Correlation between two image(binary image) - image

I have two binary image like this. I have a data set with lots of picture like at the bottom but with differents signs.
and
I would like to compare them in order to know if it's the same figure or not (especially inside the triangle). I took a look in Sift and Surf feature but it's doesn't work well on this type of picture (it find matchning point whereas the two picture are different,especially inside).
I also hear about SVM but i don't know if i have to implement it for this type of problem.
Do you have an idea ?
Thank you

I think you should not use SURF features on the binary image as you have already discarded a lot of information at that stage with your edge detector.
You could also use the Linear or Circle Hough Transform that in this case could tell you a lot about image differences.

If you wat to find 2 exactly identical images, simply use hash functions like md5.
But if you want to find related ( not exatcly identical) images, you are running in trouble ;). look for artificial neural network libs...

Related

Matching photographed image with screenshot (or generated image based on data model)

first of all, I have to say I'm new to the field of computervision and I'm currently facing a problem, I tried to solve with opencv (Java Wrapper) without success.
Basicly I have a picture of a part from a Model taken by a camera (different angles, resoultions, rotations...) and I need to find the position of that part in the model.
Example Picture:
Model Picture:
So one question is: Where should I start/which algorithm should I use?
My first try was to use KeyPoint Matching with SURF as Detector, Descriptor and BF as Matcher.
It worked for about 2 pcitures out of 10. I used the default parameters and tried other detectors, without any improvements. (Maybe it's a question of the right parameters. But how to find out the right parameteres combined with the right algorithm?...)
Two examples:
My second try was to use the color to differentiate the certain elements in the model and to compare the structure with the model itself (In addition to the picture of the model I also have and xml representation of the model..).
Right now I extraxted the color red out of the image, adjusted h,s,v values manually to get the best detection for about 4 pictures, which fails for other pictures.
Two examples:
I also tried to use edge detection (canny, gray, with histogramm Equalization) to detect geometric structures. For some results I could imagine, that it will work, but using the same canny parameters for other pictures "fails". Two examples:
As I said I'm not familiar with computervision and just tried out some algorithms. I'm facing the problem, that I don't know which combination of algorithms and techniques is the best and in addition to that which parameters should I use. Testing it manually seems to be impossible.
Thanks in advance
gemorra
Your initial idea of using SURF features was actually very good, just try to understand how the parameters for this algorithm work and you should be able to register your images. A good starting point for your parameters would be varying only the Hessian treshold, and being fearles while doing so: your features are quite well defined, so try to use tresholds around 2000 and above (increasing in steps of 500-1000 till you get good results is totally ok).
Alternatively you can try to detect your ellipses and calculate an affine warp that normalizes them and run a cross-correlation to register them. This alternative does imply much more work, but is quite fascinating. Some ideas on that normalization using the covariance matrix and its choletsky decomposition here.

Comparing and matching images

I am looking to compare a new image to a database of images, and then output the higher "similarity". The images I want to compare are similar, but the problem is though because they're not pixel by pixel equal. I've tried to use BoW (Bag Of Words) model already (I implemented it in Matlab, but I'm willing to learn openCV), as per recommendation, I tried various implementations without success, the best correct rate I got was 30%, which is something really low.
Let me show you what I am talking about: imgur gallery with 5 example images. I want to detect that the four initial images are equal, and the fifth one is different. I wouldn't mind only detecting that the ones with the same angle orientation are equal, though. (In my example 2, 3 and 4)
So, that being said, are there any better methods than BoW for that? Or perhaps BoW should be enough if I implemented in a different way?
Thanks in advance.
I would try some keypoint based approach using randomized trees. Has the advantage that point extraction is local and adapts to many sort of transformations (Like the ones your pictures show). The advantage of being local is that they are more robust against changes in illumination across the scene, occlusions, and so on.
Also, take a look at the SURF algorithm.

Morphing 2 faces images

I would like some help from the aficionados of openCV here.
I would like to know the direction to take (and some advices or piece of code) on how to morph 2 faces together with a kind of ratio saying 10% of the first and 90% of the second.
I have seen functions like cvWarpAffine and cvMakeScanlines but I am not sure how to use them.
So if somebody could help me here, I'll be very grateful.
Thanks in advance.
Unless the images compared are the exact same images, you would not go very far with this.
This is an artificial intelligence problem and needs to be solved as such. Typical solution involves:
Normalising the data (removing noise, skew, ...) from the images
Feature extraction (turn the image into a smaller set of data)
Use a machine learning (typically classifiers) to train the data with your matches
Test the result
Refine previous processes according to the results until you get good recognition
The choice of OpenCV functions used depends on your feature extraction method. Have a look at Eigenface.

Object detection + segmentation

I 'm trying to find an efficient way of acceptable complexity to
detect an object in an image so I can isolate it from its surroundings
segment that object to its sub-parts and label them so I can then fetch them at will
It's been 3 weeks since I entered the image processing world and I've read about so many algorithms (sift, snakes, more snakes, fourier-related, etc.), and heuristics that I don't know where to start and which one is "best" for what I'm trying to achieve. Having in mind that the image dataset in interest is a pretty large one, I don't even know if I should use some algorithm implemented in OpenCV or if I should implement one my own.
Summarize:
Which methodology should I focus on? Why?
Should I use OpenCV for that kind of stuff or is there some other 'better' alternative?
Thank you in advance.
EDIT -- More info regarding the datasets
Each dataset consists of 80K images of products sharing the same
concept e.g. t-shirts, watches, shoes
size
orientation (90% of them)
background (95% of them)
All pictures in each datasets look almost identical apart from the product itself, apparently. To make things a little more clear, let's consider only the 'watch dataset':
All the pictures in the set look almost exactly like this:
(again, apart form the watch itself). I want to extract the strap and the dial. The thing is that there are lots of different watch styles and therefore shapes. From what I've read so far, I think I need a template algorithm that allows bending and stretching so as to be able to match straps and dials of different styles.
Instead of creating three distinct templates (upper part of strap, lower part of strap, dial), it would be reasonable to create only one and segment it into 3 parts. That way, I would be confident enough that each part was detected with respect to each other as intended to e.g. the dial would not be detected below the lower part of the strap.
From all the algorithms/methodologies I've encountered, active shape|appearance model seem to be the most promising ones. Unfortunately, I haven't managed to find a descent implementation and I'm not confident enough that that's the best approach so as to go ahead and write one myself.
If anyone could point out what I should be really looking for (algorithm/heuristic/library/etc.), I would be more than grateful. If again you think my description was a bit vague, feel free to ask for a more detailed one.
From what you've said, here are a few things that pop up at first glance:
Simplest thing to do it binarize the image and do Connected Components using OpenCV or CvBlob library. For simple images with non-complex background this usually yeilds objects
HOwever, looking at your sample image, texture-based segmentation techniques may work better - the watch dial, the straps and the background are wisely variant in texture/roughness, and this could be an ideal way to separate them.
The roughness of a portion can be easily found by the Eigen transform (explained a bit on SO, check the link to the research paper provided there), then the Mean Shift filter can be applied on the output of the Eigen transform. This will give regions clearly separated according to texture. Both the pyramidal Mean Shift and finding eigenvalues by SVD are implemented in OpenCV, so unless you can optimize your own code its better (and easier) to use inbuilt functions (if present) as far as speed and efficiency is concerned.
I think I would turn the problem around. Instead of hunting for the dial, I would use a set of robust features from the watch to 'stitch' the target image onto a template. The first watch has a set of squares in the dial that are white, the second watch has a number of white circles. I would per type of watch:
Segment out the squares or circles in the dial. Segmentation steps can be tricky as they are usually both scale and light dependent
Estimate the centers or corners of the above found feature areas. These are the new feature points.
Use the Hungarian algorithm to match features between the template watch and the target watch. Alternatively, one can take the surroundings of each feature point in the original image and match these using cross correlation
Use matching features between the template and the target to estimate scaling, rotation and translation
Stitch the image
As the image is now in a known form, one can extract the regions simply via pre set coordinates

Detecting if two images are visually identical

Sometimes two image files may be different on a file level, but a human would consider them perceptively identical. Given that, now suppose you have a huge database of images, and you wish to know if a human would think some image X is present in the database or not. If all images had a perceptive hash / fingerprint, then one could hash image X and it would be a simple matter to see if it is in the database or not.
I know there is research around this issue, and some algorithms exist, but is there any tool, like a UNIX command line tool or a library I could use to compute such a hash without implementing some algorithm from scratch?
edit: relevant code from findimagedupes, using ImageMagick
try $image->Sample("160x160!");
try $image->Modulate(saturation=>-100);
try $image->Blur(radius=>3,sigma=>99);
try $image->Normalize();
try $image->Equalize();
try $image->Sample("16x16");
try $image->Threshold();
try $image->Set(magick=>'mono');
($blob) = $image->ImageToBlob();
edit: Warning! ImageMagick $image object seems to contain information about the creation time of an image file that was read in. This means that the blob you get will be different even for the same image, if it was retrieved at a different time. To make sure the fingerprint stays the same, use $image->getImageSignature() as the last step.
findimagedupes is pretty good. You can run "findimagedupes -v fingerprint images" to let it print "perceptive hash", for example.
Cross-correlation or phase correlation will tell you if the images are the same, even with noise, degradation, and horizontal or vertical offsets. Using the FFT-based methods will make it much faster than the algorithm described in the question.
The usual algorithm doesn't work for images that are not the same scale or rotation, though. You could pre-rotate or pre-scale them, but that's really processor intensive. Apparently you can also do the correlation in a log-polar space and it will be invariant to rotation, translation, and scale, but I don't know the details well enough to explain that.
MATLAB example: Registering an Image Using Normalized Cross-Correlation
Wikipedia calls this "phase correlation" and also describes making it scale- and rotation-invariant:
The method can be extended to determine rotation and scaling differences between two images by first converting the images to log-polar coordinates. Due to properties of the Fourier transform, the rotation and scaling parameters can be determined in a manner invariant to translation.
Colour histogram is good for the same image that has been resized, resampled etc.
If you want to match different people's photos of the same landmark it's trickier - look at haar classifiers. Opencv is a great free library for image processing.
I don't know the algorithm behind it, but Microsoft Live Image Search just added this capability. Picasa also has the ability to identify faces in images, and groups faces that look similar. Most of the time, it's the same person.
Some machine learning technology like a support vector machine, neural network, naive Bayes classifier or Bayesian network would be best at this type of problem. I've written one each of the first three to classify handwritten digits, which is essentially image pattern recognition.
resize the image to a 1x1 pixle... if they are exact, there is a small probability they are the same picture...
now resize it to a 2x2 pixle image, if all 4 pixles are exact, there is a larger probability they are exact...
then 3x3, if all 9 pixles are exact... good chance etc.
then 4x4, if all 16 pixles are exact,... better chance.
etc...
doing it this way, you can make efficiency improvments... if the 1x1 pixel grid is off by a lot, why bother checking 2x2 grid? etc.
If you have lots of images, a color histogram could be used to get rough closeness of images before doing a full image comparison of each image against each other one (i.e. O(n^2)).
There is DPEG, "The" Duplicate Media Manager, but its code is not open. It's a very old tool - I remember using it in 2003.
You could use diff to see if they are REALLY different.. I guess it will remove lots of useless comparison. Then, for the algorithm, I would use a probabilistic approach.. what are the chances that they look the same.. I'd based that on the amount of rgb in each pixel. You could also find some other metrics such as luminosity and stuff like that.

Resources