Tap BPM code in Processing - processing

I am trying to develop a program that can help me to find the Beats Per Minute of a song by clicking, or tapping a button.
I have worked out that I need a dynamic array that saves the time (in milliseconds) of each tap, adding a new element on to the end of the Arraylist every time.
After a certain amount of elements are added, the BPM is worked out by finding the sum of all elements and dividing that by the amount of elements in the list.
I am not very familiar with Arraylists and was wondering whether somebody could help me implement these steps.
I will be using processing for this program.

something like this?
ArrayList <Integer> diffs = new ArrayList<Integer>();
int last, now, diff;
void setup() {
last = millis();
}
void draw() {
}
void mouseClicked() {
now = millis();
diff = now - last;
last = now;
diffs.add(diff);
int sum = 0;
for (Integer i : diffs) {
sum = sum + i;
}
int average = diffs.size() > 0 ? sum/diffs.size() : 0;
println ("average = " + average);
}
Actually if you don't need to access each entrie, you don't even need an arraylist...
int last, now, diff, entries, sum;
void setup() {
last = millis();
}
void draw() {
}
void mouseClicked() {
now = millis();
diff = now - last;
last = now;
sum = sum + diff;
entries++;
int average = sum/entries ;
println ("average = " + average);
}

Related

How to code a servomotor with two buttons in arduino?

I wanted to make a servomotor oscilate between 0-90 degrees when i push a button, but when i push another one, it stops oscillating and then remains in its latest position.
i started with this:
#include <Servo.h>
Servo myservo;
int pos = 0;
const int button1 = 5;
const int button2 = 6;
int lastpos = pos;
void setup() {
myservo.attach(3);
pinMode(button1, INPUT);
pinMode(button2, INPUT);
}
void loop() {
if(digitalRead(button1) == HIGH)
{for(pos = 0; pos <= 90; pos += 1)
{myservo.write(pos);
for(pos = 90; pos >= 0; pos -= 1)
{myservo.write(pos);
delay(36);
} } if(digitalRead(button2) == HIGH){ myservo.write(lastpos);}}}
To start, take a look at how to format code inside a question. It makes it a lot easier to read and help you out. See below for how I formatted for the site, but also readability.
Servo myservo;
int pos = 0;
const int button1 = 5;
const int button2 = 6;
int lastpos = pos;
void setup() {
myservo.attach(3);
pinMode(button1, INPUT);
pinMode(button2, INPUT);
}
void loop() {
if(digitalRead(button1) == HIGH) {
for(pos = 0; pos <= 90; pos += 1) {
myservo.write(pos);
for(pos = 90; pos >= 0; pos -= 1) {
myservo.write(pos);
delay(36);
}
}
if(digitalRead(button2) == HIGH) {
myservo.write(lastpos);
}
}
}
There are several issues with your code based on your description of what you are trying to achieve. First, let's start with the button presses. You are ready the button state, but your code will only detect the button if it is pressed at the exact moment you are doing the digital read. Here's a good resource for reading up on how to properly implement buttons on Arduino: https://www.logiqbit.com/perfect-arduino-button-presses
The second objective is to have the servo sweep back and forth, but stop when you press a button. Your for loops won't let that happen. As currently written, you will always do a sweep to one end and back and then check the next button.
You should update the position of the servo once each time through the loop so you can check on the status of the buttons. In pseudo-code, what I suggest you do is:
void loop() {
//Check button statuses
if(button1), start sweep
if(button2), stop sweep
//Update sweep position
if(ascending && pos < 90) {
//You should be increasing in angle and you haven't reached 90 yet
ascending = TRUE;
pos += 1
myservo.write(pos);
delay(36); //Or whatever delay you need for the servo
} else if(pos > 0) {
//You already reached 90 and are coming back down to 0
ascending = FALSE;
pos -= 1;
delay(36);
}

Understanding Big-O with a specific example

I am working on a rather simple question, to make sure that I understand these concepts.
The question is: there exists an array A of n elements, either being RED, WHITE, or BLUE. Rearrange the array such that all WHITE elements come before all BLUE elements, and all BLUE elements come before all RED elements. Construct an algorithm in O(n) time and O(1) space.
From my understanding, the pseudocode for the solution would be:
numW = numB = 0
for i = 0 to n:
if ARRAY[i] == WHITE:
numW++
else if ARRAY[i] == BLUE:
numB++
for i = 0 to n:
if numW > 0:
ARRAY[i] = WHITE
numW--
else if numB > 0:
ARRAY[i] = BLUE
numB--
else:
ARRAY[i] = RED
I believe it is O(n) because it runs through the loop twice and O(2n) is in O(n). I believe the space is O(1) because it is not dependent on the overall number of elements i.e. there will always be a count for each
Is my understanding correct?
If it's linear time, and your algorithm appears to be, then it's O(n) as you suspect. There's a great summary here: Big-O for Eight Year Olds?
Yes, your solution runs in O(n) time in O(1) space.
Below is my solution which also runs in O(n) time and O(1) space, but also works when we have references to objects, as #kenneth suggested in the comments.
import java.util.Arrays;
import java.util.Random;
import static java.lang.System.out;
class Color{
char c;
Color(char c){
this.c = c;
}
}
public class Solution {
private static void rearrangeColors(Color[] collection){
int ptr = 0;
// move all whites to the left
for(int i=0;i<collection.length;++i){
if(collection[i].c == 'W'){
swap(collection,ptr,i);
ptr++;
}
}
// move all blacks to the left after white
for(int i=ptr;i<collection.length;++i){
if(collection[i].c == 'B'){
swap(collection,ptr,i);
ptr++;
}
}
}
private static void swap(Color[] collection,int ptr1,int ptr2){
Color temp = collection[ptr1];
collection[ptr1] = collection[ptr2];
collection[ptr2] = temp;
}
private static void printColors(Color[] collection){
for(int i=0;i<collection.length;++i){
out.print(collection[i].c + ( i != collection.length - 1 ? "," : ""));
}
out.println();
}
public static void main(String[] args) {
// generate a random collection of 'Color' objects
Random r = new Random();
int array_length = r.nextInt(20) + 1;// to add 1 if in case 0 gets generated
Color[] collection = new Color[array_length];
char[] colors_domain = {'B','W','R'};
for(int i=0;i<collection.length;++i){
collection[i] = new Color(colors_domain[r.nextInt(3)]);
}
// print initial state
printColors(collection);
// rearrange them according to the criteria
rearrangeColors(collection);
// print final state
printColors(collection);
}
}
I won't say this is 100% correct, but a quick test case here did work. If anything, it shows the idea of being able to do it in one pass. Is it faster? Probably not. OP's answer I believe is still the best for this case.
#include <stdio.h>
char temp;
#define SWAP(a,b) { temp = a; a = b; b = temp;}
int main()
{
int n = 10;
char arr[] = "RWBRWBRWBR";
printf("%s\n", arr);
int white = 0;
for(int i=0; i<n; i++)
{
if(arr[i] == 'B')
{
SWAP(arr[i], arr[n-1]);
i--; n--;
}
else if(arr[i] == 'R')
{
SWAP(arr[i], arr[white]);
white++;
}
}
printf("%s\n", arr);
}

How to add +1 to variable every 10 seconds in Processing?

Excuse my ignorance, but I ran into a problem that turned out to be challenging for my current knowledge in programming with Processing, even though the idea is quite simple. You see, I need to add 1 unit to a variable every 10 seconds. This is the code:
int i = 0;
void setup()
{
frameRate(60);
}
void draw()
{
int time = (millis() % 10000) / 1000;
if (time == 9)
{
i++;
} else {}
System.out.println("-------------------------------\n" +
"Timer: " + time + "\n"
+ "Adding 1 every 10 seconds: : " + i + "\n"
+ "-------------------------------");
}
The problem is that because draw() loops 60 times per second, as soon as time reaches 9 the second it last makes the if statement to be executed 60 times and it ends adding 60 to i every 10 seconds and I just need to be adding 1.
I tried to apply some kind of algorithm that subtracts the unnecessary numbers as they increase like so:
int i = 1;
int toSubstract = 0; //Variable for algorithm
void setup()
{
frameRate(60);
}
void draw()
{
int time = (millis() % 10000) / 1000;
if (time == 9)
{
i++;
algToSubstract();
} else {}
System.out.println("-------------------------------\n" +
"Timer: " + time + "\n"
+ "Adding 1 every 10 seconds: : " + i + "\n"
+ "-------------------------------");
}
void algToSubstract() //<--- This is the algorithm
{
i = i - toSubstract;
toSubstract++;
if (toSubstract > 59)
{
toSubstract = 0;
} else {}
}
...but I couldn't make it work. The idea was something like this:
time reaches 9, if statement executes, i = 1 and toSubstract = 0.
i increases 1 so i = 2.
i = i - toSusbract (i = 2 - 0 so i = 2).
toSusbract increases 1 so toSusbract = 1.
i increases 1 so i = 3.
i = i - toSusbract (i = 3 - 1 so i = 2).
toSusbract increases 1 so toSusbract = 2.
... Process continues...
toSubstract gets bigger than 59 so it is restarted to 0.
time stops being 9.
The other answers are fine general approaches, but they don't take advantage of the features that Processing provides for you.
For example, you could use the frameCount variable to check how many frames have elapsed. Since draw() is called 60 times per second, 10 seconds is 600 frames. Something like this:
void draw(){
if(frameCount % 600 == 0){
// 10 seconds has elapsed
}
}
Another way to do this is to store the last time 10 seconds elapsed, and then check that against the current time to see if 10 seconds has elapsed since then. Something like this:
int previousTime = 0;
void draw(){
if(millis() > previousTime + 10*1000){
// 10 seconds has elapsed
previousTime = millis();
}
}
More info can be found in the reference.
Ringo has a solution that's perfectly fine.
Another way you can do this easily is:
bool addOnce = false;
void draw()
{
int time = (millis() % 10000) / 1000;
if (time == 9)
{
if(!addOnce) {
addOnce = true;
i++;
}
} else { addOnce = false; }
}
As long as time == 9, we'll only get through if(!addOnce) one time.
After it changes, we reset the flag.
You could store the last number of seconds in a static (or global) variable, and only increment i when the current number of seconds is higher than the oldsecs
void draw() {
static int oldsecs = 0;
int secs = millis() / 1000;
if (secs > oldsecs) {
i++;
oldsecs = secs;
}
...
Assuming the language is C, and the int type is not overflowed by the number of seconds.

Special numbers challenge in programming

First, sorry for my bad English.
Special numbers are numbers that the sum of the digits is divisible to the number of the digit.
Example: 135 is a special number because the sum of the digits is 1+3+5 = 9, the number of the digit is 3, and 9 is divisible to 3 because 9 % 3 == 0. 2,3,9,13,17,15,225, 14825 are also special numbers.
Requirement:
Write a program that read the number n (n <= 10^6) from a file named SNUMS.INP (SNUMS.INP can contain up to 10^6 numbers) and print the result out into the file SNUMS.OUT. Number n is the order of the special number and the result will be that special number in n order (sorry I don't know how to express it).
Example: n = 3 means you have to print out the 3rd special number which is 3, n = 10 you have to print out 10th special number which is 11, n = 13 you have to print out 13th special number which is 17, n = 15 you have to print out 15th special number which is 20.
The example bellow will demonstrate the file SNUMS.INP and SNUMS.OUT (Remember: SNUMS.INP can contain up to 10^6 numbers)
SNUMS.INP:
2
14
17
22
SNUMS.OUT:
2
19
24
35
I have my own alogrithm but the the running time exceeds 1 second (my SNUMS.INP has 10^6 numbers). So I need the optimal alogrithm so that the running time will be less than or equal 1s.
Guys I decide to post my own code which is written in Java, it always take more than 4 seconds to run. Could you guys please suggest some ideas to improve or how to make it run faster
import java.util.Scanner;
import java.io.*;
public class Test
{
public static void main(String[]args) throws IOException
{
File file = new File("SNUMS.INP");
Scanner inputFile = new Scanner(file);
int order = 1;
int i = 1;
int[] special = new int[1000000+1];
// Write all 10^6 special numbers into an array named "special"
while (order <= 1000000)
{
if (specialNumber(i) == true)
{
special[order] = i;
order++;
}
i++;
}
// Write the result to file
PrintWriter outputFile = new PrintWriter("SNUMS.OUT");
outputFile.println(special[inputFile.nextInt()]);
while (inputFile.hasNext())
outputFile.println(special[inputFile.nextInt()]);
outputFile.close();
}
public static boolean specialNumber(int i)
{
// This method check whether the number is a special number
boolean specialNumber = false;
byte count=0;
long sum=0;
while (i != 0)
{
sum = sum + (i % 10);
count++;
i = i / 10;
}
if (sum % count == 0) return true;
else return false;
}
}
This is file SNUMS.INP (sample) contains 10^6 numbers if you guys want to test.
https://drive.google.com/file/d/0BwOJpa2dAZlUNkE3YmMwZmlBOTg/view?usp=sharing
I've managed to solve it in 0.6 seconds on C# 6.0 (.Net 4.6 IA-64) at Core i7 3.2 GHz with HDD 7200 rpc; hope that precompution will be fast enough at your workstation:
// Precompute beautiful numbers
private static int[] BeautifulNumbers(int length) {
int[] result = new int[length];
int index = 0;
for (int i = 1; ; ++i) {
int sum = 0;
int count = 0;
for (int v = i; v > 0; sum += v % 10, ++count, v /= 10)
;
if (sum % count == 0) {
result[index] = i;
if (++index >= result.Length)
return result;
}
}
}
...
// Test file with 1e6 items
File.WriteAllLines(#"D:\SNUMS.INP", Enumerable
.Range(1, 1000000)
.Select(index => index.ToString()));
...
Stopwatch sw = new Stopwatch();
sw.Start();
// Precomputed numbers (about 0.3 seconds to be created)
int[] data = BeautifulNumbers(1000000);
// File (about 0.3 seconds for both reading and writing)
var result = File
.ReadLines(#"D:\SNUMS.INP")
.Select(line => data[int.Parse(line) - 1].ToString());
File.WriteAllLines(#"D:\SNUMS.OUT", result);
sw.Stop();
Console.Write("Elapsed time {0}", sw.ElapsedMilliseconds);
The output vary from
Elapsed time 516
to
Elapsed time 660
with average elapsed time at about 580 milliseconds
Now that you have the metaphor of abacus implemented below, here are some hints
instead of just incrementing with 1 inside a cycle, can we incremente more aggressively? Indeed we can, but with an extra bit of care.
first, how much aggressive we can be? Looking to 11 (first special with 2 digits), it doesn't pay to just increment by 1, we can increment it by 2. Looking to 102 (special with 3 digits), we can increment it by 3. Is it natural to think we should use increments equal with the number of digits?
now the "extra bit of care" - whenever the "increment by the number of digits" causes a "carry", the naive increment breaks. Because the carry will add 1 to the sum of digits, so that we may need to subtract that one from something to keep the sum of digits well behaved.
one of the issues in the above is that we jumped quite happily at "first special with N digits", but the computer is not us to see it at a glance. Fortunately, the "first special with N digits" is easy to compute: it is 10^(N-1)+(N-1) - 10^(N-1) brings an 1 and the rest is zero, and N-1 brings the rest to make the sum of digits be the first divisible with N. Of course, this will break down if N > 10, but fortunately the problem is limited to 10^6 special numbers, which will require at most 7 digits (the millionth specual number is 6806035 - 7 digits);
so, we can detect the "first special number with N digits" and we know we should try with care to increment it by N. Can we look now better into that "extra care"?.
The code - twice as speedy as the previous one and totally "orthodox" in obtaining the data (via getters instead of direct access to data members).
Feel free to inline:
import java.util.ArrayList;
import java.util.Arrays;
public class Abacus {
static protected int pow10[]=
{1,10,100,1000, 10000, 100000, 1000000, 10000000, 100000000}
;
// the value stored for line[i] corresponds to digit[i]*pow10[i]
protected int lineValues[];
protected int sumDigits;
protected int representedNumber;
public Abacus() {
this.lineValues=new int[0];
this.sumDigits=0;
this.representedNumber=0;
}
public int getLineValue(int line) {
return this.lineValues[line];
}
public void clearUnitLine() {
this.sumDigits-=this.lineValues[0];
this.representedNumber-=this.lineValues[0];
this.lineValues[0]=0;
}
// This is how you operate the abacus in real life being asked
// to add a number of units to the line presenting powers of 10
public boolean addWithCarry(int units, int line) {
if(line-1==pow10.length) {
// don't have enough pow10 stored
pow10=Arrays.copyOf(pow10, pow10.length+1);
pow10[line]=pow10[line-1]*10;
}
if(line>=this.lineValues.length) {
// don't have enough lines for the carry
this.lineValues=Arrays.copyOf(this.lineValues, line+1);
}
int digitOnTheLine=this.lineValues[line]/pow10[line];
int carryOnTheNextLine=0;
while(digitOnTheLine+units>=10) {
carryOnTheNextLine++;
units-=10;
}
if(carryOnTheNextLine>0) {
// we have a carry, the sumDigits will be affected
// 1. the next two statememts are equiv with "set a value of zero on the line"
this.sumDigits-=digitOnTheLine;
this.representedNumber-=this.lineValues[line];
// this is the new value of the digit to set on the line
digitOnTheLine+=units;
// 3. set that value and keep all the values synchronized
this.sumDigits+=digitOnTheLine;
this.lineValues[line]=digitOnTheLine*pow10[line];
this.representedNumber+=this.lineValues[line];
// 4. as we had a carry, the next line will be affected as well.
this.addWithCarry(carryOnTheNextLine, line+1);
}
else { // we an simply add the provided value without carry
int delta=units*pow10[line];
this.lineValues[line]+=delta;
this.representedNumber+=delta;
this.sumDigits+=units;
}
return carryOnTheNextLine>0;
}
public int getSumDigits() {
return this.sumDigits;
}
public int getRepresentedNumber() {
return this.representedNumber;
}
public int getLinesCount() {
return this.lineValues.length;
}
static public ArrayList<Integer> specials(int N) {
ArrayList<Integer> ret=new ArrayList<>(N);
Abacus abacus=new Abacus();
ret.add(1);
abacus.addWithCarry(1, 0); // to have something to add to
int increment=abacus.getLinesCount();
while(ret.size()<N) {
boolean hadCarry=abacus.addWithCarry(increment, 0);
if(hadCarry) {
// need to resynch the sum for a perfect number
int newIncrement=abacus.getLinesCount();
abacus.clearUnitLine();
if(newIncrement!=increment) {
// we switched powers of 10
abacus.addWithCarry(newIncrement-1, 0);
increment=newIncrement;
}
else { // simple carry
int digitsSum=abacus.getSumDigits();
// how much we should add to the last digit to make the sumDigits
// divisible again with the increment?
int units=increment-digitsSum % increment;
if(units<increment) {
abacus.addWithCarry(units, 0);
}
}
}
ret.add(abacus.getRepresentedNumber());
}
return ret;
}
// to understand how the addWithCarry works, try the following code
static void add13To90() {
Abacus abacus; // starts with a represented number of 0
// line==1 means units of 10^1
abacus.addWithCary(9, 1); // so this should make the abacus store 90
System.out.println(abacus.getRepresentedNumber());
// line==0 means units of 10^0
abacus.addWithCarry(13, 0);
System.out.println(abacus.getRepresentedNumber()); // 103
}
static public void main(String[] args) {
int count=1000000;
long t1=System.nanoTime();
ArrayList<Integer> s1=Abacus.specials(count);
long t2=System.nanoTime();
System.out.println("t:"+(t2-t1));
}
}
Constructing the numbers from their digits is bound to be faster.
Remember the abacus? Ever used one?
import java.util.ArrayList;
public class Specials {
static public ArrayList<Integer> computeNSpecials(int N) {
ArrayList<Integer> specials = new ArrayList<>();
int abacus[] = new int[0]; // at index i we have the digit for 10^i
// This way, when we don't have enough specials,
// we simply reallocate the array and continue
while (specials.size() < N) {
// see if a carry operation is necessary
int currDigit = 0;
for (; currDigit < abacus.length && abacus[currDigit] == 9; currDigit++) {
abacus[currDigit] = 0; // a carry occurs when adding 1
}
if (currDigit == abacus.length) {
// a carry, but we don't have enough lines on the abacus
abacus = new int[abacus.length + 1];
abacus[currDigit] = 1; // we resolved the carry, all the digits below
// are 0
} else {
abacus[currDigit]++; // we resolve the carry (if there was one),
currDigit = 0; // now it's safe to continue incrementing at 10^0
}
// let's obtain the current number and the sum of the digits
int sumDigits = 0;
for (int i = 0; i<abacus.length; i++) {
sumDigits += abacus[i];
}
// is it special?
if (sumDigits % abacus.length == 0) {
// only now compute the number and collect it as special
int number = 0;
for (int i = abacus.length - 1; i >= 0; i--) {
number = 10 * number + abacus[i];
}
specials.add(number);
}
}
return specials;
}
static public void main(String[] args) {
ArrayList<Integer> specials=Specials.computeNSpecials(100);
for(int i=0; i<specials.size(); i++) {
System.out.println(specials.get(i));
}
}
}

Longest Collatz Sequence

While doing my Java homework which is to implement the Collatz Conjecture, I thought of a different objective which is to find the longest Collatz sequence. My program counts the steps as follows:
public class Collatz {
static int count = 0;
static void bilgi (int n){
int result = n;
System.out.println("Result: "+result+ " Step: "+count);
if (result <= 1) {
result = 1;
} else if (result%2 == 0){
result = result/2;
count = count + 1;
bilgi(result);
} else {
result = (result*3)+1;
count = count + 1;
bilgi(result);
}
}
public static void main(String[] args) {
bilgi(27);
}
}
I want to find the highest step count.
static int bilgi(int n) {
int result = n;
if (result <= 1) return 1;
if (result % 2 == 0) return 1+bilgi(result/2);
return 1+bilgi(3*result+1);
}
Then you collect the results of bilgi(i) calls and select maximal.
The longest progression for any initial starting number less than 100 million is 63,728,127, which has 949 steps. For starting numbers less than 1 billion it is 670,617,279, with 986 steps, and for numbers less than 10 billion it is 9,780,657,630, with 1132 steps
source: http://en.wikipedia.org/wiki/Collatz_conjecture
If you're looking for max between 1 and 100 you could replace:
public static void main(String[] args) {
bilgi(27);
}
with :
public static void main(String[] args) {
static int maxcountsofar = 0;
static int start = 0;
static int thisone = 0;
for (int iloop = 1; iloop <= 100; iloop++)
{
thisone = bilgi(iloop);
if (thisone > maxcountsofar)//if this one is bigger than the highest count so far then
{
start = iloop;//save this information as best so far
maxcountsofar = thisone;
}
}
System.out.println("Result: " + start.Tostring() + " Step: " + maxcountsofar.Tostring() );
//I know this is a really old post but it looked like fun.
}
/*
also, take the println() out of the bilgi() function, it would generate a line for each step encountered which would be worthless and extremely time consuming.
Use Vesper's bigli() because it's much faster than yours.
*/
I know this is an old question, but I was just solving it and I would suggest for anyone doing this, just using an arraylist and getting the .size(), I did it that way, because I wanted to see the values as well.

Resources