Use Elasticsearch as backup store - elasticsearch

My application receives and parse thousands of small JSON snippets each about ~1Kb every hour. I want to create a backup of all incoming JSON snippets.
Is it a good idea to use Elasticsearch to backup this snippets in an index with f.ex. "number_of_replicas:" 4? Never read that anyone has used Elasticsearch for this.
Is my data safe in Elasticsearch when I use a cluster of servers and replicas or should I better use another storage for this use case?
(Writing it to the local file system isn't safe, as our hard discs crashes often. First I have thought about using HDFS, but this isn't made for small files.)

First you need to find difference between replica and backups.
replica is more than one copy of data at run time.It increases high availability and failover support,it wont support accidental delete of data.
Backup is copy of whole data at backup time.it will be used to restore when system crashed.
Elastic search for back up.. its not good idea.. Elastic search is a search engine not DB.If you have not configured ES cluster carefully,then you will end up with loss of data.
So in my opinion ,
To store json object, we got lot of dbs.. For example mongodb is a nosql db.We can easily configure it with more replicas.It means high availability of data and failover support.As you asked its also opensource and more reliable.
for more info about mongodb refer https://www.mongodb.org/
Update:
In elasticsearch if you create index with more shards it'll be distributed among nodes.If a node fails then the data will be lost.But in mongoDB more node means ,each mongodb node contains its own copy of data.If a mongodb fails then we can retrieve out data from replica mongodbs. We need to be more conscious about replica setup and shard allocation in Elasticsearch. But in mongoDB it's easier and good architecture too.
Note: I didn't say storing data in elasticsearch is not safe.I mean, comparing to mongodb,it's difficult to configure replica and maintain in elasticsearch.
Hope it helps..!

Related

Re-processing data for Elasticsearch with a new pipeline

I have an ELK-stack server that is being used to analyse Apache web log data. We're loading ALL of the logs, going back several years. The purpose is to look at some application-specific trends over this time period.
The data-processing pipeline is still being tweaked, as this is the first time anyone has looked in detail into this data and some people are still trying to decide how they want the data to be processed.
Some changes were suggested and while they're easy enough to do in the logstash pipeline for new, incoming data, I'm not sure how to apply these changes to the data that's already in elastic. It took several days to load the current data set, and quite a bit more data has been added so re-processing everything through logstash, with the modified pipeline will probably take several days longer.
What's the best way to apply these changes to data that has already been ingested into elastic? In the early stages of testing this set-up, I would just remove the index and rebuild from scratch, but that was done with very limited data sets and with the amount of data in use here, I'm not sure that's feasible. Is there a better way?
Setup an ingest pipeline and use reindex API to move data from current index to new index (with the pipeline configured for destination index)
Ingest Node

How does elasticsearch snapshot/restore work

I'm using Elasticsearch 2.4.4 and need to use the snapshot/restore mechanism to backup data. But I have a few questions about it.
1. Can a snapshot be taken without any issues while data is being written into ES.
2. Does it matter which of master/data/client node is being used for taking snapshots.
3.Does restore require indices to be closed.If yes then why
Yes
Does not. Most important that storage where you want to write data is available to access from all cluster nodes. Because data are replicated via your cluster and I think you dont have control who will backup your data
No you can snapshot open indicies
Read a bit more about it and here

Elasticsearch vs Cassandra vs Elasticsearch with Cassandra

I am learning NoSQL and looking at different options for one of my client's requirements. I have gone through various resources before putting up this question (a person with little knowledge in NoSQL)
I need to store data at faster rate and read data.
Fully fail-safe and easily scalable.
Able to search through data for Analytics.
I ended up with a short list of: Cassandra and Elasticsearch
What I do understand is Cassandra is a perfect NoSQL storage solution for me, as I can write data and read data using indexes. Where it fails or it could fail is on Analytics. In the future, if I want to get data from from_date to to_date, or more ways to get data for analytics, if I don't design the Data model properly or keeping long term sight, which might be quite hard in ever changing world.
While Elastic Search is best at indexing (backed by Lucene), and can search the data randomly by throwing some random text. But does it work the same for even if I want to retrieve data from_date to to_date (I expect it might be). But the real question is, is it a Search Engine, or perfect NoSQL data storage like Cassandra? If yes, why do we still need Cassandra?
If both of these are in different world, please explain that! How do we combine them to get a more effective solution?
One of our applications uses data that is stored into both Cassandra and ElasticSearch. We use Cassandra to access those records whenever we can, and have data duplicated into query tables designed to adhere to specific application-side requests. For a more liberal search than our query tables can allow, ElasticSearch performs that functionality nicely.
We have asked that same question (of ourselves)..."Why don't we just get everything from ElastsicSearch?"
The answer is that ElasticSearch was designed to be a search engine, and not a persistent data store. Sometimes ElasticSearch loses writes. Schema changes are difficult to do in ElasticSearch without blowing everything away and reloading. For that purpose, I have written jobs that are designed to keep ElasticSearch in-sync with our Cassandra cluster. There was also a fairly recent discussion on Quora about this topic, that yielded similar points.
That being said, ElasticSearch works great as a search engine. And Cassandra works great as a scalable, high-performance datastore. But querying data is different from searching for data. There are times that we need one or the other, and a combination of the two works well for our application. It may (or it may not) work well for yours.
As for analytics, I have had some success in using the Cassandra Spark connector, to serve more complex OLAP queries.
Edit 20200421
I've written a newer answer to a similar question:
ElasticSearch vs. ElasticSearch+Cassandra
Cassandra + Lucene is a great option. There are different initiatives for this issue, for example:
Stratio’s Cassandra Lucene Index - Derived from Stratio Cassandra, is a plugin for Apache Cassandra that extends its index functionality. (https://github.com/Stratio/cassandra-lucene-index)
Stratio Cassandra, it's a native integration with Apache Lucene, it is very interesting. (https://github.com/Stratio/stratio-cassandra) - THIS PROJECT HAS BEEN DISCONTINUED IN FAVOUR OF Stratio’s Cassandra Lucene Index
Tuplejump Calliope, it's like Stratio Cassandra, but it's less active. (https://github.com/tuplejump/stargate-core)
DSE Search by Datastax. It allows using Cassandra with Apache Solr, but it's a proprietary option.(http://www.datastax.com/what-we-offer/products-services/datastax-enterprise)
After working on this problem myself I have realized that NoSQL databases like casandra are good when you want to make sure you are preserving your data schema with reliable writing operation, and don't want to take advantage of indexing operations that elasticsearch offers. In case you want to preserve some indexes data then elasticsearch is good in case you are trusting your scheme and only going to do far more reads than writes.
My case was data analytics. So I preserved a lot of my Latices in elastic search since later I wanted to traverse through the data a lot to see what should be my next step. I would have used casandra if I wanted to have a lot of changes in the schema of the data in my analytic pilelines.
Also there are many nice representing tools like kibana that you can use to present your data with some good graphics. Maybe I am lazy but they are very good looking and they helped me.
Storing data in a combination of Cassandra and ElasticSearch gives you most functionality. It allows you to lookup key-value tables, and also allows you to search data in indexes.
The combination gives you a lot of flexibility, ideal for your application.
Elassandra is the combined solution of Cassandra + Elastic search , It uses Elastic search to index the data and Cassandra as the data store , i'm not sure about the performance but as per this article , its performance is good.
If your application needs search feature then , Elassandra is the best open source option. DSE search is available but its expensive.
We had developed an application where we used Elasticsearch and Cassandra.
Similar data was stored into Cassandra and indexed into Elasticsearch.
Our application's UI was having features like searches, aggregations, data export, etc.
The back-end microservices were continuously getting huge data (on Kafka topics) and storing it into Cassandra. Once the data is stored into Cassandra, the services would make sure the data is indexed into Elasticsearch.
Cassandra was acting as "Source of truth" for Elasticsearch. In the cases, where reindexing of the ES index was required, we queried Cassandra and reindexed the data into ES.
This solution helped us, as this was very easy to scale and the searches and aggregations were much faster.
Cassandra is great at retrieving data by ID. I don't know much about secondary index performance, but I doubt it's as fast as Elasticsearch. Certainly Elasticsearch wins when it comes to full text search functionality (text analysis, relevancy scoring, etc).
Cassandra wins on update performance, too. Elasticsearch supports updates, but an update is really a reindex + soft delete in an atomic operation.
Cassandra has a very nice replication model (if you need to be extra-fail-safe). Elasticsearch is OK, too, I'm not in the camp that says ES is particularly unreliable (it has issues sometimes, like all software).
Elasticsearch also has aggregations for real-time analytics. And because searches are so fast, analytics on a subset of data will be fast, too.
If your requirements are satisfied well enough by one of them (like here it seems like ES would work well), I would just use one. If you have requirements from both worlds, then you can either:
use one of them and work around the downsides. For example, you may be able to handle many updates with Elasticsearch, but with more shards and more hardware
use both and make sure they're in sync
As elasticsearch is built on Lucene index and if you want to store indexing in elasticsearch it performs best comparing to indexing in Cassandra itself for retrieving the data.
If your requirements are not related to real-time retrieval then you can use elasticsearch as NoSQL database also, there are thoughts that ElasticSearch loses writes & Schema changes are difficult, but if your volume of data is not too big. You can easily achive elasticsearch as a search engine with best indexing along with elasticsearch as aNoSQL database. There are several way that you can prevent it. I have worked on the schema changes in elasticsearch, if your data structure is consistent then it will create any issues.
Being a supporter of ElasticSearch or SOlr. I have worked on both the search engines and i experienced that both the search engines can be used fluently if you configure them correctly.
Only cons that i can think of it, if you are targetting real time result and can't comprosie milliseconds delay in your response. Then its better to take help of other NoSQL databases like cassandra or couchbase.
Cassandra with solr, work better than Cassandra with elasticSearch.

ElasticSearch on Cassandra data vs moving Cassandra data to ElasticSearch for Indexing

I'm new to ElasticSearch and am trying to figure out what is the most optimal way to index 1 Terabyte of data in Cassandra.
Two options that I understand right now are:
Move data periodically to ElasticSearch using the Cassandra-River plugin and then run index on the data.
Advantage: Search queries create no impact on Cassandra load
Disadvantage: Have to sync the data periodically
Without moving the data run ElasticSearch on Cassandra to index the data (not sure how will this be done).
Advantage: Data always in sync
Disadvantage: Impacts Cassandra performance ?
Any thoughts would be appreciated.
Prehaps in the context of ElasticSearch 1.4 and above.. just using ElasticSearch as a datastore and search engine might be simpler and elegant option.
Add more nodes to scale.

How can I copy hadoop data to SOLR

I've a SOLR search which uses lucene index as a backend.
I also have some data in Hadoop I would like to use.
How do I copy this data into SOLR ??
Upon googling the only likns I can find tell me how to use use an HDFS index instead of a local index, in SOLR.
I don't want to read the index directly from hadoop, I want to copy them to SOLR and read it from there.
How do I copy? And it would be great if there is some incremental copy mechanism.
If you have a standalone Solr instance, then you could face some scaling issues, depending on the volume of data.
I am assuming high volume given you are using Hadoop/HDFS. In which case, you might need to look at SolrCloud.
As for reading from hdfs, here is a tutorial from LucidImagination, that addresses this issue, and recommends the use of Behemoth
You might also want to look at Katta project, that claims to integrate with hadoop and provide near real-time read access of large datasets . The architecture is illustrated here
EDIT 1
Solr has an open ticket for this. Support for HDFS is scheduled for Solr 4.9. You can apply the patch if you feel like it.
You cannot just copy custom data to Solr, you need to index* it. You data may have any type and format (free text, XML, JSON or even binary data). To use it with Solr, you need to create documents (flat maps with key/value pairs as fields) and add them to Solr. Take a look at this simple curl-based example.
Note, that reading data from HDFS is a different question. For Solr, it doesn't matter where you are reading data from as long as you provide it with documents.
Storing index on local disk or in HDFS is also a different question. If you expect your index to be really large, you can configure Solr to use HDFS. Otherwise you can use default properties and use local disk.
* - "Indexing" is a common term for adding documents to Solr, but in fact adding documents to Solr internal storage and indexing (making fields searchable) are 2 distinct things and can be configured separately.

Resources