so I'm trying to get good search results out of an Elasticsearch installation.
But I run into problems when I'm trying to make a fuzzy search on some very simple data.
Somehow multiple (some of them partial) words are scored too low and only get scored higher, when more letters of the word are present in the search query.
Let me explain:
I have a simple index built with two simple documents.
{
"name": "Product with good qualities and awesome sound system"
},
{
"name": "Another Product that has better acustics than the other one"
}
Now I query the index with this parameters:
{
"query": {
"multi_match": {
"fields": ["name"],
"query": "product acust",
"fuzziness": "auto"
}
}
}
And the results look like this:
"hits": [
{
"_index": "test_products",
"_type": "_doc",
"_id": "1",
"_score": 0.19100355,
"_source": {
"name": "Product with good qualities and awesome sound system"
}
},
{
"_index": "test_products",
"_type": "_doc",
"_id": "2",
"_score": 0.17439455,
"_source": {
"name": "Another Product that has better acustics than the other one"
}
}
]
As you can see the product with the ID 2 is scored less than the other product even though it has possibly more similarity with the given query string than the other product because it has 1 full word match and 1 partial word match.
When the query would looke like "product acusti" the results would start to behave correctly.
I've already fiddled around with bool search but the results are identical.
Any ideas how I can get the wanted results back faster than having to have almost the whole second word typed in?
As far as I know, Elasticsearch does not do partial word matching by default, so the term acust is not matched in neither of your documents.
The reason you are getting a higher score in the first document is that your matched term, product, appears in a shorter sentence:
Product with good qualities and awesome sound system
But as for the second document, product appears in a longer sentence:
Another Product that has better acoustics than the other one
So your second document is getting a lower score because the ratio of your match term (product) to the number of terms in the sentence is lower.
In other words in has lower Field length normalization:
norm = 1/sqrt(numFieldTerms)
Now if you you want to be able to do partial prefix matching, you need to tokenize your term into ngrams, for example you can create the following ngrams for the term "acoustics":
"ac", "aco", "acou", "acous", "acoust", "acousti", "acoustic", "acoustics"
You have 2 options to achieve this, see the answer by Russ Cam on this question
use Analyze API
with an analyzer that will tokenize the field into tokens/terms from
which you would want to partial prefix match, and index this
collection as the input to the completion field. The Standard analyzer
may be a good one to start with...
Don't use the Completion Suggester here and instead set up your field (name) as a text datatype with
multi-fields
that include the different ways that name should be analyzed (or not
analyzed, with a keyword sub field for example). Spend some time with the Analyze API to build an analyzer that will
allow for partial prefix of terms anywhere in the name. As a start,
something like the Standard tokenizer, Lowercase token filter,
Edgengram token filter and possibly Stop token filter would get you
running...
You may also find this guide helpful.
Related
Elasticsearch Newbie here. I have an elasticsearch cluster and an index http://localhost:9200/products and each product looks like this:
{
"name": "laptop",
"description" : "Intel Laptop with 16 GB RAM",
"title" : "...."
}
I wanted all keywords in a field and their frequencies across all documents for an index. For eg.
description : intel -> 2500, laptop -> 40000 etc. I looked at termvectors https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-termvectors.html but that only let's me do it across a single document. I want it across all documents in a particular field.
I wrote a plug-in for this ..but its expensive call ( based on how many terms you want to get and cardinality of terms ) https://github.com/nirmalc/es-termstat
Currently, there is no way to use term vectors on all documents at a time in an index. You can either use single term vector API for single document's term frequency count or multi-term vectors API to multiple document's term frequency. But a possible workaround could be like this -
make a scan request in order to get all documents from a given type,
and for each page to build a multi-term vector mentioned above to
request to get term vectors.
POST /products/_mtermvectors
{
"ids" : ["1", "2"],
"parameters": {
"fields": [
"description"
],
"term_statistics": true
}
}
I have collection of docs and they have field tags which is array of strings. Each string is a word.
Example:
[{
"id": 1,
"tags": [ "man", "boy", "people" ]
}, {
"id": 2,
"tags":[ "health", "boys", "people" ]
}, {
"id": 3,
"tags":[ "people", "box", "boxer" ]
}]
Now I need to query only docs which contains word "boy" and its forms("boys" in my example). I do not need elasticsearch to return doc number 3 because it is not form of boy.
If I use fuzzy query I will get all three docs and also doc number 3 which I do not need. As far as I understand, elasticsearch use levenshtein distance to determine whether doc relevant or not.
If I use match query I will get number 1 only but not both(1,2).
I wonder is there any ability to query docs by word form matching. Is there a way to make elastic match "duke", "duchess", "dukes" but not "dikes", "buke", "bike" and so on? This is more complicated case with "duke" but I need to support such case also.
Probably it could be solved using some specific settings of analyzer?
With "word-form matching" I guess you are referring to matching morphological variations of the same word. This could be about addressing plural, singular, case, tense, conjugation etc. Bear in mind that the rules for word variations are language specific
Elasticsearch's implementation of fuzziness is based on the Damerau–Levenshtein distance. It handles mutations (changes, transformations, transpositions) independent of a specific language, solely based on the number if edits.
You would need to change the processing of your strings at indexing and at search time to get the language-specific variations addressed via stemming. This can be achieved by configuring a suitable an analyzer for your field that does the language-specific stemming.
Assuming that your tags are all in English, your mapping for tags could look like:
"tags": {
"type": "text",
"analyzer": "english"
}
As you cannot change the type or analyzer of an existing index you would need to fix your mapping and then re-index everything.
I'm not sure whether Duke and Duchesse are considered to be the same word (and therefore addresses by the stemmer). If not, you would need to use a customised analyzer that allows you to configure synonyms.
See also Elasticsearch Reference: Language Analyzers
Search after in elasticsearch must match its sorting parameters in count and order. So I was wondering how to get the score from previous result (example page 1) to use it as a search after for next page.
I faced an issue when using the score of the last document in previous search. The score was 1.0, and since all documents has 1.0 score, the result for next page turned out to be null (empty).
That's actually make sense, since I am asking elasticsearch for results that has lower rank (score) than 1.0 which are zero, so which score do I use to get the next page.
Note:
I am sorting by score then by TieBreakerID, so one possible solution is using high value (say 1000) for score.
What you're doing sounds like it should work, as explained by an Elastic team member. It works for me (in ES 7.7) even with tied scores when using the document ID (copied into another indexed field) as a tiebreaker. It's true that indexing additional documents while paginating will make your scores slightly unstable, but not likely enough to cause a significant problem for an end user. If you need it to be reliable for a batch job, the Scroll API is the better choice.
{
"query": {
...
},
"search_after": [
12.276552,
14173
],
"sort": [
{ "_score": "desc" },
{ "id": "asc" }
]
}
I am using elasticsearch to get relevant blog articles from a database of articles. I want results that contain particular words to be given higher score than the search results who do not have them.
I have tried adding stop words and given more to other fields but the results are not quite as expected. I am using developer mode of the Kibana interface of elasticsearch
"""
GET blog-desc/_search
{
"query": {
"more_like_this" : {
"fields" : ["Meta description","Title^5",
"Short title^0.5"],
"like" : "Harry had a silver wand he likes to play with! Among his friends he has the most expensive one. The only difference between his wand and his sister's is that in the color",
"min_term_freq" : 1,
"max_query_terms" : 12,
"minimum_should_match": "30%",
"stop_words": ["difference", "play", "among"]
, "boost_terms": 1
}
}
}
"""
In the sample code above, I would want search results having "silver" as a word in them given more score than other articles who do not that word.
Is it possible to score my searches according to the number of matches when using operator "or"?
Currently query looks like this:
"query": {
"function_score": {
"query": {
"match": {
"tags.eng": {
"query": "apples banana juice",
"operator": "or",
"fuzziness": "AUTO"
}
}
},
"script_score": {
"script": # TODO
},
"boost_mode": "replace"
}
}
I don't want to use "and" operator, since I want documents containing "apple juice" to be found, as well as documents containing only "juice", etc. However a document containing the three words should score more than documents containing two words or a single word, and so on.
I found a possible solution here https://github.com/elastic/elasticsearch/issues/13806
which uses bool queries. However I don't know how to access the tokens (in this example: apples, banana, juice) generated by the analyzer.
Any help?
Based on the discussions above I came up with the following solution, which is a bit different that I imagined when I asked the question, but works for my case.
First of all I defined a new similarity:
"settings": {
"similarity": {
"boost_similarity": {
"type": "scripted",
"script": {
"source": "return 1;"
}
}
}
...
}
Then I had the following problem:
a query for "apple banana juice" had the same score for a doc with tags ["apple juice", "apple"] and another doc with tag ["banana", "apple juice"]. Although I would like to score the second one higher.
From the this other discussion I found out that this issue was caused because I had a nested field. And I created a usual text field to address it.
But I also was wanted to distinguish between a doc with tags ["apple", "banana", "juice"] and another doc with tag ["apple banana juice"] (all three words in the same tag). The final solution was therefore to keep both fields (a nested and a text field) for my tags.
Finally the query consists of bool query with two should clauses: the first should clause is performed on the text field and uses an "or" operator. The second should clause is performed on the nested field and uses and "and operator"
Despite I found a solution for this specific issue, I still face a few other problems when using ES to search for tagged documents. The examples in the documentation seem to work very well when searching for full texts. But does someone know where I can find something more specific to tagged documents?