Recursive solution to finding patterns - algorithm

I was solving a problem on recursion which is to count the total number of consecutive 8's in a number. For example:
input: 8801 output: 2
input: 801 output: 0
input: 888 output: 3
input: 88088018 output:4
I am unable to figure out the logic of passing the information to the next recursive call about whether the previous digit was an 8.
I do not want the code but I need help with the logic. For an iterative solution, I could have used a flag variable, but in recursion how do I do the work which flag variable does in an iterative solution. Also, it is not a part of any assignment. This just came to my mind because I am trying to practice coding using recursion.

A typical solution to this would be to add a new parameter to your function to pass along the "flag" state. This parameter is usually called an accumulator. If you're using a language that allows for nested functions, you often want to define an outer function that takes the actual parameters, then an inner, recursive function with an accumulator as a parameter. There's an example in Scheme here.

you can scan through your number digit by digit with this function
int totalConsecutive8(int digit, boolean last)
while boolean last indicate whether the last digit (which mean digit - 1) is 8 or not.
For example, in the last example 88088018, starting at digit 0, boolean last is false -> digit 1, as the last digit is 8, so last is true ...
Code in Java
public int numberOfConsecutive8(int val){
String number = "" + val;
return totalConsecutive8(number, 0, false, false);
}
public int totalConsecutive8(String number, int digit, boolean last, boolean first){
if(digit == number.length()){
return 0;
}
int result = 0;
if(number.charAt(digit) == '8'){
if(last){
if(first){
result += 2 + totalConsecutive8(number, digit + 1, true, false);
}else{
result += 1 + totalConsecutive8(number, digit + 1, true, false);
}
}else{
result += totalConsecutive8(number, digit + 1, true, true);
}
}else{
result += totalConsecutive8(number, digit + 1, false, false);
}
return result;
}
Barmar suggested approach:
int totalConsecutive8(int number, boolean last , boolean first){
if(number == 0){
return 0;
}
int result = 0;
if(number % 10 == 8){
if(last){
if(first){
result += 2 + totalConsecutive8(number/10, true , false){
}else{
result += 1 + totalConsecutive8(number/10, true , false){
}
} else{
result += totalConsecutive8(number/10, true , true){
}
}else{
result += totalConsecutive8(number/10, false , false){
}
return result;
}

here pseudo code for the above problem :-
int max = 0;
void cal_eight(char ch[],int i,int count) {
if(ch[i]=='\0') {
max = maximum(max,count);
}
else if(ch[i]=='8') {
cal_eight(ch,i+1,count+1);
}
else {
max = maximum(max,count);
cal_eight(ch,i+1,0);
}
}
call :- cal_eight(ch,0,0)

As you are focusing on recursion I'd mention that one of its specifics and benefits that there is no need at all to pass any additional parameter or count calls.
You perform call of your function from inside of its own with modified argument - say the string minus one digit which you check in your function - and then call it again until the string becomes empty.
May be multiple times - nested calls.
[UPDATE]
Below is the example in Python, verbose fore more readability.
We call our function with string, current chain of consecutive 8s which is flushed if the 1st char of current string is not '8' (which, and already known total cosecutive 8s
def f8_trace(s, chainlen=0, total=0, indent=0):
print ' '*indent, "invoked with s='%s', chainlen=%d, total=%d" % (s,chainlen, total)
if len(s) == 0:
if chainlen>1:
total += chainlen
retval = total
else:
if s[0] == '8':
chainlen += 1
else:
if chainlen>1:
total += chainlen
chainlen = 0
retval = f8_trace(s[1:],chainlen,total,indent+1)
print ' '*indent, 'returns %d' % (retval)
return retval
s = 'abc888d88e8f888'
print f8_trace( s )
Output:
invoked with s='abc888d88e8f888', chainlen=0, total=0
invoked with s='bc888d88e8f888', chainlen=0, total=0
invoked with s='c888d88e8f888', chainlen=0, total=0
invoked with s='888d88e8f888', chainlen=0, total=0
invoked with s='88d88e8f888', chainlen=1, total=0
invoked with s='8d88e8f888', chainlen=2, total=0
invoked with s='d88e8f888', chainlen=3, total=0
invoked with s='88e8f888', chainlen=0, total=3
invoked with s='8e8f888', chainlen=1, total=3
invoked with s='e8f888', chainlen=2, total=3
invoked with s='8f888', chainlen=0, total=5
invoked with s='f888', chainlen=1, total=5
invoked with s='888', chainlen=0, total=5
invoked with s='88', chainlen=1, total=5
invoked with s='8', chainlen=2, total=5
invoked with s='', chainlen=3, total=5
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
returns 8
8

Here's an example in Haskell, a language often associated with recursive approaches.
xxs stands for the string, x and xs loosely mean, "first item" and "the rest" (so after we check x, we pass xs, the rest of the string, to the next function call).
previous set as True means the previous digit was an 8. I hope the rest of the code may seem more straight forward and self-explanatory. The guards, |, are like imperative "if" clauses (e.g., if previous then ...).
f xxs first8 previous count
| null xxs = count
| previous = if x == 8
then f xs 0 True (count + first8 + 1)
else g
| otherwise = if x == 8
then f xs 1 True count
else g
where x:xs = xxs
g = f xs 0 False count
Output:
*Main> f [8,0,1] 0 False 0
0
*Main> f [8,8,8] 0 False 0
3
*Main> f [8,8,0,8,8,0,1,8] 0 False 0
4

Related

Divide two strings to form palindrome

Given two strings, A and B, of equal length, find whether it is possible to cut both strings at a common point such that the first part of A and the second part of B form a palindrome.
I've tried bruteforce, this can be achieved in O(N^2). I'm looking for any kind of optimization. I'm not familiar with back tracking and DP. So, can anyone throw some light....whether i should think in these lines?
Here is a possible solution considering that we cut the 2 strings in a common point. It runs in linear time w.r.t the string length, so in O(n).
// Palindrome function
function is_pal(str) {
str_len = len(str)
result = true
for i from 0 to 1 + str_len / 2 {
if str[i] != str[str_len - i] then {
result = false
break
}
}
return result
}
// first phase: iterate on both strings
function solve_pb(A, B) {
str_len = len(A)
idx = 0
while A[idx] == B[str_len - idx - 1] {
idx += 1
}
if idx >= str_len / 2 {
return str_len / 2
else if is_pal(A[idx + 1 ... str_len - idx - 2]) {
return str_len - idx - 2
else if is_pal(B[idx + 1 ... str_len - idx - 2]) {
return idx
else
return -1 // no solution possible
The principle is the following:
First, we iterate on A, and reverse iterate on B, as long as they are 'symetric'.
A: aaabcaabb ............ // ->
B: ............ bbaacbaaa // <-
If the strings are symetric until their respective middle, then the solution is trivial. Otherwise we check if the 'middle portion' of A or B is itself a palindrome. If it is the case we have a solution, otherwise we do not have a solution.

Why is my GoLang algorithm going on an infinite loop?

I have been trying to solve the problem below in multiple ways (recursively, with the Go-version of do while loop, and with a for loop). But each one of them goes to an infinite loop. I tried using the same solution in JavaScript, and it works perfectly fine. Can someone please help me understand why the solution below is not working/going on an infinite loop?
// Write a function that takes in a number and returns the next number that is divisible by 7
package main
func solution9(num int) int {
var done bool = false
var result int = 0
for i := 1; done != true; i++ {
if (num + i % 7 == 0) {
result = num + i
done = true
}
}
return result
}
Your issue is operator precedence. The % operator has a higher precedence than the + operator, so if your num is, say, 10, your test is functionally:
10 + (0 % 7) == 0 => false (10)
10 + (1 % 7) == 0 => false (11)
10 + (2 % 7) == 0 => false (12)
etc.
Obviously, for any num > 0, you'll never satisfy the condition. Change your test to (num+i)%7 == 0 and you should find it works as expected.

Count number of 1 digits in 11 to the power of N

I came across an interesting problem:
How would you count the number of 1 digits in the representation of 11 to the power of N, 0<N<=1000.
Let d be the number of 1 digits
N=2 11^2 = 121 d=2
N=3 11^3 = 1331 d=2
Worst time complexity expected O(N^2)
The simple approach where you compute the number and count the number of 1 digits my getting the last digit and dividing by 10, does not work very well. 11^1000 is not even representable in any standard data type.
Powers of eleven can be stored as a string and calculated quite quickly that way, without a generalised arbitrary precision math package. All you need is multiply by ten and add.
For example, 111 is 11. To get the next power of 11 (112), you multiply by (10 + 1), which is effectively the number with a zero tacked the end, added to the number: 110 + 11 = 121.
Similarly, 113 can then be calculated as: 1210 + 121 = 1331.
And so on:
11^2 11^3 11^4 11^5 11^6
110 1210 13310 146410 1610510
+11 +121 +1331 +14641 +161051
--- ---- ----- ------ -------
121 1331 14641 161051 1771561
So that's how I'd approach, at least initially.
By way of example, here's a Python function to raise 11 to the n'th power, using the method described (I am aware that Python has support for arbitrary precision, keep in mind I'm just using it as a demonstration on how to do this an an algorithm, which is how the question was tagged):
def elevenToPowerOf(n):
# Anything to the zero is 1.
if n == 0: return "1"
# Otherwise, n <- n * 10 + n, once for each level of power.
num = "11"
while n > 1:
n = n - 1
# Make multiply by eleven easy.
ten = num + "0"
num = "0" + num
# Standard primary school algorithm for adding.
newnum = ""
carry = 0
for dgt in range(len(ten)-1,-1,-1):
res = int(ten[dgt]) + int(num[dgt]) + carry
carry = res // 10
res = res % 10
newnum = str(res) + newnum
if carry == 1:
newnum = "1" + newnum
# Prepare for next multiplication.
num = newnum
# There you go, 11^n as a string.
return num
And, for testing, a little program which works out those values for each power that you provide on the command line:
import sys
for idx in range(1,len(sys.argv)):
try:
power = int(sys.argv[idx])
except (e):
print("Invalid number [%s]" % (sys.argv[idx]))
sys.exit(1)
if power < 0:
print("Negative powers not allowed [%d]" % (power))
sys.exit(1)
number = elevenToPowerOf(power)
count = 0
for ch in number:
if ch == '1':
count += 1
print("11^%d is %s, has %d ones" % (power,number,count))
When you run that with:
time python3 prog.py 0 1 2 3 4 5 6 7 8 9 10 11 12 1000
you can see that it's both accurate (checked with bc) and fast (finished in about half a second):
11^0 is 1, has 1 ones
11^1 is 11, has 2 ones
11^2 is 121, has 2 ones
11^3 is 1331, has 2 ones
11^4 is 14641, has 2 ones
11^5 is 161051, has 3 ones
11^6 is 1771561, has 3 ones
11^7 is 19487171, has 3 ones
11^8 is 214358881, has 2 ones
11^9 is 2357947691, has 1 ones
11^10 is 25937424601, has 1 ones
11^11 is 285311670611, has 4 ones
11^12 is 3138428376721, has 2 ones
11^1000 is 2469932918005826334124088385085221477709733385238396234869182951830739390375433175367866116456946191973803561189036523363533798726571008961243792655536655282201820357872673322901148243453211756020067624545609411212063417307681204817377763465511222635167942816318177424600927358163388910854695041070577642045540560963004207926938348086979035423732739933235077042750354729095729602516751896320598857608367865475244863114521391548985943858154775884418927768284663678512441565517194156946312753546771163991252528017732162399536497445066348868438762510366191040118080751580689254476068034620047646422315123643119627205531371694188794408120267120500325775293645416335230014278578281272863450085145349124727476223298887655183167465713337723258182649072572861625150703747030550736347589416285606367521524529665763903537989935510874657420361426804068643262800901916285076966174176854351055183740078763891951775452021781225066361670593917001215032839838911476044840388663443684517735022039957481918726697789827894303408292584258328090724141496484460001, has 105 ones
real 0m0.609s
user 0m0.592s
sys 0m0.012s
That may not necessarily be O(n2) but it should be fast enough for your domain constraints.
Of course, given those constraints, you can make it O(1) by using a method I call pre-generation. Simply write a program to generate an array you can plug into your program which contains a suitable function. The following Python program does exactly that, for the powers of eleven from 1 to 100 inclusive:
def mulBy11(num):
# Same length to ease addition.
ten = num + '0'
num = '0' + num
# Standard primary school algorithm for adding.
result = ''
carry = 0
for idx in range(len(ten)-1, -1, -1):
digit = int(ten[idx]) + int(num[idx]) + carry
carry = digit // 10
digit = digit % 10
result = str(digit) + result
if carry == 1:
result = '1' + result
return result
num = '1'
print('int oneCountInPowerOf11(int n) {')
print(' static int numOnes[] = {-1', end='')
for power in range(1,101):
num = mulBy11(num)
count = sum(1 for ch in num if ch == '1')
print(',%d' % count, end='')
print('};')
print(' if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))')
print(' return -1;')
print(' return numOnes[n];')
print('}')
The code output by this script is:
int oneCountInPowerOf11(int n) {
static int numOnes[] = {-1,2,2,2,2,3,3,3,2,1,1,4,2,3,1,4,2,1,4,4,1,5,5,1,5,3,6,6,3,6,3,7,5,7,4,4,2,3,4,4,3,8,4,8,5,5,7,7,7,6,6,9,9,7,12,10,8,6,11,7,6,5,5,7,10,2,8,4,6,8,5,9,13,14,8,10,8,7,11,10,9,8,7,13,8,9,6,8,5,8,7,15,12,9,10,10,12,13,7,11,12};
if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))
return -1;
return numOnes[n];
}
which should be blindingly fast when plugged into a C program. On my system, the Python code itself (when you up the range to 1..1000) runs in about 0.6 seconds and the C code, when compiled, finds the number of ones in 111000 in 0.07 seconds.
Here's my concise solution.
def count1s(N):
# When 11^(N-1) = result, 11^(N) = (10+1) * result = 10*result + result
result = 1
for i in range(N):
result += 10*result
# Now count 1's
count = 0
for ch in str(result):
if ch == '1':
count += 1
return count
En c#:
private static void Main(string[] args)
{
var res = Elevento(1000);
var countOf1 = res.Select(x => int.Parse(x.ToString())).Count(s => s == 1);
Console.WriteLine(countOf1);
}
private static string Elevento(int n)
{
if (n == 0) return "1";
//Otherwise, n <- n * 10 + n, once for each level of power.
var num = "11";
while (n > 1)
{
n--;
// Make multiply by eleven easy.
var ten = num + "0";
num = "0" + num;
//Standard primary school algorithm for adding.
var newnum = "";
var carry = 0;
foreach (var dgt in Enumerable.Range(0, ten.Length).Reverse())
{
var res = int.Parse(ten[dgt].ToString()) + int.Parse(num[dgt].ToString()) + carry;
carry = res/10;
res = res%10;
newnum = res + newnum;
}
if (carry == 1)
newnum = "1" + newnum;
// Prepare for next multiplication.
num = newnum;
}
//There you go, 11^n as a string.
return num;
}

What is the best algorithm to find whether an anagram is of a palindrome?

In this problem we consider only strings of lower-case English letters (a-z).
A string is a palindrome if it has exactly the same sequence of characters when traversed left-to-right as right-to-left. For example, the following strings are palindromes:
"kayak"
"codilitytilidoc"
"neveroddoreven"
A string A is an anagram of a string B if it consists of exactly the same characters, but possibly in another order. For example, the following strings are each other's anagrams:
A="mary" B="army" A="rocketboys" B="octobersky" A="codility" B="codility"
Write a function
int isAnagramOfPalindrome(String S);
which returns 1 if the string s is a anagram of some palindrome, or returns 0 otherwise.
For example your function should return 1 for the argument "dooernedeevrvn", because it is an anagram of a palindrome "neveroddoreven". For argument "aabcba", your function should return 0.
'Algorithm' would be too big word for it.
You can construct a palindrome from the given character set if each character occurs in that set even number of times (with possible exception of one character).
For any other set, you can easily show that no palindrome exists.
Proof is simple in both cases, but let me know if that wasn't clear.
In a palindrome, every character must have a copy of itself, a "twin", on the other side of the string, except in the case of the middle letter, which can act as its own twin.
The algorithm you seek would create a length-26 array, one for each lowercase letter, and start counting the characters in the string, placing the quantity of character n at index n of the array. Then, it would pass through the array and count the number of characters with an odd quantity (because one letter there does not have a twin). If this number is 0 or 1, place that single odd letter in the center, and a palindrome is easily generated. Else, it's impossible to generate one, because two or more letters with no twins exist, and they can't both be in the center.
I came up with this solution for Javascript.
This solution is based on the premise that a string is an anagram of a palindrome if and only if at most one character appears an odd number of times in it.
function solution(S) {
var retval = 0;
var sorted = S.split('').sort(); // sort the input characters and store in
// a char array
var array = new Array();
for (var i = 0; i < sorted.length; i++) {
// check if the 2 chars are the same, if so copy the 2 chars to the new
// array
// and additionally increment the counter to account for the second char
// position in the loop.
if ((sorted[i] === sorted[i + 1]) && (sorted[i + 1] != undefined)) {
array.push.apply(array, sorted.slice(i, i + 2));
i = i + 1;
}
}
// if the original string array's length is 1 or more than the length of the
// new array's length
if (sorted.length <= array.length + 1) {
retval = 1;
}
//console.log("new array-> " + array);
//console.log("sorted array-> " + sorted);
return retval;
}
i wrote this code in java. i don't think if its gonna be a good one ^^,
public static int isAnagramOfPalindrome(String str){
ArrayList<Character> a = new ArrayList<Character>();
for(int i = 0; i < str.length(); i++){
if(a.contains(str.charAt(i))){
a.remove((Object)str.charAt(i));
}
else{
a.add(str.charAt(i));
}
}
if(a.size() > 1)
return 0;
return 1;
}
Algorithm:
Count the number of occurrence of each character.
Only one character with odd occurrence is allowed since in a palindrome the maximum number of character with odd occurrence can be '1'.
All other characters should occur in an even number of times.
If (2) and (3) fail, then the given string is not a palindrome.
This adds to the other answers given. We want to keep track of the count of each letter seen. If we have more than one odd count for a letter then we will not be able to form a palindrome. The odd count would go in the middle, but only one odd count can do so.
We can use a hashmap to keep track of the counts. The lookup for a hashmap is O(1) so it is fast. We are able to run the whole algorithm in O(n). Here's it is in code:
if __name__ == '__main__':
line = input()
dic = {}
for i in range(len(line)):
ch = line[i]
if ch in dic:
dic[ch] += 1
else:
dic[ch] = 1
chars_whose_count_is_odd = 0
for key, value in dic.items():
if value % 2 == 1:
chars_whose_count_is_odd += 1
if chars_whose_count_is_odd > 1:
print ("NO")
else:
print ("YES")
I have a neat solution in PHP posted in this question about complexities.
class Solution {
// Function to determine if the input string can make a palindrome by rearranging it
static public function isAnagramOfPalindrome($S) {
// here I am counting how many characters have odd number of occurrences
$odds = count(array_filter(count_chars($S, 1), function($var) {
return($var & 1);
}));
// If the string length is odd, then a palindrome would have 1 character with odd number occurrences
// If the string length is even, all characters should have even number of occurrences
return (int)($odds == (strlen($S) & 1));
}
}
echo Solution :: isAnagramOfPalindrome($_POST['input']);
It uses built-in PHP functions (why not), but you can make it yourself, as those functions are quite simple. First, the count_chars function generates a named array (dictionary in python) with all characters that appear in the string, and their number of occurrences. It can be substituted with a custom function like this:
$count_chars = array();
foreach($S as $char) {
if array_key_exists($char, $count_chars) {
$count_chars[$char]++;
else {
$count_chars[$char] = 1;
}
}
Then, an array_filter with a count function is applied to count how many chars have odd number of occurrences:
$odds = 0;
foreach($count_chars as $char) {
$odds += $char % 2;
}
And then you just apply the comparison in return (explained in the comments of the original function).
return ($odds == strlen($char) % 2)
This runs in O(n). For all chars but one, must be even. the optional odd character can be any odd number.
e.g.
abababa
def anagram_of_pali(str):
char_list = list(str)
map = {}
nb_of_odds = 0
for char in char_list:
if char in map:
map[char] += 1
else:
map[char] = 1
for char in map:
if map[char] % 2 != 0:
nb_of_odds += 1
return True if nb_of_odds <= 1 else False
You just have to count all the letters and check if there are letters with odd counts. If there are more than one letter with odd counts the string does not satisfy the above palindrome condition.
Furthermore, since a string with an even number letters must not have a letter with an odd count it is not necessary to check whether string length is even or not. It will take O(n) time complexity:
Here's the implementation in javascript:
function canRearrangeToPalindrome(str)
{
var letterCounts = {};
var letter;
var palindromeSum = 0;
for (var i = 0; i < str.length; i++) {
letter = str[i];
letterCounts[letter] = letterCounts[letter] || 0;
letterCounts[letter]++;
}
for (var letterCount in letterCounts) {
palindromeSum += letterCounts[letterCount] % 2;
}
return palindromeSum < 2;
}
All right - it's been a while, but as I was asked such a question in a job interview I needed to give it a try in a few lines of Python. The basic idea is that if there is an anagram that is a palindrome for even number of letters each character occurs twice (or something like 2n times, i.e. count%2==0). In addition, for an odd number of characters one character (the one in the middle) may occur only once (or an uneven number - count%2==1).
I used a set in python to get the unique characters and then simply count and break the loop once the condition cannot be fulfilled. Example code (Python3):
def is_palindrome(s):
letters = set(s)
oddc=0
fail=False
for c in letters:
if s.count(c)%2==1:
oddc = oddc+1
if oddc>0 and len(s)%2==0:
fail=True
break
elif oddc>1:
fail=True
break
return(not fail)
def is_anagram_of_palindrome(S):
L = [ 0 for _ in range(26) ]
a = ord('a')
length = 0
for s in S:
length += 1
i = ord(s) - a
L[i] = abs(L[i] - 1)
return length > 0 and sum(L) < 2 and 1 or 0
While you can detect that the given string "S" is a candidate palindrome using the given techniques, it is still not very useful. According to the implementations given,
isAnagramOfPalindrome("rrss") would return true but there is no actual palindrome because:
A palindrome is a word, phrase, number, or other sequence of symbols or elements, whose meaning may be interpreted the same way in either forward or reverse direction. (Wikipedia)
And Rssr or Srrs is not an actual word or phrase that is interpretable. Same with it's anagram. Aarrdd is not an anagram of radar because it is not interpretable.
So, the solutions given must be augmented with a heuristic check against the input to see if it's even a word, and then a verification (via the implementations given), that it is palindrome-able at all. Then there is a heuristic search through the collected buckets with n/2! permutations to search if those are ACTUALLY palindromes and not garbage. The search is only n/2! and not n! because you calculate all permutations of each repeated letter, and then you mirror those over (in addition to possibly adding the singular pivot letter) to create all possible palindromes.
I disagree that algorithm is too big of a word, because this search can be done pure recursively, or using dynamic programming (in the case of words with letters with occurrences greater than 2) and is non trivial.
Here's some code: This is same as the top answer that describes algorithm.
1 #include<iostream>
2 #include<string>
3 #include<vector>
4 #include<stack>
5
6 using namespace std;
7
8 bool fun(string in)
9 {
10 int len=in.size();
11 int myints[len ];
12
13 for(int i=0; i<len; i++)
14 {
15 myints[i]= in.at(i);
16 }
17 vector<char> input(myints, myints+len);
18 sort(input.begin(), input.end());
19
20 stack<int> ret;
21
22 for(int i=0; i<len; i++)
23 {
24 if(!ret.empty() && ret.top()==input.at(i))
25 {
26 ret.pop();
27 }
28 else{
29 ret.push(input.at(i));
30 }
31 }
32
33 return ret.size()<=1;
34
35 }
36
37 int main()
38 {
39 string input;
40 cout<<"Enter word/number"<<endl;
41 cin>>input;
42 cout<<fun(input)<<endl;
43
44 return 0;
45 }

How can I generate this pattern of numbers?

Given inputs 1-32 how can I generate the below output?
in. out
1
1
1
1
2
2
2
2
1
1
1
1
2
2
2
2
...
Edit Not Homework.. just lack of sleep.
I am working in C#, but I was looking for a language agnostic algorithm.
Edit 2 To provide a bit more background... I have an array of 32 items that represents a two dimensional checkerboard. I needed the last part of this algorithm to convert between the vector and the graph, where the index aligns on the black squares on the checkerboard.
Final Code:
--Index;
int row = Index >> 2;
int col = 2 * Index - (((Index & 0x04) >> 2 == 1) ? 2 : 1);
Assuming that you can use bitwise operators you can check what the numbers with same output have in common, in this case I preferred using input 0-31 because it's simpler (you can just subtract 1 to actual values)
What you have?
0x0000 -> 1
0x0001 -> 1
0x0010 -> 1
0x0011 -> 1
0x0100 -> 2
0x0101 -> 2
0x0110 -> 2
0x0111 -> 2
0x1000 -> 1
0x1001 -> 1
0x1010 -> 1
0x1011 -> 1
0x1100 -> 2
...
It's quite easy if you notice that third bit is always 0 when output should be 1 and viceversa it's always 1 when output should be 2
so:
char codify(char input)
{
return ((((input-1)&0x04)>>2 == 1)?(2):(1));
}
EDIT
As suggested by comment it should work also with
char codify(char input)
{
return ((input-1 & 0x04)?(2):(1));
}
because in some languages (like C) 0 will evaluate to false and any other value to true. I'm not sure if it works in C# too because I've never programmed in that language. Of course this is not a language-agnostic answer but it's more C-elegant!
in C:
char output = "11112222"[input-1 & 7];
or
char output = (input-1 >> 2 & 1) + '1';
or after an idea of FogleBird:
char output = input - 1 & 4 ? '2' : '1';
or after an idea of Steve Jessop:
char output = '2' - (0x1e1e1e1e >> input & 1);
or
char output = "12"[input-1>>2&1];
C operator precedence is evil. Do use my code as bad examples :-)
You could use a combination of integer division and modulo 2 (even-odd): There are blocks of four, and the 1st, 3rd, 5th block and so on should result in 1, the 2nd, 4th, 6th and so on in 2.
s := ((n-1) div 4) mod 2;
return s + 1;
div is supposed to be integer division.
EDIT: Turned first mod into a div, of course
Just for laughs, here's a technique that maps inputs 1..32 to two possible outputs, in any arbitrary way known at compile time:
// binary 1111 0000 1111 0000 1111 0000 1111 0000
const uint32_t lu_table = 0xF0F0F0F0;
// select 1 bit out of the table
if (((1 << (input-1)) & lu_table) == 0) {
return 1;
} else {
return 2;
}
By changing the constant, you can handle whatever pattern of outputs you want. Obviously in your case there's a pattern which means it can probably be done faster (since no shift is needed), but everyone else already did that. Also, it's more common for a lookup table to be an array, but that's not necessary here.
The accepted answer return ((((input-1)&0x04)>>2 == 1)?(2):(1)); uses a branch while I would have just written:
return 1 + ((input-1) & 0x04 ) >> 2;
Python
def f(x):
return int((x - 1) % 8 > 3) + 1
Or:
def f(x):
return 2 if (x - 1) & 4 else 1
Or:
def f(x):
return (((x - 1) & 4) >> 2) + 1
In Perl:
#!/usr/bin/perl
use strict; use warnings;
sub it {
return sub {
my ($n) = #_;
return 1 if 4 > ($n - 1) % 8;
return 2;
}
}
my $it = it();
for my $x (1 .. 32) {
printf "%2d:%d\n", $x, $it->($x);
}
Or:
sub it {
return sub {
my ($n) = #_;
use integer;
return 1 + ( (($n - 1) / 4) % 2 );
}
}
In Haskell:
vec2graph :: Int -> Char
vec2graph n = (cycle "11112222") !! (n-1)
Thats pretty straightforward:
if (input == "1") {Console.WriteLine(1)};
if (input == "2") {Console.WriteLine(1)};
if (input == "3") {Console.WriteLine(1)};
if (input == "4") {Console.WriteLine(1)};
if (input == "5") {Console.WriteLine(2)};
if (input == "6") {Console.WriteLine(2)};
if (input == "7") {Console.WriteLine(2)};
if (input == "8") {Console.WriteLine(2)};
etc...
HTH
It depends of the language you are using.
In VB.NET, you could do something like this :
for i as integer = 1 to 32
dim intAnswer as integer = 1 + (Math.Floor((i-1) / 4) mod 2)
' Do whatever you need to do with it
next
It might sound complicated, but it's only because I put it into a sigle line.
In Groovy:
def codify = { i ->
return (((((i-1)/4).intValue()) %2 ) + 1)
}
Then:
def list = 1..16
list.each {
println "${it}: ${codify(it)}"
}
char codify(char input)
{
return (((input-1) & 0x04)>>2) + 1;
}
Using Python:
output = 1
for i in range(1, 32+1):
print "%d. %d" % (i, output)
if i % 4 == 0:
output = output == 1 and 2 or 1
JavaScript
My first thought was
output = ((input - 1 & 4) >> 2) + 1;
but drhirsch's code works fine in JavaScript:
output = input - 1 & 4 ? 2 : 1;
and the ridiculous (related to FogleBird's answer):
output = -~((input - 1) % 8 > 3);
Java, using modulo operation ('%') to give the cyclic behaviour (0,1,2...7) and then a ternary if to 'round' to 1(?) or 2(:) depending on returned value.
...
public static void main(String[] args) {
for (int i=1;i<=32;i++) {
System.out.println(i+"="+ (i%8<4?1:2) );
}
Produces:
1=1 2=1 3=1 4=2 5=2 6=2 7=2 8=1 9=1
10=1 11=1 12=2 13=2 14=2 15=2 16=1
17=1 18=1 19=1 20=2 21=2 22=2 23=2
24=1 25=1 26=1 27=1 28=2 29=2 30=2
31=2 32=1

Resources