Find all M-length sets of positive integers that sum to N - algorithm

The problem I'm trying to solve is how do we find all the integer sets [a1, a2, ... ,am] so that
a1 + a2 + ... + am = N
and with the constraint ai >= 1
For example if M = 4, and N = 7 there are three answers
[1,1,1,4]
[1,1,2,3]
[1,2,2,2]

Since you have to print all the sets that sum to N. You can employ a complete search algorithm using recursion. In the following code, M is the number of numbers in the set and N is the sum required.
int M;
int N;
void run(){
M = 4;
N = 7;
int[] arr = new int[M];
print(arr, 0, N, 1);
}
// req holds the required sum for the numbers in the array from arr[from]
// to arr[M-1].
// "last" holds the last value that we had put in the array.
// The first call to the array will be with last=1.
void print(int[] arr, int from, int req, int last){
// Reached the end of the array and sum required 0.
if(from==M && req==0){
System.out.println(Arrays.toString(arr));
return;
}
// Either reached the end of the array but sum is not equal to N
// Or if we have not reached the end of the array but sum has already
// become more than or equal to N.
if(from==M || req<=0){
return;
}
for(int i=last; i<=req; i++){
arr[from] = i;
print(arr, from+1, req-i, i);
}
}
Output for M=4 and N=7:
[1, 1, 1, 4]
[1, 1, 2, 3]
[1, 2, 2, 2]
Output for M=3 and N=10:
[1, 1, 8]
[1, 2, 7]
[1, 3, 6]
[1, 4, 5]
[2, 2, 6]
[2, 3, 5]
[2, 4, 4]
[3, 3, 4]

Answer for the problem in the link, just got accepted.
The idea is simple, assume that we know the maximum value for each section is X, and we want to find a way to divide these cabinets to achieve that , we can greedily divide them as follow:
Starting from first cabinet, iterating through each cabinet, until the total from first to ith cabinet is greater than X. So this is the first section, similarly, we can select other sections. This greedy will always find a solution (if exists).
Finally, we can using binary search to adjust the value of X, decrease X if we can find a way to divide the cabinets, or increase X if we cannot find one.
Here is the code in Java:
public class FairWorkload {
public int getMostWork(int[] folders, int workers) {
int[] data = new int[folders.length];
data[0] = folders[0];
for (int i = 1; i < data.length; i++) {
data[i] = data[i - 1] + folders[i];
}
if (workers == 1) {
return data[data.length - 1];
}
int start = 0;
int end = data[data.length - 1];
int result = Integer.MAX_VALUE;
while (start <= end) {
int mid = (start + end) / 2;
int index = 0;
for (int k = 0; k < workers && index < data.length; k++) {
int less = index > 0 ? data[index - 1] : 0;
int temp = index;
for (int i = index; i < data.length; i++) {
if (data[i] - less <= mid) {
temp = i;
} else {
break;
}
}
// System.out.println(data[temp] - less + " " + mid);
if(data[temp] - less > mid){
index = -1;
break;
}
index = temp + 1;
}
//System.out.println(mid + " " + index);
if (index != data.length) {
start = mid + 1;
} else {
result = Math.min(result, mid);
end = mid - 1;
}
}
return result;
}
public static void main(String[] args) {
int[] data = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1000};
System.out.println(new FairWorkload().getMostWork(data, 2));
}
}

One possible solution uses a counting technique, finding the rightmost term that satisfies [i] <= [length-1] - 2, and then flattening out all other terms to the right as much as possible, keeping a[i] <= a[i+1].
import java.util.Arrays;
public class test {
public static void main(String[] args) {
test t = new test();
t.go();
}
private void go() {
int w = 3;
int sum = 10;
int[] terms = new int[w];
for (int i = 0; i < terms.length; i++) {
terms[i] = 1;
}
terms[w-1] = sum - w + 1;
System.out.println(Arrays.toString(terms));
for (int i = right_index(terms); i>=0; i = right_index(terms)) {
terms[i]++;
int a = terms[i];
int overflow = -1;
// balance all the terms to the right
for (int j = i+1; j < terms.length-1; j++) {
overflow += terms[j] - a;
terms[j] = a;
}
terms[terms.length-1] += overflow;
System.out.println(Arrays.toString(terms));
}
}
// find the rightmost index i, where [i] <= [ia.length-1] - 2
private int right_index(int[] ia) {
int max = ia[ia.length-1];
for (int i = ia.length - 1; i >= 0; i--) {
if (ia[i] <= max - 2)
return i;
}
return -1;
}
}

Related

optimized bubbleSort in dart

so i have a task that made me do a bubblesort and I did this :
bubbleSort(List<int> list) {
for (int i = 0; i < list.length; i++) {
for (int j = 0; j < list.length - 1; j++) {
if (list[j] > list[j + 1]) {
int num = list[j];
list[j] = list[j + 1];
list[j + 1] = num;
}
}
}
print(list);
}
void main() {
List<int> list = [2, 5, 3, 15, 20, 5, 2, 7, 9];
bubbleSort(list);
}
and now it want me to make an optimized bubbleSort how is that in Dart ?
If by optimized you mean it stops on ordered array than:
bubbleSort(List<int> list) { int i,j,e;
for (e=1,i=0; (i < list.length)&&(e); i++) {
for (e=0,j=0; j < list.length - 1; j++) {
if (list[j] > list[j + 1]) { e=1;
int num = list[j];
list[j] = list[j + 1];
list[j + 1] = num;
}
}
}
print(list);
}
void main() {
List<int> list = [2, 5, 3, 15, 20, 5, 2, 7, 9];
bubbleSort(list);
}
I simply added e which is set on any swap which means once you iterate inner loop without swap the sorting stops..
This is still O(n^2) however much much faster on semi sorted data (in same direction)...
Another option to optimize this is to detect how much the array is sorted and if in asc or desc order. Once reverse order (in respect to used sort) is detected reverse the array before using bubble...
for the detection you can do something like this:
for (e=0,i=1;i<list.length;i++)
if (list[i]>list[i-1]) e++;
else e--;
now the more positive e is the more asc sorted the array is and the more negative the more desc sorted the array is...
so you can add for example (for asc sorting):
if (e<-list.length/4) // for asc sorting
//if (e>+list.length/4) // for desc sorting
for (i=0,j=list.length-1;i<j;i++,j--)
{
int num = list[i];
list[i] = list[j];
list[j] = num;
}
and only now use bubble ...

How to get the number of the Subarray with at least K different numbers?

The question is:
"Given an array A only contains integers Return the number of subarrays that contain at least k different numbers. Subarrays cannot be duplicated."
Example:
input array = {1, 2, 3, 4, 2} k = 3
output: 4
Explanation:
the number of the Subarray with at least K different numbers should be 4,
which are [1, 2, 3] [2, 3, 4] [3, 4, 2] [1, 2, 3, 4]
Right now what I can do is just find about the number of the subarray with exactly K different numbers:
class Solution {
public int subarraysWithKDistinct(int[] A, int K) {
return atMostK(A, K) - atMostK(A, K - 1);
}
private int atMostK(int[] A, int K) {
int i = 0, res = 0;
Map<Integer, Integer> count = new HashMap<>();
for (int j = 0; j < A.length; ++j) {
if (count.getOrDefault(A[j], 0) == 0) K--;
count.put(A[j], count.getOrDefault(A[j], 0) + 1);
while (K < 0) {
count.put(A[i], count.get(A[i]) - 1);
if (count.get(A[i]) == 0) K++;
i++;
}
res += j - i + 1;
}
return res;
}
}
But when the input be:
array = {1, 2, 3, 4, 2} k = 2
my code will not work correctly, but I don't know where to change. Any thoughts? Thanks!
Update: thanks to #MBo and others' answers, I used 2 pointers to fix this problem, but still cannot get the right answer with:
array = {1, 2, 3, 4, 2} k = 3 -> output: 6 (should be 4)
It looks like there are some duplicated substrings be counted, but I don't know how to fix it.
class Solution {
public static void main(String[] args) {
int[] A = {1, 2, 3, 4, 2};
int k = 3;
int res = helper(A, k);
System.out.println(res);
// output is 6, but should be 4
}
private static int helper(int[] A, int k) {
if (A == null || A.length == 0) return 0;
int n = A.length;
int res = 0;
int differentNumbers = 0;
Map<Integer, Integer> counter = new HashMap<>();
int j = 0; // j - 1 is the right point
for (int i = 0; i < n; i ++) {
while (j < n && differentNumbers < k) {
int numOfThisNumber = counter.getOrDefault(A[j], 0);
counter.put(A[j], numOfThisNumber + 1);
if (counter.get(A[j]) == 1) {
differentNumbers ++;
}
j ++;
}
if (differentNumbers == k) {
res += n - j + 1;
}
counter.put(A[i], counter.get(A[i]) - 1);
if (counter.get(A[i]) == 0) {
differentNumbers --;
}
}
return res;
}
}
You can combine your hashmap approach with method of two pointers (indices).
Set both indices into 0 and move right one, updating hashmap counts for values at the right end of interval until hashmap size reaches K. Fix right index.
Now move left index, decreasing counts corresponding to the values at left end. Before every step (including left=0) add size-right to result, because all subarrays starting from left and ending after right, do contain needed number of elements.
When some count becomes 0, remove value from hashmap, and fix left index.
Repeat with right index and so on.

Implement Number division by multiplication method [duplicate]

I was asked this question in a job interview, and I'd like to know how others would solve it. I'm most comfortable with Java, but solutions in other languages are welcome.
Given an array of numbers, nums, return an array of numbers products, where products[i] is the product of all nums[j], j != i.
Input : [1, 2, 3, 4, 5]
Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)]
= [120, 60, 40, 30, 24]
You must do this in O(N) without using division.
An explanation of polygenelubricants method is:
The trick is to construct the arrays (in the case for 4 elements):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
Both of which can be done in O(n) by starting at the left and right edges respectively.
Then, multiplying the two arrays element-by-element gives the required result.
My code would look something like this:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
If you need the solution be O(1) in space as well, you can do this (which is less clear in my opinion):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}
Here is a small recursive function (in C++) to do the modification in-place. It requires O(n) extra space (on stack) though. Assuming the array is in a and N holds the array length, we have:
int multiply(int *a, int fwdProduct, int indx) {
int revProduct = 1;
if (indx < N) {
revProduct = multiply(a, fwdProduct*a[indx], indx+1);
int cur = a[indx];
a[indx] = fwdProduct * revProduct;
revProduct *= cur;
}
return revProduct;
}
Here's my attempt to solve it in Java. Apologies for the non-standard formatting, but the code has a lot of duplication, and this is the best I can do to make it readable.
import java.util.Arrays;
public class Products {
static int[] products(int... nums) {
final int N = nums.length;
int[] prods = new int[N];
Arrays.fill(prods, 1);
for (int
i = 0, pi = 1 , j = N-1, pj = 1 ;
(i < N) && (j >= 0) ;
pi *= nums[i++] , pj *= nums[j--] )
{
prods[i] *= pi ; prods[j] *= pj ;
}
return prods;
}
public static void main(String[] args) {
System.out.println(
Arrays.toString(products(1, 2, 3, 4, 5))
); // prints "[120, 60, 40, 30, 24]"
}
}
The loop invariants are pi = nums[0] * nums[1] *.. nums[i-1] and pj = nums[N-1] * nums[N-2] *.. nums[j+1]. The i part on the left is the "prefix" logic, and the j part on the right is the "suffix" logic.
Recursive one-liner
Jasmeet gave a (beautiful!) recursive solution; I've turned it into this (hideous!) Java one-liner. It does in-place modification, with O(N) temporary space in the stack.
static int multiply(int[] nums, int p, int n) {
return (n == nums.length) ? 1
: nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
+ 0*(nums[n] *= p);
}
int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"
Translating Michael Anderson's solution into Haskell:
otherProducts xs = zipWith (*) below above
where below = scanl (*) 1 $ init xs
above = tail $ scanr (*) 1 xs
Sneakily circumventing the "no divisions" rule:
sum = 0.0
for i in range(a):
sum += log(a[i])
for i in range(a):
output[i] = exp(sum - log(a[i]))
Here you go, simple and clean solution with O(N) complexity:
int[] a = {1,2,3,4,5};
int[] r = new int[a.length];
int x = 1;
r[0] = 1;
for (int i=1;i<a.length;i++){
r[i]=r[i-1]*a[i-1];
}
for (int i=a.length-1;i>0;i--){
x=x*a[i];
r[i-1]=x*r[i-1];
}
for (int i=0;i<r.length;i++){
System.out.println(r[i]);
}
Travel Left->Right and keep saving product. Call it Past. -> O(n)
Travel Right -> left keep the product. Call it Future. -> O(n)
Result[i] = Past[i-1] * future[i+1] -> O(n)
Past[-1] = 1; and Future[n+1]=1;
O(n)
C++, O(n):
long long prod = accumulate(in.begin(), in.end(), 1LL, multiplies<int>());
transform(in.begin(), in.end(), back_inserter(res),
bind1st(divides<long long>(), prod));
Here is my solution in modern C++. It makes use of std::transform and is pretty easy to remember.
Online code (wandbox).
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
vector<int>& multiply_up(vector<int>& v){
v.insert(v.begin(),1);
transform(v.begin()+1, v.end()
,v.begin()
,v.begin()+1
,[](auto const& a, auto const& b) { return b*a; }
);
v.pop_back();
return v;
}
int main() {
vector<int> v = {1,2,3,4,5};
auto vr = v;
reverse(vr.begin(),vr.end());
multiply_up(v);
multiply_up(vr);
reverse(vr.begin(),vr.end());
transform(v.begin(),v.end()
,vr.begin()
,v.begin()
,[](auto const& a, auto const& b) { return b*a; }
);
for(auto& i: v) cout << i << " ";
}
Precalculate the product of the numbers to the left and to the right of each element.
For every element the desired value is the product of it's neigbors's products.
#include <stdio.h>
unsigned array[5] = { 1,2,3,4,5};
int main(void)
{
unsigned idx;
unsigned left[5]
, right[5];
left[0] = 1;
right[4] = 1;
/* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
left[idx] = left[idx-1] * array[idx-1];
}
/* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
right[idx] = right[idx+1] * array[idx+1];
}
for (idx=0; idx <5 ; idx++) {
printf("[%u] Product(%u*%u) = %u\n"
, idx, left[idx] , right[idx] , left[idx] * right[idx] );
}
return 0;
}
Result:
$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24
(UPDATE: now I look closer, this uses the same method as Michael Anderson, Daniel Migowski and polygenelubricants above)
Tricky:
Use the following:
public int[] calc(int[] params) {
int[] left = new int[n-1]
in[] right = new int[n-1]
int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
fac1 = fac1 * params[i];
fac2 = fac2 * params[n-i];
left[i] = fac1;
right[i] = fac2;
}
fac = 1;
int[] results = new int[n];
for( int i=0; i<n; i++ ) {
results[i] = left[i] * right[i];
}
Yes, I am sure i missed some i-1 instead of i, but thats the way to solve it.
This is O(n^2) but f# is soooo beautiful:
List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed)
[1;1;1;1;1]
[1..5]
There also is a O(N^(3/2)) non-optimal solution. It is quite interesting, though.
First preprocess each partial multiplications of size N^0.5(this is done in O(N) time complexity). Then, calculation for each number's other-values'-multiple can be done in 2*O(N^0.5) time(why? because you only need to multiple the last elements of other ((N^0.5) - 1) numbers, and multiply the result with ((N^0.5) - 1) numbers that belong to the group of the current number). Doing this for each number, one can get O(N^(3/2)) time.
Example:
4 6 7 2 3 1 9 5 8
partial results:
4*6*7 = 168
2*3*1 = 6
9*5*8 = 360
To calculate the value of 3, one needs to multiply the other groups' values 168*360, and then with 2*1.
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };
int[] result = { 1, 1, 1, 1, 1 };
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
result[i] *= arr[j];
}
for (int k = arr.length - 1; k > i; k--) {
result[i] *= arr[k];
}
}
for (int i : result) {
System.out.println(i);
}
}
This solution i came up with and i found it so clear what do you think!?
Based on Billz answer--sorry I can't comment, but here is a scala version that correctly handles duplicate items in the list, and is probably O(n):
val list1 = List(1, 7, 3, 3, 4, 4)
val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)}
view.force
returns:
List(1008, 144, 336, 336, 252, 252)
Adding my javascript solution here as I didn't find anyone suggesting this.
What is to divide, except to count the number of times you can extract a number from another number? I went through calculating the product of the whole array, and then iterate over each element, and substracting the current element until zero:
//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
var res = [];
var totalProduct = 1;
//calculate the total product
for(var i = 0; i < input.length; i++){
totalProduct = totalProduct * input[i];
}
//populate the result array by "dividing" each value
for(var i = 0; i < input.length; i++){
var timesSubstracted = 0;
var divisor = input[i];
var dividend = totalProduct;
while(divisor <= dividend){
dividend = dividend - divisor;
timesSubstracted++;
}
res.push(timesSubstracted);
}
return res;
}
Just 2 passes up and down. Job done in O(N)
private static int[] multiply(int[] numbers) {
int[] multiplied = new int[numbers.length];
int total = 1;
multiplied[0] = 1;
for (int i = 1; i < numbers.length; i++) {
multiplied[i] = numbers[i - 1] * multiplied[i - 1];
}
for (int j = numbers.length - 2; j >= 0; j--) {
total *= numbers[j + 1];
multiplied[j] = total * multiplied[j];
}
return multiplied;
}
def productify(arr, prod, i):
if i < len(arr):
prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
retval = productify(arr, prod, i + 1)
prod[i] *= retval
return retval * arr[i]
return 1
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5]
prod = []
productify(arr, prod, 0)
print(prod)
Well,this solution can be considered that of C/C++.
Lets say we have an array "a" containing n elements
like a[n],then the pseudo code would be as below.
for(j=0;j<n;j++)
{
prod[j]=1;
for (i=0;i<n;i++)
{
if(i==j)
continue;
else
prod[j]=prod[j]*a[i];
}
One more solution, Using division. with twice traversal.
Multiply all the elements and then start dividing it by each element.
{-
Recursive solution using sqrt(n) subsets. Runs in O(n).
Recursively computes the solution on sqrt(n) subsets of size sqrt(n).
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.
Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
Suppose that T(n) ≤ cn in O(n).
T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
≤ c*n + c*sqrt(n) + n
≤ (2c+1)*n
&in; O(n)
Note that ceiling(sqrt(n)) can be computed using a binary search
and O(logn) iterations, if the sqrt instruction is not permitted.
-}
otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
where
n = length a
-- Subset size. Require that 1 < s < n.
s = ceiling $ sqrt $ fromIntegral n
solvedSubsets = map otherProducts subsets
subsetOtherProducts = otherProducts $ map product subsets
subsets = reverse $ loop a []
where loop [] acc = acc
loop a acc = loop (drop s a) ((take s a):acc)
Here is my code:
int multiply(int a[],int n,int nextproduct,int i)
{
int prevproduct=1;
if(i>=n)
return prevproduct;
prevproduct=multiply(a,n,nextproduct*a[i],i+1);
printf(" i=%d > %d\n",i,prevproduct*nextproduct);
return prevproduct*a[i];
}
int main()
{
int a[]={2,4,1,3,5};
multiply(a,5,1,0);
return 0;
}
Here's a slightly functional example, using C#:
Func<long>[] backwards = new Func<long>[input.Length];
Func<long>[] forwards = new Func<long>[input.Length];
for (int i = 0; i < input.Length; ++i)
{
var localIndex = i;
backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
}
var output = new long[input.Length];
for (int i = 0; i < input.Length; ++i)
{
if (0 == i)
{
output[i] = forwards[i + 1]();
}
else if (input.Length - 1 == i)
{
output[i] = backwards[i - 1]();
}
else
{
output[i] = forwards[i + 1]() * backwards[i - 1]();
}
}
I'm not entirely certain that this is O(n), due to the semi-recursion of the created Funcs, but my tests seem to indicate that it's O(n) in time.
To be complete here is the code in Scala:
val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))
This will print out the following:
120
60
40
30
24
The program will filter out the current elem (_ != elem); and multiply the new list with reduceLeft method. I think this will be O(n) if you use scala view or Iterator for lazy eval.
// This is the recursive solution in Java
// Called as following from main product(a,1,0);
public static double product(double[] a, double fwdprod, int index){
double revprod = 1;
if (index < a.length){
revprod = product2(a, fwdprod*a[index], index+1);
double cur = a[index];
a[index] = fwdprod * revprod;
revprod *= cur;
}
return revprod;
}
A neat solution with O(n) runtime:
For each element calculate the product of all the elements that occur before that and it store in an array "pre".
For each element calculate the product of all the elements that occur after that element and store it in an array "post"
Create a final array "result", for an element i,
result[i] = pre[i-1]*post[i+1];
Here is the ptyhon version
# This solution use O(n) time and O(n) space
def productExceptSelf(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
l_prods, r_prods = [1]*N, [1]*N
for i in range(1, N):
l_prods[i] = l_prods[i-1] * nums[i-1]
for i in reversed(range(N-1)):
r_prods[i] = r_prods[i+1] * nums[i+1]
result = [x*y for x,y in zip(l_prods,r_prods)]
return result
# This solution use O(n) time and O(1) space
def productExceptSelfSpaceOptimized(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
result = [1]*N
for i in range(1, N):
result[i] = result[i-1] * nums[i-1]
r_prod = 1
for i in reversed(range(N)):
result[i] *= r_prod
r_prod *= nums[i]
return result
I'm use to C#:
public int[] ProductExceptSelf(int[] nums)
{
int[] returnArray = new int[nums.Length];
List<int> auxList = new List<int>();
int multTotal = 0;
// If no zeros are contained in the array you only have to calculate it once
if(!nums.Contains(0))
{
multTotal = nums.ToList().Aggregate((a, b) => a * b);
for (int i = 0; i < nums.Length; i++)
{
returnArray[i] = multTotal / nums[i];
}
}
else
{
for (int i = 0; i < nums.Length; i++)
{
auxList = nums.ToList();
auxList.RemoveAt(i);
if (!auxList.Contains(0))
{
returnArray[i] = auxList.Aggregate((a, b) => a * b);
}
else
{
returnArray[i] = 0;
}
}
}
return returnArray;
}
Here is simple Scala version in Linear O(n) time:
def getProductEff(in:Seq[Int]):Seq[Int] = {
//create a list which has product of every element to the left of this element
val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2
//create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse
val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse
//merge the two list by product at index
in.indices.map(i => fromLeft(i) * fromRight(i))
}
This works because essentially the answer is an array which has product of all elements to the left and to the right.
import java.util.Arrays;
public class Pratik
{
public static void main(String[] args)
{
int[] array = {2, 3, 4, 5, 6}; // OUTPUT: 360 240 180 144 120
int[] products = new int[array.length];
arrayProduct(array, products);
System.out.println(Arrays.toString(products));
}
public static void arrayProduct(int array[], int products[])
{
double sum = 0, EPSILON = 1e-9;
for(int i = 0; i < array.length; i++)
sum += Math.log(array[i]);
for(int i = 0; i < array.length; i++)
products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
}
}
OUTPUT:
[360, 240, 180, 144, 120]
Time complexity : O(n)
Space complexity: O(1)

Given an input array find all subarrays with given sum K

Given an input array we can find a single sub-array which sums to K (given) in linear time, by keeping track of sum found so far and the start position. If the current sum becomes greater than the K we keep removing elements from start position until we get current sum <= K.
I found sample code from geeksforgeeks and updated it to return all such possible sets. But the assumption is that the input array consists of only +ve numbers.
bool subArraySum(int arr[], int n, int sum)
{
int curr_sum = 0, start = 0, i;
bool found = false;
for (i = 0; i <= n; i++)
{
while (curr_sum > sum && start < i)
{
curr_sum = curr_sum - arr[start];
start++;
}
if (curr_sum == sum)
{
cout<<"Sum found in b/w indices: "<<start<<" & "<<(i-1)<<"\n";
curr_sum -= arr[start];
start++;
found = true;
}
// Add this element to curr_sum
if (i < n) {
curr_sum = curr_sum + arr[i];
}
}
return found;
}
My question is do we have such a solution for mixed set of numbers too (both positive and negative numbers)?
There is no linear-time algorithm for the case of both positive and negative numbers.
Since you need all sub-arrays which sum to K, time complexity of any algorithm cannot be better than size of the resulting set of sub-arrays. And this size may be quadratic. For example, any sub-array of [K, -K, K, -K, K, -K, ...], starting and ending at positive 'K' has the required sum, and there are N2/8 such sub-arrays.
Still it is possible to get the result in O(N) expected time if O(N) additional space is available.
Compute prefix sum for each element of the array and insert the pair (prefix_sum, index) to a hash map, where prefix_sum is the key and index is the value associated with this key. Search prefix_sum - K in this hash map to get one or several array indexes where the resulting sub-arrays start:
hash_map[0] = [-1]
prefix_sum = 0
for index in range(0 .. N-1):
prefix_sum += array[index]
start_list = hash_map[prefix_sum - K]
for each start_index in start_list:
print start_index+1, index
start_list2 = hash_map[prefix_sum]
start_list2.append(index)
Solution as given by #Evgeny Kluev coded in Java with a little explanation.
public static void main(String[] args) {
int[] INPUT = {5, 6, 1, -2, -4, 3, 1, 5};
printSubarrays(INPUT, 5);
}
private static void printSubarrays(int[] input, int k) {
Map<Integer, List<Integer>> map = new HashMap<Integer, List<Integer>>();
List<Integer> initial = new ArrayList<Integer>();
initial.add(-1);
map.put(0, initial);
int preSum = 0;
// Loop across all elements of the array
for(int i=0; i< input.length; i++) {
preSum += input[i];
// If point where sum = (preSum - k) is present, it means that between that
// point and this, the sum has to equal k
if(map.containsKey(preSum - k)) { // Subarray found
List<Integer> startIndices = map.get(preSum - k);
for(int start : startIndices) {
System.out.println("Start: "+ (start+1)+ "\tEnd: "+ i);
}
}
List<Integer> newStart = new ArrayList<Integer>();
if(map.containsKey(preSum)) {
newStart = map.get(preSum);
}
newStart.add(i);
map.put(preSum, newStart);
}
}
Quadratic Time: O(n2) in worst case.
private static void findSubArray(int[] is, int N) {
System.out.println("Continuous sub array of " + Arrays.toString(is) + " whose sum is " + N + " is ");
List<Integer> arry = new ArrayList<>(is.length);
for (int i = 0; i < is.length; i++) {
int tempI = is[i];
arry.add(tempI);
for (int j = i + 1; j < is.length; j++) {
if (tempI + is[j] == N) {
arry.add(is[j]);
System.out.println(arry);
} else if (tempI + is[j] < N) {
arry.add(is[j]);
tempI = tempI + is[j];
} else {
arry.clear();
break;
}
}
}
}
public static void main(String[] args) {
findSubArray(new int[] { 42, 15, 12, 8, 6, 32 }, 26);
findSubArray(new int[] { 12, 5, 31, 13, 21, 8 }, 49);
findSubArray(new int[] { 15, 51, 7, 81, 5, 11, 25 }, 41);
}
This problem is very similar to the combination problem solved here: http://introcs.cs.princeton.edu/java/23recursion/Combinations.java.html
Here is my solution:
public static void main(String[] args) {
int [] input = {-10, 0, 5, 10, 15, 20, 30};
int expectedSum = 20;
combination(new SumObj(new int[0]), new SumObj(input), expectedSum);
}
private static void combination(SumObj prefixSumObj, SumObj remainingSumObj, int expectedSum){
if(prefixSumObj.getSum() == expectedSum){
System.out.println(Arrays.toString(prefixSumObj.getElements()));
}
for(int i=0; i< remainingSumObj.getElements().length ; i++){
// prepare new prefix
int [] newPrefixSumInput = new int[prefixSumObj.getElements().length + 1];
System.arraycopy(prefixSumObj.getElements(), 0, newPrefixSumInput, 0, prefixSumObj.getElements().length);
newPrefixSumInput[prefixSumObj.getElements().length] = remainingSumObj.getElements()[i];
SumObj newPrefixSumObj = new SumObj(newPrefixSumInput);
// prepare new remaining
int [] newRemainingSumInput = new int[remainingSumObj.getElements().length - i - 1];
System.arraycopy(remainingSumObj.getElements(), i+1, newRemainingSumInput, 0, remainingSumObj.getElements().length - i - 1);
SumObj newRemainingSumObj = new SumObj(newRemainingSumInput);
combination(newPrefixSumObj, newRemainingSumObj, expectedSum);
}
}
private static class SumObj {
private int[] elements;
private int sum;
public SumObj(int[] elements) {
this.elements = elements;
this.sum = computeSum();
}
public int[] getElements() {
return elements;
}
public int getSum() {
return sum;
}
private int computeSum(){
int tempSum = 0;
for(int i=0; i< elements.length; i++){
tempSum += elements[i];
}
return tempSum;
}
}
Try this code this can work for you:
private static void printSubArrayOfRequiredSum(int[] array, int requiredSum) {
for (int i = 0; i < array.length; i++) {
String str = "[ ";
int sum = 0;
for (int j = i; j < array.length; j++) {
sum = sum + array[j];
str = str + array[j] + ", ";
if (sum == requiredSum) {
System.out.println(" sum : " + sum + " array : " + str
+ "]");
str = "[ ";
sum = 0;
}
}
}
}
Use this method like :
int array[] = { 3, 5, 6, 9, 14, 8, 2, 12, 7, 7 };
printSubArrayOfRequiredSum(array, 14);
Output :
sum : 14 array : [ 3, 5, 6, ]
sum : 14 array : [ 14, ]
sum : 14 array : [ 2, 12, ]
sum : 14 array : [ 7, 7, ]
Solution as given by #Evgeny Kluev coded in c++
#include<bits/stdc++.h>
using namespace std;
int c=0;
// Function to print subarray with sum as given sum
void subArraySum(int arr[], int n, int k)
{
map<int,vector<int>>m1;
m1[0].push_back(-1);
int curr_sum=0;
for(int i=0;i<n;i++){
curr_sum=curr_sum+arr[i];
if(m1.find(curr_sum-k)!=m1.end()){
vector<int>a=m1[curr_sum-k];
c+=m1[curr_sum-k].size();
for(int j=0;j<a.size();j++){ // printing all indexes with sum=k
cout<<a[j]+1<<" "<<i<<endl;
}
}
m1[curr_sum].push_back(i);
}
}
int main()
{
int arr[] = {10,2,0,10,0,10};
int n = sizeof(arr)/sizeof(arr[0]);
int sum = 10;
subArraySum(arr, n, sum);
cout<<c<<endl; //count of subarrays with given sum
return 0;
}
class Solution
{
//Function to find a continuous sub-array which adds up to a given number.
static ArrayList<Integer> subarraySum(int[] arr, int n, int s)
{
ArrayList<Integer> res=new ArrayList<>();
int i=0,j=0,sum=0;
sum=sum+arr[i];
if(s==0){
res.add(-1);
return res;
}
while(true)
{
if(sum<s)
{
j=j+1;
if(j>=n || i>=n){
res.add(-1);
return res;
}
sum=sum+arr[j];
}else if(sum>s){
sum=sum-arr[i];
i=i+1;
if(sum==s){
res.add(i+1);
res.add(j+1);
return res;
}
}else{
res.add(i+1);
res.add(j+1);
return res;
}
if(j>=n || i>=n){
res.add(-1);
return res;
}
}
}
}
Passing all 165 test cases from geeksforgeeks
I also faced this problem in couple of interviews and came up with following best approach:
class MazSubArraySum {
public static void main(String[] args) {
int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 };
System.out.println("Maximum contiguous sum is " + maxSubArraySum(a));
}
static int maxSubArraySum(int a[]) {
int size = a.length;
int currentindex = 0, end = 0, begin = 0;
int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
begin = currentindex;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
currentindex++;
}
}
System.out.println("begin and end: " + begin + "&" + end);
return max_so_far;
}
}
Below is the output:
begin and end: 2&6
Maximum contiguous sum is 7
Above solution is the best solution in terms of time and space complexity that is O(n).

Find longest increasing sequence

You are given a sequence of numbers and you need to find a longest increasing subsequence from the given input(not necessary continuous).
I found the link to this(Longest increasing subsequence on Wikipedia) but need more explanation.
If anyone could help me understand the O(n log n) implementation, that will be really helpful. If you could explain the algo with an example, that will be really appreciated.
I saw the other posts as well and what I did not understand is:
L = 0
for i = 1, 2, ... n:
binary search for the largest positive j ≤ L such that X[M[j]] < X[i] (or set j = 0 if no such value exists)
above statement, from where to start binary search? how to initialize M[], X[]?
A simpler problem is to find the length of the longest increasing subsequence. You can focus on understanding that problem first. The only difference in the algorithm is that it doesn't use the P array.
x is the input of a sequence, so it can be initialized as:
x = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
m keeps track of the best subsequence of each length found so far. The best is the one with the smallest ending value (allowing a wider range of values to be added after it). The length and ending value is the only data needed to be stored for each subsequence.
Each element of m represents a subsequence. For m[j],
j is the length of the subsequence.
m[j] is the index (in x) of the last element of the subsequence.
so, x[m[j]] is the value of the last element of the subsequence.
L is the length of the longest subsequence found so far. The first L values of m are valid, the rest are uninitialized. m can start with the first element being 0, the rest uninitialized. L increases as the algorithm runs, and so does the number of initialized values of m.
Here's an example run. x[i], and m at the end of each iteration is given (but values of the sequence are used instead of indexes).
The search in each iteration is looking for where to place x[i]. It should be as far to the right as possible (to get the longest sequence), and be greater than the value to its left (so it's an increasing sequence).
0: m = [0, 0] - ([0] is a subsequence of length 1.)
8: m = [0, 0, 8] - (8 can be added after [0] to get a sequence of length 2.)
4: m = [0, 0, 4] - (4 is better than 8. This can be added after [0] instead.)
12: m = [0, 0, 4, 12] - (12 can be added after [...4])
2: m = [0, 0, 2, 12] - (2 can be added after [0] instead of 4.)
10: m = [0, 0, 2, 10]
6: m = [0, 0, 2, 6]
14: m = [0, 0, 2, 6, 14]
1: m = [0, 0, 1, 6, 14]
9: m = [0, 0, 1, 6, 9]
5: m = [0, 0, 1, 5, 9]
13: m = [0, 0, 1, 5, 9, 13]
3: m = [0, 0, 1, 3, 9, 13]
11: m = [0, 0, 1, 3, 9, 11]
7: m = [0, 0, 1, 3, 7, 11]
15: m = [0, 0, 1, 3, 7, 11, 15]
Now we know there is a subsequence of length 6, ending in 15. The actual values in the subsequence can be found by storing them in the P array during the loop.
Retrieving the best sub-sequence:
P stores the previous element in the longest subsequence (as an index of x), for each number, and is updated as the algorithm advances. For example, when we process 8, we know it comes after 0, so store the fact that 8 is after 0 in P. You can work backwards from the last number like a linked-list to get the whole sequence.
So for each number we know the number that came before it. To find the subsequence ending in 7, we look at P and see that:
7 is after 3
3 is after 1
1 is after 0
So we have the subsequence [0, 1, 3, 7].
The subsequences ending in 7 or 15 share some numbers:
15 is after 11
11 is after 9
9 is after 6
6 is after 2
2 is after 0
So we have the subsequences [0, 2, 6, 9, 11], and [0, 2, 6, 9, 11, 15] (the longest increasing subsequence)
One of the best explanation to this problem is given by MIT site.
http://people.csail.mit.edu/bdean/6.046/dp/
I hope it will clear all your doubts.
based on FJB's answer, java implementation:
public class Lis {
private static int[] findLis(int[] arr) {
int[] is = new int[arr.length];
int index = 0;
is[0] = index;
for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[is[index]]) {
for (int j = 0; j <= index; j++) {
if (arr[i] < arr[is[j]]) {
is[j] = i;
break;
}
}
} else if (arr[i] == arr[is[index]]) {
} else {
is[++index] = i;
}
}
int[] lis = new int[index + 1];
lis[index] = arr[is[index]];
for (int i = index - 1; i >= 0; i--) {
if (is[i] < is[i + 1]) {
lis[i] = arr[is[i]];
} else {
for (int j = is[i + 1] - 1; j >= 0; j--) {
if (arr[j] > arr[is[i]] && arr[j] < arr[is[i + 1]]) {
lis[i] = arr[j];
is[i] = j;
break;
}
}
}
}
return lis;
}
public static void main(String[] args) {
int[] arr = new int[] { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11,
7, 15 };
for (int i : findLis(arr)) {
System.out.print(i + "-");
}
System.out.println();
arr = new int[] { 1, 9, 3, 8, 11, 4, 5, 6, 4, 19, 7, 1, 7 };
for (int i : findLis(arr)) {
System.out.print(i + "-");
}
System.out.println();
}
}
Below is the O(NLogN) longest increasing subsequence implementation:
// search for the index which can be replaced by the X. as the index can't be
//0 or end (because if 0 then replace in the findLIS() and if it's greater than the
//current maximum the just append)of the array "result" so most of the boundary
//conditions are not required.
public static int search(int[] result, int p, int r, int x)
{
if(p > r) return -1;
int q = (p+r)/2;
if(result[q] < x && result[q+1]>x)
{
return q+1;
}
else if(result[q] > x)
{
return search(result, p, q, x);
}
else
{
return search(result, q+1, r, x);
}
}
public static int findLIS(int[] a)
{
int[] result = new int[a.length];
result[0] = a[0];
int index = 0;
for(int i=1; i<a.length; i++)
{
int no = a[i];
if(no < result[0]) // replacing the min number
{
result[0] = no;
}
else if(no > result[index])//if the number is bigger then the current big then append
{
result[++index] = no;
}
else
{
int c = search(result, 0, index, no);
result[c] = no;
}
}
return index+1;
}
Late to the party, but here's a JavaScript implementation to go along with the others.. :)
var findLongestSubsequence = function(array) {
var longestPartialSubsequences = [];
var longestSubsequenceOverAll = [];
for (var i = 0; i < array.length; i++) {
var valueAtI = array[i];
var subsequenceEndingAtI = [];
for (var j = 0; j < i; j++) {
var subsequenceEndingAtJ = longestPartialSubsequences[j];
var valueAtJ = array[j];
if (valueAtJ < valueAtI && subsequenceEndingAtJ.length > subsequenceEndingAtI.length) {
subsequenceEndingAtI = subsequenceEndingAtJ;
}
}
longestPartialSubsequences[i] = subsequenceEndingAtI.concat();
longestPartialSubsequences[i].push(valueAtI);
if (longestPartialSubsequences[i].length > longestSubsequenceOverAll.length) {
longestSubsequenceOverAll = longestPartialSubsequences[i];
}
}
return longestSubsequenceOverAll;
};
Based on #fgb 's answer, I implemented the algorithm using c++ to find the longest strictly increasing sub-sequence. Hope this will be somewhat helpful.
M[i] is the index of the last element of the sequence whose length is i, P[i] is the index of the previous element of i in the sequence, which is used to print the whole sequence.
main() is used to run the simple test case: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.
#include <vector>
using std::vector;
int LIS(const vector<int> &v) {
int size = v.size(), max_len = 1;
// M[i] is the index of the last element of the sequence whose length is i
int *M = new int[size];
// P[i] is the index of the previous element of i in the sequence, which is used to print the whole sequence
int *P = new int[size];
M[0] = 0; P[0] = -1;
for (int i = 1; i < size; ++i) {
if (v[i] > v[M[max_len - 1]]) {
M[max_len] = i;
P[i] = M[max_len - 1];
++max_len;
continue;
}
// Find the position to insert i using binary search
int lo = 0, hi = max_len - 1;
while (lo <= hi) {
int mid = lo + ((hi - lo) >> 1);
if (v[i] < v[M[mid]]) {
hi = mid - 1;
} else if (v[i] > v[M[mid]]) {
lo = mid + 1;
} else {
lo = mid;
break;
}
}
P[i] = P[M[lo]]; // Modify the previous pointer
M[lo] = i;
}
// Print the whole subsequence
int i = M[max_len - 1];
while (i >= 0) {
printf("%d ", v[i]);
i = P[i];
}
printf("\n");
delete[] M, delete[] P;
return max_len;
}
int main(int argc, char* argv[]) {
int data[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
vector<int> v;
v.insert(v.end(), data, data + sizeof(data) / sizeof(int));
LIS(v);
return 0;
}
The O(N lg N) solution comes from patience sorting of playing card. I found this from my code comment and hence sharing here. I believe it would be really easier to understand for everyone how it works. Also you can find all possible longest increasing sub-sequence list if you understand well.
https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
Code:
vector<int> lisNlgN(vector<int> v) {
int n = v.size();
vector<int> piles = vector<int>(n, INT_MAX);
int maxLen = 0;
for(int i = 0; i < n; i++) {
int pos = lower_bound(piles.begin(), piles.end(), v[i]) - piles.begin();
piles[pos] = v[i];
maxLen = max(maxLen, pos+1); // Plus 1 because of 0-based index.
}
// // Print piles for debug purpose
// for (auto x : piles) cout << x << " ";
// cout << endl;
//
// // Print position for debug purpose
// for (auto x : position) cout << x << " ";
// cout << endl;
vector<int> ret = vector<int>(piles.begin(), piles.begin() + maxLen);
return ret;
}
Code:
vector<vector<int>> allPossibleLIS(vector<int> v) {
struct Card {
int val;
Card* parent = NULL;
Card(int val) {
this->val = val;
}
};
auto comp = [](Card* a, Card* b) {
return a->val < b->val;
};
int n = v.size();
// Convert integers into card node
vector<Card*> cards = vector<Card*>(n);
for (int i = 0; i < n; i++) cards[i] = new Card(v[i]);
vector<Card*> piles = vector<Card*>(n, new Card(INT_MAX));
vector<Card*> lastPileCards;
int maxLen = 0;
for(int i = 0; i < n; i++) {
int pos = lower_bound(piles.begin(), piles.end(), new Card(v[i]), comp) - piles.begin();
piles[pos] = cards[i];
// Link to top card of left pile
if (pos == 0) cards[i]->parent = NULL;
else cards[i]->parent = piles[pos-1];
// Plus 1 because of 0-based index.
if (pos+1 == maxLen) {
lastPileCards.push_back(cards[i]);
} else if (pos+1 > maxLen) {
lastPileCards.clear();
lastPileCards.push_back(cards[i]);
maxLen = pos + 1;
}
}
// Print for debug purpose
// printf("maxLen = %d\n", maxLen);
// printf("Total unique lis list = %d\n", lastPileCards.size());
vector<vector<int>> ret;
for (auto card : lastPileCards) {
vector<int> lis;
Card* c = card;
while (c != NULL) {
lis.push_back(c->val);
c = c->parent;
}
reverse(lis.begin(), lis.end());
ret.push_back(lis);
}
return ret;
}

Resources