I'm trying to create a filter against ElasticSearch that requires more than one match before the result is returned. For example, in the following text:
If you're uneasy at the idea of riding in a vehicle that drives itself, just wait till you see Google's new car. It has no gas pedal, no brake and no steering wheel. Google has been demonstrating its driverless technology for several years by retrofitting Toyotas, Lexuses and other cars with cameras and sensors. But now, for the first time, the company has unveiled a prototype of its own: a cute little car that looks like a cross between a VW Beetle and a golf cart.
If I set the minimum number of matches to 2 and searched for Google, I would expect this result because Google appears in the text twice. However, searching on Toyota with the same number of expected matches should not result in this article.
How do I construct this filter?
Probably not exactly what you are looking for, but you could add explain to your query and then filter on the client side by number of term matches. From the docs, query would look like this:
GET /_search?explain
{
"query" : { "match" : { "tweet" : "honeymoon" }}
}
Results would look like this:
"_explanation": {
"description": "weight(tweet:honeymoon in 0)
[PerFieldSimilarity], result of:",
"value": 0.076713204,
"details": [
{
"description": "fieldWeight in 0, product of:",
"value": 0.076713204,
"details": [
{
"description": "tf(freq=1.0), with freq of:",
"value": 1,
"details": [
{
"description": "termFreq=1.0",
"value": 1
}
]
},
{
"description": "idf(docFreq=1, maxDocs=1)",
"value": 0.30685282
},
{
"description": "fieldNorm(doc=0)",
"value": 0.25,
}
]
}
]
}
You could then filter on the description field for term frequency and look for a value > 1.
I believe you may be able to do this directly (no client side filtering) by using scripting, as you can get reference to term frequency:
Term statistics:
Term statistics for a field can be accessed with a subscript operator like this: _index['FIELD']['TERM']. This will never return null, even if term or field does not exist. If you do not need the term frequency, call _index['FIELD'].get('TERM', 0) to avoid uneccesary initialization of the frequencies. The flag will have only affect is your set the index_options to docs (see mapping documentation).
_index['FIELD']['TERM'].df()
df of term TERM in field FIELD. Will be returned, even if the term is not present in the current document.
_index['FIELD']['TERM'].ttf()
The sum of term frequencys of term TERM in field FIELD over all documents. Will be returned, even if the term is not present in the current document.
_index['FIELD']['TERM'].tf()
tf of term TERM in field FIELD. Will be 0 if the term is not present in the current document.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-scripting.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-advanced-scripting.html
However, I've not done this and there are the normal concerns about both security and performance when using server side scripting.
Related
Elasticsearch Newbie here. I have an elasticsearch cluster and an index http://localhost:9200/products and each product looks like this:
{
"name": "laptop",
"description" : "Intel Laptop with 16 GB RAM",
"title" : "...."
}
I wanted all keywords in a field and their frequencies across all documents for an index. For eg.
description : intel -> 2500, laptop -> 40000 etc. I looked at termvectors https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-termvectors.html but that only let's me do it across a single document. I want it across all documents in a particular field.
I wrote a plug-in for this ..but its expensive call ( based on how many terms you want to get and cardinality of terms ) https://github.com/nirmalc/es-termstat
Currently, there is no way to use term vectors on all documents at a time in an index. You can either use single term vector API for single document's term frequency count or multi-term vectors API to multiple document's term frequency. But a possible workaround could be like this -
make a scan request in order to get all documents from a given type,
and for each page to build a multi-term vector mentioned above to
request to get term vectors.
POST /products/_mtermvectors
{
"ids" : ["1", "2"],
"parameters": {
"fields": [
"description"
],
"term_statistics": true
}
}
so I'm trying to get good search results out of an Elasticsearch installation.
But I run into problems when I'm trying to make a fuzzy search on some very simple data.
Somehow multiple (some of them partial) words are scored too low and only get scored higher, when more letters of the word are present in the search query.
Let me explain:
I have a simple index built with two simple documents.
{
"name": "Product with good qualities and awesome sound system"
},
{
"name": "Another Product that has better acustics than the other one"
}
Now I query the index with this parameters:
{
"query": {
"multi_match": {
"fields": ["name"],
"query": "product acust",
"fuzziness": "auto"
}
}
}
And the results look like this:
"hits": [
{
"_index": "test_products",
"_type": "_doc",
"_id": "1",
"_score": 0.19100355,
"_source": {
"name": "Product with good qualities and awesome sound system"
}
},
{
"_index": "test_products",
"_type": "_doc",
"_id": "2",
"_score": 0.17439455,
"_source": {
"name": "Another Product that has better acustics than the other one"
}
}
]
As you can see the product with the ID 2 is scored less than the other product even though it has possibly more similarity with the given query string than the other product because it has 1 full word match and 1 partial word match.
When the query would looke like "product acusti" the results would start to behave correctly.
I've already fiddled around with bool search but the results are identical.
Any ideas how I can get the wanted results back faster than having to have almost the whole second word typed in?
As far as I know, Elasticsearch does not do partial word matching by default, so the term acust is not matched in neither of your documents.
The reason you are getting a higher score in the first document is that your matched term, product, appears in a shorter sentence:
Product with good qualities and awesome sound system
But as for the second document, product appears in a longer sentence:
Another Product that has better acoustics than the other one
So your second document is getting a lower score because the ratio of your match term (product) to the number of terms in the sentence is lower.
In other words in has lower Field length normalization:
norm = 1/sqrt(numFieldTerms)
Now if you you want to be able to do partial prefix matching, you need to tokenize your term into ngrams, for example you can create the following ngrams for the term "acoustics":
"ac", "aco", "acou", "acous", "acoust", "acousti", "acoustic", "acoustics"
You have 2 options to achieve this, see the answer by Russ Cam on this question
use Analyze API
with an analyzer that will tokenize the field into tokens/terms from
which you would want to partial prefix match, and index this
collection as the input to the completion field. The Standard analyzer
may be a good one to start with...
Don't use the Completion Suggester here and instead set up your field (name) as a text datatype with
multi-fields
that include the different ways that name should be analyzed (or not
analyzed, with a keyword sub field for example). Spend some time with the Analyze API to build an analyzer that will
allow for partial prefix of terms anywhere in the name. As a start,
something like the Standard tokenizer, Lowercase token filter,
Edgengram token filter and possibly Stop token filter would get you
running...
You may also find this guide helpful.
I am using elasticsearch to get relevant blog articles from a database of articles. I want results that contain particular words to be given higher score than the search results who do not have them.
I have tried adding stop words and given more to other fields but the results are not quite as expected. I am using developer mode of the Kibana interface of elasticsearch
"""
GET blog-desc/_search
{
"query": {
"more_like_this" : {
"fields" : ["Meta description","Title^5",
"Short title^0.5"],
"like" : "Harry had a silver wand he likes to play with! Among his friends he has the most expensive one. The only difference between his wand and his sister's is that in the color",
"min_term_freq" : 1,
"max_query_terms" : 12,
"minimum_should_match": "30%",
"stop_words": ["difference", "play", "among"]
, "boost_terms": 1
}
}
}
"""
In the sample code above, I would want search results having "silver" as a word in them given more score than other articles who do not that word.
I came across a mapping where, on some fields, which uses custom analyzer, norms are disabled.
Then I read about Norms and https://www.elastic.co/guide/en/elasticsearch/reference/current/norms.html found this official doc, but it doesn't explain clearly what exactly it stores and how actually its useful in scoring.
Below is the snippet from above link:
Norms store various normalization factors that are later used at query
time in order to compute the score of a document relatively to a
query.
I found some other docs which gave some more information and advised to Disable Norms for Analyzed Fields like numbers to represent the relative field length and the index time boost setting. But still I am unable to understand it completely.
So, In short I have below doubts:
What exactly norms store?
What exactly is relative field length and how it's useful for scoring?
Default value of norms?
Can I see the content of norms using some ES query?
here is ma attempt of answer :)
What exactly norms store and What exactly is relative field length and how it's useful for scoring?
it stores information that allows elastic to know the relative field length. Why ?
How long is the field? The shorter the field, the higher the weight.
If a term appears in a short field, such as a title field, it is more
likely that the content of that field is about the term than if the
same term appears in a much bigger body field
Default value of norms?
Norms are activated on text field and disabled on other fields.
Can I see the content of norms using some ES query?
No, norms are stored in the segment's data. But you can see the impact of the norms if you use the explain flag in your request. Somewhere in the score explanation mess you will see some thing like that :
{
"value": 1.4506965,
"description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
"details": [
{
"value": 3,
"description": "termFreq=3.0",
"details": []
},
{
"value": 1.2,
"description": "parameter k1",
"details": []
},
{
"value": 0.75,
"description": "parameter b",
"details": []
},
{
"value": 34.572754,
"description": "avgFieldLength",
"details": []
},
{
"value": 48,
"description": "fieldLength",
"details": []
}
]
}
where fieldLength and avgFieldLength are computed thanks to the norms data
This answer is primary based on https://www.elastic.co/fr/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables and https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html#field-norm
I've been constructing an ElasticSearch query using Fuzzy Matching to match a user in the system. When running it against a specific group of users (ones with my name), the query appears to work perfectly, but when running it against a random selection of users, it appears to fail.
For the purposes of my testing, I'm passing in the exact values of a specific user, so I would expect at least 1 match.
In narrowing this down, I found that an exact match against a name returns the data as expected, but putting the same value into a fuzzy block causes it to return 0 results.
For Instance, this query returns a user record as expected:
{
"from": 0,
"size": 1,
"query": {
"bool": {
"must": [
{
"match": {
"firstName": {
"query": "sVxGBCkPYZ",
"boost": 30
}
}
}
],
"should": [
]
}
},
"fields": [
"id",
"firstName"
]
}
However replacing the match element with the below fails to return any records:
{
"fuzzy": {
"firstName": {
"value": "sVxGBCkPYZ",
"fuzziness": 2,
"boost": 30,
"min_similarity": 0.3
}
}
}
Why would this be happening, and is there anything I can do to remedy the situation?
For reference. This is the ES version i'm currently using:
"version": {
"number": "1.7.1",
"build_hash": "b88f43fc40b0bcd7f173a1f9ee2e97816de80b19",
"build_timestamp": "2015-07-29T09:54:16Z",
"build_snapshot": false,
"lucene_version": "4.10.4"
}
The match fails because fuzzy searches are term level queries meaning the query string would not be analysed while the data that got indexed, I assume, if of type text with standard analyzer, would be converted to svxgbckpyz in the inverted index.
You can instead, implement fuzziness with match query as below:
POST testindex/_search
{
"query":{
"match":{
"firstname":{
"query":"sVxGBCkPYZ",
"fuzziness":"AUTO"
}
}
}
}
You can change the value from AUTO to 2 or 3 depending on your use case.
The exact match you mentioned also works because query string would get analysed and converts the input string into lower case, which is available in inverted index.
As for how fuzzy query (that you've mentioned) works behind the scene, as per this LINK, is as follows:
The fuzzy query works by taking the original term and building a
Levenshtein automaton—like a big graph representing all the strings
that are within the specified edit distance of the original string.
The fuzzy query then uses the automaton to step efficiently through
all of the terms in the term dictionary to see if they match. Once it
has collected all of the matching terms that exist in the term
dictionary, it can compute the list of matching documents.
Of course, depending on the type of data stored in the index, a fuzzy
query with an edit distance of 2 can match a very large number of
terms and perform very badly.
Note this statement in particular, representing all the strings that are within the specified edit distance of the original string
For e.g. some of the words with distance of 1 for life would be aife, bife, cife, dife....lifz.
So in your case, fuzzy search's automaton would not be able to create term svxgbckpyz from input string sVxGBCkPYZ firstly because the distance between them is 7 (Remember distance is 1 between A and a) which I don't think AUTO option can create and even if you configure it to 7, it may not create the string as there would be huge list of words with distance 7
Adding one more LINK for more info. Hope it helps!