// each xy pair turns into distance vector from respective corner, corner zero is our starting corner (bottom
// left)
rng.seed(s1);
corner_0_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x, dist_y});
rng.seed(s2);
corner_1_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x, dist_y - 1});
rng.seed(s3);
corner_2_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x - 1, dist_y - 1});
rng.seed(s4);
corner_3_contrib = glm::dot(vector_choice[distribution(rng)], {dist_x - 1, dist_y});
double u = nonLinearActivationFunction(dist_x);
double v = nonLinearActivationFunction(dist_y);
double x_bottom = interpolate(corner_0_contrib, corner_3_contrib, u);
double x_top = interpolate(corner_1_contrib, corner_2_contrib, u);
double total_xy = interpolate(x_bottom, x_top, v);
return total_xy;
}
};
I then generate an OpenGL texture to display with like this:
int width = 1024;
int height = 1024;
unsigned char *temp_texture = new unsigned char[width*height * 4];
double octaves[5] = {2,4,8,16,32};
for( int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
double d_noise = 0;
d_noise += temp_1.noise(j/octaves[0], i/octaves[0]);
d_noise += temp_1.noise(j/octaves[1], i/octaves[1]);
d_noise += temp_1.noise(j/octaves[2], i/octaves[2]);
d_noise += temp_1.noise(j/octaves[3], i/octaves[3]);
d_noise += temp_1.noise(j/octaves[4], i/octaves[4]);
d_noise/=5;
uint8_t noise = static_cast<uint8_t>(((d_noise * 128.0) + 128.0));
temp_texture[j*4 + (i * width * 4) + 0] = (noise);
temp_texture[j*4 + (i * width * 4) + 1] = (noise);
temp_texture[j*4 + (i * width * 4) + 2] = (noise);
temp_texture[j*4 + (i * width * 4) + 3] = (255);
}
}
Which give good results:
But gprof is telling me that the Mersenne twister is taking up 62.4% of my time and growing with larger textures. Nothing else individual takes any where near as much time. While the Mersenne twister is fast after initialization, the fact that I initialize it every time I use it seems to make it pretty slow.
This initialization is 100% required for this to make sure that the same x and y generates the same gradient at each integer point (so you need either a hash function or seed the RNG each time).
I attempted to change the PRNG to both the linear congruential generator and Xorshiftplus, and while both ran orders of magnitude faster, they gave odd results:
LCG (one time, then running 5 times before using)
Xorshiftplus
After one iteration
After 10,000 iterations.
I've tried:
Running the generator several times before utilizing output, this results in slow execution or simply different artifacts.
Using the output of two consecutive runs after initial seed to seed the PRNG again and use the value after wards. No difference in result.
What is happening? What can i do to get faster results that are of the same quality as the mersenne twister?
OK BIG UPDATE:
I don't know why this works, I know it has something to do with the prime number utilized, but after messing around a bit, it appears that the following works:
Step 1, incorporate the x and y values as seeds separately (and incorporate some other offset value or additional seed value with them, this number should be a prime/non trivial factor)
Step 2, Use those two seed results into seeding the generator again back into the function (so like geza said, the seeds made were bad)
Step 3, when getting the result, instead of using modulo number of items (4) trying to get, or & 3, modulo the result by a prime number first then apply & 3. I'm not sure if the prime being a mersenne prime matters or not.
Here is the result with prime = 257 and xorshiftplus being used! (note I used 2048 by 2048 for this one, the others were 256 by 256)
LCG is known to be inadequate for your purpose.
Xorshift128+'s results are bad, because it needs good seeding. And providing good seeding defeats the whole purpose of using it. I don't recommend this.
However, I recommend using an integer hash. For example, one from Bob's page.
Here's a result of the first hash of that page, it looks OK to me, and it is fast (I think it is much faster than Mersenne Twister):
Here's the code I've written to generate this:
#include <cmath>
#include <stdio.h>
unsigned int hash(unsigned int a) {
a = (a ^ 61) ^ (a >> 16);
a = a + (a << 3);
a = a ^ (a >> 4);
a = a * 0x27d4eb2d;
a = a ^ (a >> 15);
return a;
}
unsigned int ivalue(int x, int y) {
return hash(y<<16|x)&0xff;
}
float smooth(float x) {
return 6*x*x*x*x*x - 15*x*x*x*x + 10*x*x*x;
}
float value(float x, float y) {
int ix = floor(x);
int iy = floor(y);
float fx = smooth(x-ix);
float fy = smooth(y-iy);
int v00 = ivalue(iy+0, ix+0);
int v01 = ivalue(iy+0, ix+1);
int v10 = ivalue(iy+1, ix+0);
int v11 = ivalue(iy+1, ix+1);
float v0 = v00*(1-fx) + v01*fx;
float v1 = v10*(1-fx) + v11*fx;
return v0*(1-fy) + v1*fy;
}
unsigned char pic[1024*1024];
int main() {
for (int y=0; y<1024; y++) {
for (int x=0; x<1024; x++) {
float v = 0;
for (int o=0; o<=9; o++) {
v += value(x/64.0f*(1<<o), y/64.0f*(1<<o))/(1<<o);
}
int r = rint(v*0.5f);
pic[y*1024+x] = r;
}
}
FILE *f = fopen("x.pnm", "wb");
fprintf(f, "P5\n1024 1024\n255\n");
fwrite(pic, 1, 1024*1024, f);
fclose(f);
}
If you want to understand, how a hash function work (or better yet, which properties a good hash have), check out Bob's page, for example this.
You (unknowingly?) implemented a visualization of PRNG non-random patterns. That looks very cool!
Except Mersenne Twister, all your tested PRNGs do not seem fit for your purpose. As I have not done further tests myself, I can only suggest to try out and measure further PRNGs.
The randomness of LCGs are known to be sensitive to the choice of their parameters. In particular, the period of a LCG is relative to the m parameter - at most it will be m (your prime factor) & for many values it can be less.
Similarly, the careful parameters selection is required to get a long period from Xorshift PRNGs.
You've noted that some PRNGs give good procedural generation results while other do not. In order to isolate the cause, I would factor out the proc gen stuff & examine the PRNG output directly. An easy way to visualize the data is to build a grey scale image where each pixel value is a (possibly scaled) random value. For image based stuff, I find this to be an easy way to find stuff that may lead to visual artifacts. Any artifacts you see with this are likely to cause issues with your proc gen output.
Another option is to try something like the Diehard tests. If the aforementioned image test failed to reveal any problems, I might use this just to be sure my PRNG techniques were trustworthy.
Note that your code seeds the PRNG, then generates one pseudorandom number from the PRNG. The reason for the nonrandomness in xorshift128+ that you discovered is that xorshift128+ simply adds the two halves of the seed (and uses the result mod 264 as the generated number) before changing its state (review its source code). This makes that PRNG considerably different from a hash function.
What you see is the practical demonstration of quality of PRNG. Mersenne Twister is one of the best PRNGs with good performance, it passes DIEHARD tests. One should know that generating a random numbers is not an easy computational task, so looking for a better performance will inevitably result in poor quality. LCG is known to be simplest and worst PRNG ever designed and it clearly shows two-dimensional correlation as in your picture. The quality of Xorshift generators largely depend on bitness and parameters. They are definitely worse than Mersenne Twister, but some (xorshift128+) may work good enough to pass BigCrush battery of TestU01 tests.
In other words, if you are making an important physical modelling numerical experiment, you better continue to use Mersenne Twister as known to be a good trade-off between speed and quality and it comes in many standard libraries. On a less important case you may try to use xorshift128+ generator. For an ultimate results you need to use cryptographical-quality PRNG (none of mentioned here may be used for cryptographical purposes).

warp shuffling to reduction of arrays with any length

I am working on a Cuda kernel which performs vector dot product (A x B). I assumed that the length of each vector is multiple of 32 (32,64, ...) and defined the block size to be equal to the length of the array. Each thread in the block multiplies one element of A to the corresponding element of B (thread i ==>psum = A[i]xB[i]). After multiplication, I used the following functions which used warp shuffling technique to perform reduction and calculate the sum all multiplications.
__inline__ __device__
float warpReduceSum(float val) {
int warpSize =32;
for (int offset = warpSize/2; offset > 0; offset /= 2)
val += __shfl_down(val, offset);
return val;
}
__inline__ __device__
float blockReduceSum(float val) {
static __shared__ int shared[32]; // Shared mem for 32 partial sums
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
val = warpReduceSum(val); // Each warp performs partial reduction
if (lane==0)
shared[wid]=val; // Write reduced value to shared memory
__syncthreads(); // Wait for all partial reductions
//read from shared memory only if that warp existed
val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0;
if (wid==0)
val = warpReduceSum(val); // Final reduce within first warp
return val;
}
I simply call blockReduceSum(psum) which psum is the multiplication of two elements by a thread.
This approach doesn't work when the length of the array is not multiple of 32, so my question is, can we change this code so that it also works for any length? or is it impossible because if the length of the array is not multiple of 32, some warps have elements belonging more than one array?
First of all, depending on the GPU you are using, performing dot product with just 1 block will probably not be very efficient (as long as you are not batching several dot products in 1 kernel, each done by a single block).
To answer your question: you can reuse the code you have written by just calling your kernel with the number of threads being the closest multiple of 32 higher than N (length of the array) and introducing if statement before calling to blockReduceSum that would like this:
__global__ void kernel(float * A, float * B, int N) {
float psum = 0;
if(threadIdx.x < N) //threadIDx.x because your are using single block, you will need to change it to more general id once you move to multiple blocks
psum = A[threadIdx.x] * B[threadIdx.x];
blockReduceSum(psum);
//The rest of computation
}
That way, threads that do not have array element associated with them, but that need to be there due to use of __shfl, will contribute 0 to the sum.

Simple random number generator that can generate nth number in series in O(1) time

I do not intend to use this for security purposes or statistical analysis. I need to create a simple random number generator for use in my computer graphics application. I don't want to use the term "random number generator", since people think in very strict terms about it, but I can't think of any other word to describe it.
it has to be fast.
it must be repeatable, given a particular seed.
Eg: If seed = x, then the series a,b,c,d,e,f..... should happen every time I use the seed x.
Most importantly, I need to be able to compute the nth term in the series in constant time.
It seems, that I cannot achieve this with rand_r or srand(), since these need are state dependent, and I may need to compute the nth in some unknown order.
I've looked at Linear Feedback Shift registers, but these are state dependent too.
So far I have this:
int rand = (n * prime1 + seed) % prime2
n = used to indicate the index of the term in the sequence. Eg: For
first term, n ==1
prime1 and prime2 are prime numbers where
prime1 > prime2
seed = some number which allows one to use the same function to
produce a different series depending on the seed, but the same series
for a given seed.
I can't tell how good or bad this is, since I haven't used it enough, but it would be great if people with more experience in this can point out the problems with this, or help me improve it..
EDIT - I don't care if it is predictable. I'm just trying to creating some randomness in my computer graphics.
Use a cryptographic block cipher in CTR mode. The Nth output is just encrypt(N). Not only does this give you the desired properties (O(1) computation of the Nth output); it also has strong non-predictability properties.
I stumbled on this a while back, looking for a solution for the same problem. Recently, I figured out how to do it in low-constant O(log(n)) time. While this doesn't quite match the O(1) requested by the author, It may be fast enough (a sample run, compiled with -O3, achieved performance of 1 billion arbitrary index random numbers, with n varying between 1 and 2^48, in 55.7s -- just shy of 18M numbers/s).
First, the theory behind the solution:
A common type of RNGs are Linear Congruential Generators, basically, they work as follows:
random(n) = (m*random(n-1) + b) mod p
Where m and b, and p are constants (see a reference on LCGs for how they are chosen). From this, we can devise the following using a bit of modular arithmetic:
random(0) = seed mod p
random(1) = m*seed + b mod p
random(2) = m^2*seed + m*b + b mod p
...
random(n) = m^n*seed + b*Sum_{i = 0 to n - 1} m^i mod p
= m^n*seed + b*(m^n - 1)/(m - 1) mod p
Computing the above can be a problem, since the numbers will quickly exceed numeric limits. The solution for the generic case is to compute m^n in modulo with p*(m - 1), however, if we take b = 0 (a sub-case of LCGs sometimes called Multiplicative congruential Generators), we have a much simpler solution, and can do our computations in modulo p only.
In the following, I use the constant parameters used by RANF (developed by CRAY), where p = 2^48 and g = 44485709377909. The fact that p is a power of 2 reduces the number of operations required (as expected):
#include <cassert>
#include <stdint.h>
#include <cstdlib>
class RANF{
// MCG constants and state data
static const uint64_t m = 44485709377909ULL;
static const uint64_t n = 0x0000010000000000ULL; // 2^48
static const uint64_t randMax = n - 1;
const uint64_t seed;
uint64_t state;
public:
// Constructors, which define the seed
RANF(uint64_t seed) : seed(seed), state(seed) {
assert(seed > 0 && "A seed of 0 breaks the LCG!");
}
// Gets the next random number in the sequence
inline uint64_t getNext(){
state *= m;
return state & randMax;
}
// Sets the MCG to a specific index
inline void setPosition(size_t index){
state = seed;
uint64_t mPower = m;
for (uint64_t b = 1; index; b <<= 1){
if (index & b){
state *= mPower;
index ^= b;
}
mPower *= mPower;
}
}
};
#include <cstdio>
void example(){
RANF R(1);
// Gets the number through random-access -- O(log(n))
R.setPosition(12345); // Goes to the nth random number
printf("fast nth number = %lu\n", R.getNext());
// Gets the number through standard, sequential access -- O(n)
R.setPosition(0);
for(size_t i = 0; i < 12345; i++) R.getNext();
printf("slow nth number = %lu\n", R.getNext());
}
While I presume the author has moved on by now, hopefully this will be of use to someone else.
If you're really concerned about runtime performance, the above can be made about 10x faster with lookup tables, at the cost of compilation time and binary size (it also is O(1) w.r.t the desired random index, as requested by OP)
In the version below, I used c++14 constexpr to generate the lookup tables at compile time, and got to 176M arbitrary index random numbers per second (doing this did however add about 12s of extra compilation time, and a 1.5MB increase in binary size -- the added time may be mitigated if partial recompilation is used).
class RANF{
// MCG constants and state data
static const uint64_t m = 44485709377909ULL;
static const uint64_t n = 0x0000010000000000ULL; // 2^48
static const uint64_t randMax = n - 1;
const uint64_t seed;
uint64_t state;
// Lookup table
struct lookup_t{
uint64_t v[3][65536];
constexpr lookup_t() : v() {
uint64_t mi = RANF::m;
for (size_t i = 0; i < 3; i++){
v[i][0] = 1;
uint64_t val = mi;
for (uint16_t j = 0x0001; j; j++){
v[i][j] = val;
val *= mi;
}
mi = val;
}
}
};
friend struct lookup_t;
public:
// Constructors, which define the seed
RANF(uint64_t seed) : seed(seed), state(seed) {
assert(seed > 0 && "A seed of 0 breaks the LCG!");
}
// Gets the next random number in the sequence
inline uint64_t getNext(){
state *= m;
return state & randMax;
}
// Sets the MCG to a specific index
// Note: idx.u16 indices need to be adapted for big-endian machines!
inline void setPosition(size_t index){
static constexpr auto lookup = lookup_t();
union { uint16_t u16[4]; uint64_t u64; } idx;
idx.u64 = index;
state = seed * lookup.v[0][idx.u16[0]] * lookup.v[1][idx.u16[1]] * lookup.v[2][idx.u16[2]];
}
};
Basically, what this does is splits the computation of, for example, m^0xAAAABBBBCCCC mod p, into (m^0xAAAA00000000 mod p)*(m^0xBBBB0000 mod p)*(m^CCCC mod p) mod p, and then precomputes tables for each of the values in the 0x0000 - 0xFFFF range that could fill AAAA, BBBB or CCCC.
RNG in a normal sense, have the sequence pattern like f(n) = S(f(n-1))
They also lost precision at some point (like % mod), due to computing convenience, therefore it is not possible to expand the sequence to a function like X(n) = f(n) = trivial function with n only.
This mean at best you have O(n) with that.
To target for O(1) you therefore need to abandon the idea of f(n) = S(f(n-1)), and designate a trivial formula directly so that the N'th number can be calculated directly without knowing (N-1)'th; this also render the seed meaningless.
So, you end up have a simple algebra function and not a sequence. For example:
int my_rand(int n) { return 42; } // Don't laugh!
int my_rand(int n) { 3*n*n + 2*n + 7; }
If you want to put more constraint to the generated pattern (like distribution), it become a complex maths problem.
However, for your original goal, if what you want is constant speed to get pseudo-random numbers, I suggest to pre-generate it with traditional RNG and access with lookup table.
EDIT: I noticed you have concern with a table size for a lot of numbers, however you may introduce some hybrid model, like a table of N entries, and do f(k) = g( tbl[k%n], k), which at least provide good distribution across N continue sequence.
This demonstrates an PRNG implemented as a hashed counter. This might appear to duplicate R.'s suggestion (using a block cipher in CTR mode as a stream cipher), but for this, I avoided using cryptographically secure primitives: for speed of execution and because security wasn't a desired feature.
If we were trying to create a secure stream cipher with your requirement that any emitted sequence be trivially repeatable, given knowledge of its index...
...then we could choose a secure hash algorithm (like SHA256) and a counter with a lot of bits (maybe 2048 -> sequence repeats every 2^2048 generated numbers without reseeding).
HOWEVER, the version I present here uses Bob Jenkins' famous hash function (simple and fast, but not secure) along with a 64-bit counter (which is as big as integers can get on my system, without needing custom incrementing code).
Code in main demonstrates that knowledge of the RNG's counter (seed) after initialization allows a PRNG sequence to be repeated, as long as we know how many values were generated leading up to the repetition point.
Actually, if you know the counter's value at any point in the output sequence, you will be able to retrieve all values generated previous to that point, AND all values which will be generated afterward. This only involves adding or subtracting ordinal differences to/from a reference counter value associated with a known point in the output sequence.
It should be pretty easy to adapt this class for use as a testing framework -- you could plug in other hash functions and change the counter's size to see what kind of impact there is on speed as well as the distribution of generated values (the only uniformity analysis I did was to look for patterns in the screenfuls of hexadecimal numbers printed by main()).
#include <iostream>
#include <iomanip>
#include <ctime>
using namespace std;
class CHashedCounterRng {
static unsigned JenkinsHash(const void *input, unsigned len) {
unsigned hash = 0;
for(unsigned i=0; i<len; ++i) {
hash += static_cast<const unsigned char*>(input)[i];
hash += hash << 10;
hash ^= hash >> 6;
}
hash += hash << 3;
hash ^= hash >> 11;
hash += hash << 15;
return hash;
}
unsigned long long m_counter;
void IncrementCounter() { ++m_counter; }
public:
unsigned long long GetSeed() const {
return m_counter;
}
void SetSeed(unsigned long long new_seed) {
m_counter = new_seed;
}
unsigned int operator ()() {
// the next random number is generated here
const auto r = JenkinsHash(&m_counter, sizeof(m_counter));
IncrementCounter();
return r;
}
// the default coontructor uses time()
// to seed the counter
CHashedCounterRng() : m_counter(time(0)) {}
// you can supply a predetermined seed here,
// or after construction with SetSeed(seed)
CHashedCounterRng(unsigned long long seed) : m_counter(seed) {}
};
int main() {
CHashedCounterRng rng;
// time()'s high bits change very slowly, so look at low digits
// if you want to verify that the seed is different between runs
const auto stored_counter = rng.GetSeed();
cout << "initial seed: " << stored_counter << endl;
for(int i=0; i<20; ++i) {
for(int j=0; j<8; ++j) {
const unsigned x = rng();
cout << setfill('0') << setw(8) << hex << x << ' ';
}
cout << endl;
}
cout << endl;
cout << "The last line again:" << endl;
rng.SetSeed(stored_counter + 19 * 8);
for(int j=0; j<8; ++j) {
const unsigned x = rng();
cout << setfill('0') << setw(8) << hex << x << ' ';
}
cout << endl << endl;
return 0;
}

Correct OpenMP pragmas for pi monte carlo in C with not thread-safe random number generator

I need some help to parallelize the pi calculation with the monte carlo method with openmp by a given random number generator, which is not thread safe.
First: This SO thread didn't help me.
My own try is the following #pragma omp statements. I thought the i, x and y vars should be init by each thread and should than be private. z ist the sum of all hits in the circle, so it should be summed after the implied barriere after the for loop.
Think the main problem ist the static state var of the random number generator. I made a critical section where the functions are called, so that only one thread per time could execute it. But the Pi solutions doesn't scale with more higher values.
Note: I should not use another RNG, but its okay to make little changes on it.
int main (int argc, char *argv[]) {
int i, z = 0, threads = 8, iters = 100000;
double x,y, pi;
#pragma omp parallel firstprivate(i,x,y) reduction(+:z) num_threads(threads)
for (i=0; i<iters; ++i) {
#pragma omp critical
{
x = rng_doub(1.0);
y = rng_doub(1.0);
}
if ((x*x+y*y) <= 1.0)
z++;
}
pi = ((double) z / (double) (iters*threads))*4.0;
printf("Pi: %lf\n", pi);;
return 0;
}
This RNG is actually an included file, but as I'm not sure if I create the header file correct, I integrated it in the other program file, so I have only one .c file.
#define RNG_MOD 741025
int rng_int(void) {
static int state = 0;
return (state = (1366 * state + 150889) % RNG_MOD);
}
double rng_doub(double range) {
return ((double) rng_int()) / (double) ((RNG_MOD - 1)/range);
}
I've also tried to make the static int state global, but it doesn't change my result, maybe I done it wrong. So please could you help me make the correct changes? Thank you very much!
Your original linear congruent PRNG has a cycle length of 49400, therefore you are only getting 29700 unique test points. This is a terrible generator to be used for any kind of Monte Carlo simulations. Even if you make 100000000 trials, you won't get any closer to the true value of Pi because you are simply repeating the same points over and over again and as a result both the final value of z and iters are simply multiplied by the same constant, which cancel in the end during the division.
The per-thread seed introduced by Z boson improves the situation a little bit with the number of unique points increasing with the total number of OpenMP threads. The increase is not linear since if the seed of one PRNG falls in the sequence of another PRNG, both PRNGs produce the same sequence shifted with no more than 49400 elements. Given the cycle length, each PRNG covers 49400/RNG_MOD = 6,7% of the total output range and that is the probability of two PRNGs being synchronised. There are a total of RNG_MOD/49400 = 15 unique sequences possible. It basically means that in the best seeding case scenario you won't be able to get past 30 threads as any other thread would simply repeat the result of some of the others. The multiplier 2 comes from the fact that each point uses two elements from the sequence and therefore it is possible to get a different set of points if you shift the sequence by one element.
The ultimate solution is to completely drop your PRNG and stick to something like Mersenne twister MT19937, which has a cycle length of 219937 − 1 and a very strong seeding algorithm. If you are not able to use another PRNG as you state in your question, at least modify the constants of the LCG to match those used in rand():
int rng_int(void) {
static int state = 1;
// & 0x7fffffff is equivalent to modulo with RNG_MOD = 2^31
return (state = (state * 1103515245 + 12345) & 0x7fffffff);
}
Note that rand() is not a good PRNG - it is still bad. It is just a little better than the one used in your code.
Try the code below. It makes a private state for each thread. I did something similar with the at rand_r function Why does calculation with OpenMP take 100x more time than with a single thread?
Edit: I updated my code using some of Hristo's suggestions. I used threadprivate (for the first time). I also used a better rand function which gives a better estimate of pi but it's still not good enough.
One strange things was I had to define the function rng_int after threadprivate otherwise I got an error "error: 'state' declared 'threadprivate' after first use". I should probably ask a question about this.
//gcc -O3 -Wall -pedantic -fopenmp main.c
#include <omp.h>
#include <stdio.h>
#define RNG_MOD 0x80000000
int state;
int rng_int(void);
double rng_doub(double range);
int main() {
int i, numIn, n;
double x, y, pi;
n = 1<<30;
numIn = 0;
#pragma omp threadprivate(state)
#pragma omp parallel private(x, y) reduction(+:numIn)
{
state = 25234 + 17 * omp_get_thread_num();
#pragma omp for
for (i = 0; i <= n; i++) {
x = (double)rng_doub(1.0);
y = (double)rng_doub(1.0);
if (x*x + y*y <= 1) numIn++;
}
}
pi = 4.*numIn / n;
printf("asdf pi %f\n", pi);
return 0;
}
int rng_int(void) {
// & 0x7fffffff is equivalent to modulo with RNG_MOD = 2^31
return (state = (state * 1103515245 + 12345) & 0x7fffffff);
}
double rng_doub(double range) {
return ((double)rng_int()) / (((double)RNG_MOD)/range);
}
You can see the results (and edit and run the code) at http://coliru.stacked-crooked.com/a/23c1753a1b7d1b0d

Computing the null space of a matrix as fast as possible

I need to compute the nullspace of several thousand small matrices (8x9, not 4x3 as I wrote previously) in parallel (CUDA). All references point to SVD but the algorithm in numerical recipes seems very expensive, and gives me lots of things other than the null space that I don't really need. Is Gaussian elimination really not an option? Are there any other commonly used methods?
To answer your question directly... yes! QR decomposition!
Let A be an m-by-n matrix with rank n. QR decomposition finds orthonormal m-by-m matrix Q and upper triangular m-by-n matrix R such that A = QR. If we define Q = [Q1 Q2], where Q1 is m-by-n and Q2 is m-by-(m-n), then the columns of Q2 form the null space of A^T.
QR decomposition is computed either by Gram-Schmidt, Givens rotations, or Householder reflections. They have different stability properties and operation counts.
You are right: SVD is expensive! I can't speak for what state-of-the-art stuff uses, but when I hear "compute null space" (EDIT: in a way that is simple for me to understand), I think QR.
I don't think the above proposed method always gives the whole null space. To recap: "A = QR, where Q = [Q1 Q2], and Q1 is m-by-n and Q2 is m-by-(m-n). Then the columns of Q2 form the null space of A^T."
Indeed, this may only give a subspace of the null space. Simple counter-example is when A=0, in which case the null space of A^T is the whole R^m.
Therefore, it is necessary to check R too. Based on my experience with Matlab, if a row of R is straight 0, then the corresponding column in Q should also be a basis of the null space of A^T. Clearly this observation is heuristic and hinges on the particular algorithm used for QR decomposition.
Gaussian elimination is plenty fast for 4x3 matrices. IIRC I've done about 5 million per second with Java without parallelism. With such a small problem, your best bet is to code the routine (row reduce etc.) yourself; otherwise you'll waste most of the time putting the data into the right format for the external routine.
In the anwers above, it has been already pointed out how the null space of a matrix can be calculated by using the QR or the SVD approach. SVD should be preferred when accuracy is required, see also Null-space of a rectangular dense matrix.
As of February 2015, CUDA 7 (now in release candidate) makes SVD available through its new cuSOLVER library. Below I report an example on how using cuSOLVER's SVD to calculate the null space of a matrix.
Be aware that the problem you are focusing on concerns the calculation of several small matrices, so you should adapt the example I'm providing below by using streams to make sense for your case. To associate a stream to each task you can use
cudaStreamCreate()
and
cusolverDnSetStream()
kernel.cu
#include "cuda_runtime.h"
#include "device_launch_paraMeters.h"
#include<iostream>
#include<iomanip>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<math.h>
#include <cusolverDn.h>
#include <cuda_runtime_api.h>
#include "Utilities.cuh"
/********/
/* MAIN */
/********/
int main(){
// --- gesvd only supports Nrows >= Ncols
// --- column major memory ordering
const int Nrows = 7;
const int Ncols = 5;
// --- cuSOLVE input/output parameters/arrays
int work_size = 0;
int *devInfo; gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
// --- CUDA solver initialization
cusolverDnHandle_t solver_handle;
cusolverDnCreate(&solver_handle);
// --- Singular values threshold
double threshold = 1e-12;
// --- Setting the host, Nrows x Ncols matrix
double *h_A = (double *)malloc(Nrows * Ncols * sizeof(double));
for(int j = 0; j < Nrows; j++)
for(int i = 0; i < Ncols; i++)
h_A[j + i*Nrows] = (i + j*j) * sqrt((double)(i + j));
// --- Setting the device matrix and moving the host matrix to the device
double *d_A; gpuErrchk(cudaMalloc(&d_A, Nrows * Ncols * sizeof(double)));
gpuErrchk(cudaMemcpy(d_A, h_A, Nrows * Ncols * sizeof(double), cudaMemcpyHostToDevice));
// --- host side SVD results space
double *h_U = (double *)malloc(Nrows * Nrows * sizeof(double));
double *h_V = (double *)malloc(Ncols * Ncols * sizeof(double));
double *h_S = (double *)malloc(min(Nrows, Ncols) * sizeof(double));
// --- device side SVD workspace and matrices
double *d_U; gpuErrchk(cudaMalloc(&d_U, Nrows * Nrows * sizeof(double)));
double *d_V; gpuErrchk(cudaMalloc(&d_V, Ncols * Ncols * sizeof(double)));
double *d_S; gpuErrchk(cudaMalloc(&d_S, min(Nrows, Ncols) * sizeof(double)));
// --- CUDA SVD initialization
cusolveSafeCall(cusolverDnDgesvd_bufferSize(solver_handle, Nrows, Ncols, &work_size));
double *work; gpuErrchk(cudaMalloc(&work, work_size * sizeof(double)));
// --- CUDA SVD execution
cusolveSafeCall(cusolverDnDgesvd(solver_handle, 'A', 'A', Nrows, Ncols, d_A, Nrows, d_S, d_U, Nrows, d_V, Ncols, work, work_size, NULL, devInfo));
int devInfo_h = 0; gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
if (devInfo_h != 0) std::cout << "Unsuccessful SVD execution\n\n";
// --- Moving the results from device to host
gpuErrchk(cudaMemcpy(h_S, d_S, min(Nrows, Ncols) * sizeof(double), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_U, d_U, Nrows * Nrows * sizeof(double), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_V, d_V, Ncols * Ncols * sizeof(double), cudaMemcpyDeviceToHost));
for(int i = 0; i < min(Nrows, Ncols); i++)
std::cout << "d_S["<<i<<"] = " << std::setprecision(15) << h_S[i] << std::endl;
printf("\n\n");
int count = 0;
bool flag = 0;
while (!flag) {
if (h_S[count] < threshold) flag = 1;
if (count == min(Nrows, Ncols)) flag = 1;
count++;
}
count--;
printf("The null space of A has dimension %i\n\n", min(Ncols, Nrows) - count);
for(int j = count; j < Ncols; j++) {
printf("Basis vector nr. %i\n", j - count);
for(int i = 0; i < Ncols; i++)
std::cout << "d_V["<<i<<"] = " << std::setprecision(15) << h_U[j*Ncols + i] << std::endl;
printf("\n");
}
cusolverDnDestroy(solver_handle);
return 0;
}
Utilities.cuh
#ifndef UTILITIES_CUH
#define UTILITIES_CUH
extern "C" int iDivUp(int, int);
extern "C" void gpuErrchk(cudaError_t);
extern "C" void cusolveSafeCall(cusolverStatus_t);
#endif
Utilities.cu
#include <stdio.h>
#include <assert.h>
#include "cuda_runtime.h"
#include <cuda.h>
#include <cusolverDn.h>
/*******************/
/* iDivUp FUNCTION */
/*******************/
extern "C" int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
// --- Credit to http://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) { exit(code); }
}
}
extern "C" void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }
/**************************/
/* CUSOLVE ERROR CHECKING */
/**************************/
static const char *_cudaGetErrorEnum(cusolverStatus_t error)
{
switch (error)
{
case CUSOLVER_STATUS_SUCCESS:
return "CUSOLVER_SUCCESS";
case CUSOLVER_STATUS_NOT_INITIALIZED:
return "CUSOLVER_STATUS_NOT_INITIALIZED";
case CUSOLVER_STATUS_ALLOC_FAILED:
return "CUSOLVER_STATUS_ALLOC_FAILED";
case CUSOLVER_STATUS_INVALID_VALUE:
return "CUSOLVER_STATUS_INVALID_VALUE";
case CUSOLVER_STATUS_ARCH_MISMATCH:
return "CUSOLVER_STATUS_ARCH_MISMATCH";
case CUSOLVER_STATUS_EXECUTION_FAILED:
return "CUSOLVER_STATUS_EXECUTION_FAILED";
case CUSOLVER_STATUS_INTERNAL_ERROR:
return "CUSOLVER_STATUS_INTERNAL_ERROR";
case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
}
return "<unknown>";
}
inline void __cusolveSafeCall(cusolverStatus_t err, const char *file, const int line)
{
if(CUSOLVER_STATUS_SUCCESS != err) {
fprintf(stderr, "CUSOLVE error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \
_cudaGetErrorEnum(err)); \
cudaDeviceReset(); assert(0); \
}
}
extern "C" void cusolveSafeCall(cusolverStatus_t err) { __cusolveSafeCall(err, __FILE__, __LINE__); }
I think the most important thing for CUDA is to find an algorithm that doesn't depend on conditional branching (which is quite slow on graphics hardware). Simple if statements that can be optimized into conditional assignment are much better (or you can use the ?: operator).
If necessary, you should be able to do some form of pivoting using conditional assignment. It might actually be harder to determine how to store your result: if your matrix is rank-deficient, what do you want your CUDA program to do about it?
If you assume your 4x3 matrix is not actually rank-deficient, you can find your (single) null-space vector without any conditionals at all: the matrix is small enough that you can use Cramer's rule efficiently.
Actually, since you don't actually care about the scale of your null vector, you don't have to divide by the determinant -- you can just take the determinants of the minors:
x1 x2 x3
M = y1 y2 y3
z1 z2 z3
w1 w2 w3
|y1 y2 y3| |x1 x2 x3| |x1 x2 x3| |x1 x2 x3|
-> x0 = |z1 z2 z3| y0 = -|z1 z2 z3| z0 = |y1 y2 y3| w0 = -|y1 y2 y3|
|w1 w2 w3| |w1 w2 w3| |w1 w2 w3| |z1 z2 z3|
Note that these 3x3 determinants are just triple products; you can save computation by reusing the cross products.
"seems very expensive" - what data do you have that supports this?
Maybe Block Lanczos is the answer you seek.
Or maybe this.
Both JAMA and Apache Commons Math have SVD implementations in Java. Why not take those and try them out? Get some real data for your case instead of impressions. It won't cost you much, since the code is already written and tested.
I wondered if the matrixes are related rather than just being random, so that the null spaces you are seeking can be considered to be like 1-dimensional tangents to a curve in N-space (N = 9). If so, you may be able to speed things up by using Newton's method to solve successive instances of the system of quadratic equations Ax = 0, |x|^2 = 1, starting from a previous null space vector. Newton's method uses first derivatives to converge to a solution, and so would use Gaussian elimination to solve 9x9 systems. Using this technique would require that you be able to make small steps from matrix to matrix by say varying a parameter.
So the idea is that you initialize using SVD on the first matrix, but thereafter you step from matrix to matrix, using the null space vector of one as the starting point for the iteration for the next one. You need one or two iterations to get convergence. If you don't get convegence you use SVD to restart. If this situation is what you have, it is much faster than starting fresh on each matrix.
I used this a long time ago to map contours in the solutions of sets of 50 x 50 quadratic equations associated with the behavior of electric power systems.

Resources