Related
It would be great if someone could point me towards an algorithm that would allow me to :
create a random square matrix, with entries 0 and 1, such that
every row and every column contain exactly two non-zero entries,
two non-zero entries cannot be adjacent,
all possible matrices are equiprobable.
Right now I manage to achieve points 1 and 2 doing the following : such a matrix can be transformed, using suitable permutations of rows and columns, into a diagonal block matrix with blocks of the form
1 1 0 0 ... 0
0 1 1 0 ... 0
0 0 1 1 ... 0
.............
1 0 0 0 ... 1
So I start from such a matrix using a partition of [0, ..., n-1] and scramble it by permuting rows and columns randomly. Unfortunately, I can't find a way to integrate the adjacency condition, and I am quite sure that my algorithm won't treat all the matrices equally.
Update
I have managed to achieve point 3. The answer was actually straight under my nose : the block matrix I am creating contains all the information needed to take into account the adjacency condition. First some properties and definitions:
a suitable matrix defines permutations of [1, ..., n] that can be build like so: select a 1 in row 1. The column containing this entry contains exactly one other entry equal to 1 on a row a different from 1. Again, row a contains another entry 1 in a column which contains a second entry 1 on a row b, and so on. This starts a permutation 1 -> a -> b ....
For instance, with the following matrix, starting with the marked entry
v
1 0 1 0 0 0 | 1
0 1 0 0 0 1 | 2
1 0 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 5
0 1 0 0 1 0 | 6
------------+--
1 2 3 4 5 6 |
we get permutation 1 -> 3 -> 5 -> 2 -> 6 -> 4 -> 1.
the cycles of such a permutation lead to the block matrix I mentioned earlier. I also mentioned scrambling the block matrix using arbitrary permutations on the rows and columns to rebuild a matrix compatible with the requirements.
But I was using any permutation, which led to some adjacent non-zero entries. To avoid that, I have to choose permutations that separate rows (and columns) that are adjacent in the block matrix. Actually, to be more precise, if two rows belong to a same block and are cyclically consecutive (the first and last rows of a block are considered consecutive too), then the permutation I want to apply has to move these rows into non-consecutive rows of the final matrix (I will call two rows incompatible in that case).
So the question becomes : How to build all such permutations ?
The simplest idea is to build a permutation progressively by randomly adding rows that are compatible with the previous one. As an example, consider the case n = 6 using partition 6 = 3 + 3 and the corresponding block matrix
1 1 0 0 0 0 | 1
0 1 1 0 0 0 | 2
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
0 0 0 0 1 1 | 5
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Here rows 1, 2 and 3 are mutually incompatible, as are 4, 5 and 6. Choose a random row, say 3.
We will write a permutation as an array: [2, 5, 6, 4, 3, 1] meaning 1 -> 2, 2 -> 5, 3 -> 6, ... This means that row 2 of the block matrix will become the first row of the final matrix, row 5 will become the second row, and so on.
Now let's build a suitable permutation by choosing randomly a row, say 3:
p = [3, ...]
The next row will then be chosen randomly among the remaining rows that are compatible with 3 : 4, 5and 6. Say we choose 4:
p = [3, 4, ...]
Next choice has to be made among 1 and 2, for instance 1:
p = [3, 4, 1, ...]
And so on: p = [3, 4, 1, 5, 2, 6].
Applying this permutation to the block matrix, we get:
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
1 1 0 0 0 0 | 1
0 0 0 0 1 1 | 5
0 1 1 0 0 0 | 2
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Doing so, we manage to vertically isolate all non-zero entries. Same has to be done with the columns, for instance by using permutation p' = [6, 3, 5, 1, 4, 2] to finally get
0 1 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 1
1 0 1 0 0 0 | 5
0 1 0 0 0 1 | 2
1 0 0 0 1 0 | 6
------------+--
6 3 5 1 4 2 |
So this seems to work quite efficiently, but building these permutations needs to be done with caution, because one can easily be stuck: for instance, with n=6 and partition 6 = 2 + 2 + 2, following the construction rules set up earlier can lead to p = [1, 3, 2, 4, ...]. Unfortunately, 5 and 6 are incompatible, so choosing one or the other makes the last choice impossible. I think I've found all situations that lead to a dead end. I will denote by r the set of remaining choices:
p = [..., x, ?], r = {y} with x and y incompatible
p = [..., x, ?, ?], r = {y, z} with y and z being both incompatible with x (no choice can be made)
p = [..., ?, ?], r = {x, y} with x and y incompatible (any choice would lead to situation 1)
p = [..., ?, ?, ?], r = {x, y, z} with x, y and z being cyclically consecutive (choosing x or z would lead to situation 2, choosing y to situation 3)
p = [..., w, ?, ?, ?], r = {x, y, z} with xwy being a 3-cycle (neither x nor y can be chosen, choosing z would lead to situation 3)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with wxyz being a 4-cycle (any choice would lead to situation 4)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with xyz being a 3-cycle (choosing w would lead to situation 4, choosing any other would lead to situation 4)
Now it seems that the following algorithm gives all suitable permutations:
As long as there are strictly more than 5 numbers to choose, choose randomly among the compatible ones.
If there are 5 numbers left to choose: if the remaining numbers contain a 3-cycle or a 4-cycle, break that cycle (i.e. choose a number belonging to that cycle).
If there are 4 numbers left to choose: if the remaining numbers contain three cyclically consecutive numbers, choose one of them.
If there are 3 numbers left to choose: if the remaining numbers contain two cyclically consecutive numbers, choose one of them.
I am quite sure that this allows me to generate all suitable permutations and, hence, all suitable matrices.
Unfortunately, every matrix will be obtained several times, depending on the partition that was chosen.
Intro
Here is some prototype-approach, trying to solve the more general task of
uniform combinatorial sampling, which for our approach here means: we can use this approach for everything which we can formulate as SAT-problem.
It's not exploiting your problem directly and takes a heavy detour. This detour to the SAT-problem can help in regards to theory (more powerful general theoretical results) and efficiency (SAT-solvers).
That being said, it's not an approach if you want to sample within seconds or less (in my experiments), at least while being concerned about uniformity.
Theory
The approach, based on results from complexity-theory, follows this work:
GOMES, Carla P.; SABHARWAL, Ashish; SELMAN, Bart. Near-uniform sampling of combinatorial spaces using XOR constraints. In: Advances In Neural Information Processing Systems. 2007. S. 481-488.
The basic idea:
formulate the problem as SAT-problem
add randomly generated xors to the problem (acting on the decision-variables only! that's important in practice)
this will reduce the number of solutions (some solutions will get impossible)
do that in a loop (with tuned parameters) until only one solution is left!
search for some solution is being done by SAT-solvers or #SAT-solvers (=model-counting)
if there is more than one solution: no xors will be added but a complete restart will be done: add random-xors to the start-problem!
The guarantees:
when tuning the parameters right, this approach achieves near-uniform sampling
this tuning can be costly, as it's based on approximating the number of possible solutions
empirically this can also be costly!
Ante's answer, mentioning the number sequence A001499 actually gives a nice upper bound on the solution-space (as it's just ignoring adjacency-constraints!)
The drawbacks:
inefficient for large problems (in general; not necessarily compared to the alternatives like MCMC and co.)
need to change / reduce parameters to produce samples
those reduced parameters lose the theoretical guarantees
but empirically: good results are still possible!
Parameters:
In practice, the parameters are:
N: number of xors added
L: minimum number of variables part of one xor-constraint
U: maximum number of variables part of one xor-constraint
N is important to reduce the number of possible solutions. Given N constant, the other variables of course also have some effect on that.
Theory says (if i interpret correctly), that we should use L = R = 0.5 * #dec-vars.
This is impossible in practice here, as xor-constraints hurt SAT-solvers a lot!
Here some more scientific slides about the impact of L and U.
They call xors of size 8-20 short-XORS, while we will need to use even shorter ones later!
Implementation
Final version
Here is a pretty hacky implementation in python, using the XorSample scripts from here.
The underlying SAT-solver in use is Cryptominisat.
The code basically boils down to:
Transform the problem to conjunctive normal-form
as DIMACS-CNF
Implement the sampling-approach:
Calls XorSample (pipe-based + file-based)
Call SAT-solver (file-based)
Add samples to some file for later analysis
Code: (i hope i did warn you already about the code-quality)
from itertools import count
from time import time
import subprocess
import numpy as np
import os
import shelve
import uuid
import pickle
from random import SystemRandom
cryptogen = SystemRandom()
""" Helper functions """
# K-ARY CONSTRAINT GENERATION
# ###########################
# SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints.
# CP, 2005, 3709. Jg., S. 827-831.
def next_var_index(start):
next_var = start
while(True):
yield next_var
next_var += 1
class s_index():
def __init__(self, start_index):
self.firstEnvVar = start_index
def next(self,i,j,k):
return self.firstEnvVar + i*k +j
def gen_seq_circuit(k, input_indices, next_var_index_gen):
cnf_string = ''
s_index_gen = s_index(next_var_index_gen.next())
# write clauses of first partial sum (i.e. i=0)
cnf_string += (str(-input_indices[0]) + ' ' + str(s_index_gen.next(0,0,k)) + ' 0\n')
for i in range(1, k):
cnf_string += (str(-s_index_gen.next(0, i, k)) + ' 0\n')
# write clauses for general case (i.e. 0 < i < n-1)
for i in range(1, len(input_indices)-1):
cnf_string += (str(-input_indices[i]) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, 0, k)) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
for u in range(1, k):
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, u-1, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, u, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, k-1, k)) + ' 0\n')
# last clause for last variable
cnf_string += (str(-input_indices[-1]) + ' ' + str(-s_index_gen.next(len(input_indices)-2, k-1, k)) + ' 0\n')
return (cnf_string, (len(input_indices)-1)*k, 2*len(input_indices)*k + len(input_indices) - 3*k - 1)
# K=2 clause GENERATION
# #####################
def gen_at_most_2_constraints(vars, start_var):
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(2, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
def gen_at_least_2_constraints(vars, start_var):
k = len(vars) - 2
vars = [-var for var in vars]
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(k, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
# Adjacency conflicts
# ###################
def get_all_adjacency_conflicts_4_neighborhood(N, X):
conflicts = set()
for x in range(N):
for y in range(N):
if x < (N-1):
conflicts.add(((x,y),(x+1,y)))
if y < (N-1):
conflicts.add(((x,y),(x,y+1)))
cnf = '' # slow string appends
for (var_a, var_b) in conflicts:
var_a_ = X[var_a]
var_b_ = X[var_b]
cnf += '-' + var_a_ + ' ' + '-' + var_b_ + ' 0 \n'
return cnf, len(conflicts)
# Build SAT-CNF
#############
def build_cnf(N, verbose=False):
var_counter = count(1)
N_CLAUSES = 0
X = np.zeros((N, N), dtype=object)
for a in range(N):
for b in range(N):
X[a,b] = str(next(var_counter))
# Adjacency constraints
CNF, N_CLAUSES = get_all_adjacency_conflicts_4_neighborhood(N, X)
# k=2 constraints
NEXT_VAR = N*N+1
for row in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
for col in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
# build final cnf
CNF = 'p cnf ' + str(NEXT_VAR-1) + ' ' + str(N_CLAUSES) + '\n' + CNF
return X, CNF, NEXT_VAR-1
# External tools
# ##############
def get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_ALL_VARS, s, min_l, max_l):
# .cnf not part of arg!
p = subprocess.Popen(['./gen-wff', CNF_IN_fp,
str(N_DEC_VARS), str(N_ALL_VARS),
str(s), str(min_l), str(max_l), 'xored'],
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
result = p.communicate()
os.remove(CNF_IN_fp + '-str-xored.xor') # file not needed
return CNF_IN_fp + '-str-xored.cnf'
def solve(CNF_IN_fp, N_DEC_VARS):
seed = cryptogen.randint(0, 2147483647) # actually no reason to do it; but can't hurt either
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
# solution found!
vars = parse_solution(result)[:N_DEC_VARS]
# forbid solution (DeMorgan)
negated_vars = list(map(lambda x: x*(-1), vars))
with open(CNF_IN_fp, 'a') as f:
f.write( (str(negated_vars)[1:-1] + ' 0\n').replace(',', ''))
# assume solve is treating last constraint despite not changing header!
# solve again
seed = cryptogen.randint(0, 2147483647)
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
os.remove(CNF_IN_fp) # not needed anymore
return True, False, None
else:
return True, True, vars
else:
return False, False, None
def parse_solution(output):
# assumes there is one
vars = []
for line in output.split("\n"):
if line:
if line[0] == 'v':
line_vars = list(map(lambda x: int(x), line.split()[1:]))
vars.extend(line_vars)
return vars
# Core-algorithm
# ##############
def xorsample(X, CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l):
start_time = time()
while True:
# add s random XOR constraints to F
xored_cnf_fp = get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l)
state_lvl1, state_lvl2, var_sol = solve(xored_cnf_fp, N_DEC_VARS)
print('------------')
if state_lvl1 and state_lvl2:
print('FOUND')
d = shelve.open('N_15_70_4_6_TO_PLOT')
d[str(uuid.uuid4())] = (pickle.dumps(var_sol), time() - start_time)
d.close()
return True
else:
if state_lvl1:
print('sol not unique')
else:
print('no sol found')
print('------------')
""" Run """
N = 15
N_DEC_VARS = N*N
X, CNF, N_VARS = build_cnf(N)
with open('my_problem.cnf', 'w') as f:
f.write(CNF)
counter = 0
while True:
print('sample: ', counter)
xorsample(X, 'my_problem', N_DEC_VARS, N_VARS, 70, 4, 6)
counter += 1
Output will look like (removed some warnings):
------------
no sol found
------------
------------
no sol found
------------
------------
no sol found
------------
------------
sol not unique
------------
------------
FOUND
Core: CNF-formulation
We introduce one variable for every cell of the matrix. N=20 means 400 binary-variables.
Adjancency:
Precalculate all symmetry-reduced conflicts and add conflict-clauses.
Basic theory:
a -> !b
<->
!a v !b (propositional logic)
Row/Col-wise Cardinality:
This is tough to express in CNF and naive approaches need an exponential number
of constraints.
We use some adder-circuit based encoding (SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints) which introduces new auxiliary-variables.
Remark:
sum(var_set) <= k
<->
sum(negated(var_set)) >= len(var_set) - k
These SAT-encodings can be put into exact model-counters (for small N; e.g. < 9). The number of solutions equals Ante's results, which is a strong indication for a correct transformation!
There are also interesting approximate model-counters (also heavily based on xor-constraints) like approxMC which shows one more thing we can do with the SAT-formulation. But in practice i have not been able to use these (approxMC = autoconf; no comment).
Other experiments
I did also build a version using pblib, to use more powerful cardinality-formulations
for the SAT-CNF formulation. I did not try to use the C++-based API, but only the reduced pbencoder, which automatically selects some best encoding, which was way worse than my encoding used above (which is best is still a research-problem; often even redundant-constraints can help).
Empirical analysis
For the sake of obtaining some sample-size (given my patience), i only computed samples for N=15. In this case we used:
N=70 xors
L,U = 4,6
I also computed some samples for N=20 with (100,3,6), but this takes a few mins and we reduced the lower bound!
Visualization
Here some animation (strengthening my love-hate relationship with matplotlib):
Edit: And a (reduced) comparison to brute-force uniform-sampling with N=5 (NXOR,L,U = 4, 10, 30):
(I have not yet decided on the addition of the plotting-code. It's as ugly as the above one and people might look too much into my statistical shambles; normalizations and co.)
Theory
Statistical analysis is probably hard to do as the underlying problem is of such combinatoric nature. It's even not entirely obvious how that final cell-PDF should look like. In the case of N=odd, it's probably non-uniform and looks like a chess-board (i did brute-force check N=5 to observe this).
One thing we can be sure about (imho): symmetry!
Given a cell-PDF matrix, we should expect, that the matrix is symmetric (A = A.T).
This is checked in the visualization and the euclidean-norm of differences over time is plotted.
We can do the same on some other observation: observed pairings.
For N=3, we can observe the following pairs:
0,1
0,2
1,2
Now we can do this per-row and per-column and should expect symmetry too!
Sadly, it's probably not easy to say something about the variance and therefore the needed samples to speak about confidence!
Observation
According to my simplified perception, current-samples and the cell-PDF look good, although convergence is not achieved yet (or we are far away from uniformity).
The more important aspect are probably the two norms, nicely decreasing towards 0.
(yes; one could tune some algorithm for that by transposing with prob=0.5; but this is not done here as it would defeat it's purpose).
Potential next steps
Tune parameters
Check out the approach using #SAT-solvers / Model-counters instead of SAT-solvers
Try different CNF-formulations, especially in regards to cardinality-encodings and xor-encodings
XorSample is by default using tseitin-like encoding to get around exponentially grow
for smaller xors (as used) it might be a good idea to use naive encoding (which propagates faster)
XorSample supports that in theory; but the script's work differently in practice
Cryptominisat is known for dedicated XOR-handling (as it was build for analyzing cryptography including many xors) and might gain something by naive encoding (as inferring xors from blown-up CNFs is much harder)
More statistical-analysis
Get rid of XorSample scripts (shell + perl...)
Summary
The approach is very general
This code produces feasible samples
It should be not hard to prove, that every feasible solution can be sampled
Others have proven theoretical guarantees for uniformity for some params
does not hold for our params
Others have empirically / theoretically analyzed smaller parameters (in use here)
(Updated test results, example run-through and code snippets below.)
You can use dynamic programming to calculate the number of solutions resulting from every state (in a much more efficient way than a brute-force algorithm), and use those (pre-calculated) values to create equiprobable random solutions.
Consider the example of a 7x7 matrix; at the start, the state is:
0,0,0,0,0,0,0
meaning that there are seven adjacent unused columns. After adding two ones to the first row, the state could be e.g.:
0,1,0,0,1,0,0
with two columns that now have a one in them. After adding ones to the second row, the state could be e.g.:
0,1,1,0,1,0,1
After three rows are filled, there is a possibility that a column will have its maximum of two ones; this effectively splits the matrix into two independent zones:
1,1,1,0,2,0,1 -> 1,1,1,0 + 0,1
These zones are independent in the sense that the no-adjacent-ones rule has no effect when adding ones to different zones, and the order of the zones has no effect on the number of solutions.
In order to use these states as signatures for types of solutions, we have to transform them into a canonical notation. First, we have to take into account the fact that columns with only 1 one in them may be unusable in the next row, because they contain a one in the current row. So instead of a binary notation, we have to use a ternary notation, e.g.:
2,1,1,0 + 0,1
where the 2 means that this column was used in the current row (and not that there are 2 ones in the column). At the next step, we should then convert the twos back into ones.
Additionally, we can also mirror the seperate groups to put them into their lexicographically smallest notation:
2,1,1,0 + 0,1 -> 0,1,1,2 + 0,1
Lastly, we sort the seperate groups from small to large, and then lexicographically, so that a state in a larger matrix may be e.g.:
0,0 + 0,1 + 0,0,2 + 0,1,0 + 0,1,0,1
Then, when calculating the number of solutions resulting from each state, we can use memoization using the canonical notation of each state as a key.
Creating a dictionary of the states and the number of solutions for each of them only needs to be done once, and a table for larger matrices can probably be used for smaller matrices too.
Practically, you'd generate a random number between 0 and the total number of solutions, and then for every row, you'd look at the different states you could create from the current state, look at the number of unique solutions each one would generate, and see which option leads to the solution that corresponds with your randomly generated number.
Note that every state and the corresponding key can only occur in a particular row, so you can store the keys in seperate dictionaries per row.
TEST RESULTS
A first test using unoptimized JavaScript gave very promising results. With dynamic programming, calculating the number of solutions for a 10x10 matrix now takes a second, where a brute-force algorithm took several hours (and this is the part of the algorithm that only needs to be done once). The size of the dictionary with the signatures and numbers of solutions grows with a diminishing factor approaching 2.5 for each step in size; the time to generate it grows with a factor of around 3.
These are the number of solutions, states, signatures (total size of the dictionaries), and maximum number of signatures per row (largest dictionary per row) that are created:
size unique solutions states signatures max/row
4x4 2 9 6 2
5x5 16 73 26 8
6x6 722 514 107 40
7x7 33,988 2,870 411 152
8x8 2,215,764 13,485 1,411 596
9x9 179,431,924 56,375 4,510 1,983
10x10 17,849,077,140 218,038 13,453 5,672
11x11 2,138,979,146,276 801,266 38,314 14,491
12x12 304,243,884,374,412 2,847,885 104,764 35,803
13x13 50,702,643,217,809,908 9,901,431 278,561 96,414
14x14 9,789,567,606,147,948,364 33,911,578 723,306 238,359
15x15 2,168,538,331,223,656,364,084 114,897,838 1,845,861 548,409
16x16 546,386,962,452,256,865,969,596 ... 4,952,501 1,444,487
17x17 155,420,047,516,794,379,573,558,433 12,837,870 3,754,040
18x18 48,614,566,676,379,251,956,711,945,475 31,452,747 8,992,972
19x19 17,139,174,923,928,277,182,879,888,254,495 74,818,773 20,929,008
20x20 6,688,262,914,418,168,812,086,412,204,858,650 175,678,000 50,094,203
(Additional results obtained with C++, using a simple 128-bit integer implementation. To count the states, the code had to be run using each state as a seperate signature, which I was unable to do for the largest sizes. )
EXAMPLE
The dictionary for a 5x5 matrix looks like this:
row 0: 00000 -> 16 row 3: 101 -> 0
1112 -> 1
row 1: 20002 -> 2 1121 -> 1
00202 -> 4 1+01 -> 0
02002 -> 2 11+12 -> 2
02020 -> 2 1+121 -> 1
0+1+1 -> 0
row 2: 10212 -> 1 1+112 -> 1
12012 -> 1
12021 -> 2 row 4: 0 -> 0
12102 -> 1 11 -> 0
21012 -> 0 12 -> 0
02121 -> 3 1+1 -> 1
01212 -> 1 1+2 -> 0
The total number of solutions is 16; if we randomly pick a number from 0 to 15, e.g. 13, we can find the corresponding (i.e. the 14th) solution like this:
state: 00000
options: 10100 10010 10001 01010 01001 00101
signature: 00202 02002 20002 02020 02002 00202
solutions: 4 2 2 2 2 4
This tells us that the 14th solution is the 2nd solution of option 00101. The next step is:
state: 00101
options: 10010 01010
signature: 12102 02121
solutions: 1 3
This tells us that the 2nd solution is the 1st solution of option 01010. The next step is:
state: 01111
options: 10100 10001 00101
signature: 11+12 1112 1+01
solutions: 2 1 0
This tells us that the 1st solution is the 1st solution of option 10100. The next step is:
state: 11211
options: 01010 01001
signature: 1+1 1+1
solutions: 1 1
This tells us that the 1st solutions is the 1st solution of option 01010. The last step is:
state: 12221
options: 10001
And the 5x5 matrix corresponding to randomly chosen number 13 is:
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 0 0 1
And here's a quick'n'dirty code example; run the snippet to generate the signature and solution count dictionary, and generate a random 10x10 matrix (it takes a second to generate the dictionary; once that is done, it generates random solutions in half a millisecond):
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
function random_matrix(n, memo) {
var matrix = [], empty = [], state = [], prev = [];
for (var i = 0; i < n; i++) empty[i] = state[i] = prev[i] = 0;
var total = memo[0][signature(empty, empty)];
var pick = Math.floor(Math.random() * total);
document.write("solution " + pick.toLocaleString('en-US') +
" from a total of " + total.toLocaleString('en-US') + "<br>");
for (var row = 1; row <= n; row++) {
var options = find_options(state, prev);
for (var i in options) {
var state_copy = state.slice();
for (var j in state_copy) state_copy[j] += options[i][j];
var sig = signature(state_copy, options[i]);
var solutions = memo[row][sig];
if (pick < solutions) {
matrix.push(options[i].slice());
prev = options[i].slice();
state = state_copy.slice();
break;
}
else pick -= solutions;
}
}
return matrix;
function find_options(state, prev) {
var options = [];
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var option = empty.slice();
++option[i]; ++option[j];
options.push(option);
}
}
return options;
}
}
var size = 10;
var memo = memoize(size);
var matrix = random_matrix(size, memo);
for (var row in matrix) document.write(matrix[row] + "<br>");
The code snippet below shows the dictionary of signatures and solution counts for a matrix of size 10x10. I've used a slightly different signature format from the explanation above: the zones are delimited by a '2' instead of a plus sign, and a column which has a one in the previous row is marked with a '3' instead of a '2'. This shows how the keys could be stored in a file as integers with 2×N bits (padded with 2's).
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
var memo = memoize(10);
for (var i in memo) {
document.write("row " + i + ":<br>");
for (var j in memo[i]) {
document.write(""" + j + "": " + memo[i][j] + "<br>");
}
}
Just few thoughts. Number of matrices satisfying conditions for n <= 10:
3 0
4 2
5 16
6 722
7 33988
8 2215764
9 179431924
10 17849077140
Unfortunatelly there is no sequence with these numbers in OEIS.
There is one similar (A001499), without condition for neighbouring one's. Number of nxn matrices in this case is 'of order' as A001499's number of (n-1)x(n-1) matrices. That is to be expected since number
of ways to fill one row in this case, position 2 one's in n places with at least one zero between them is ((n-1) choose 2). Same as to position 2 one's in (n-1) places without the restriction.
I don't think there is an easy connection between these matrix of order n and A001499 matrix of order n-1, meaning that if we have A001499 matrix than we can construct some of these matrices.
With this, for n=20, number of matrices is >10^30. Quite a lot :-/
This solution use recursion in order to set the cell of the matrix one by one. If the random walk finish with an impossible solution then we rollback one step in the tree and we continue the random walk.
The algorithm is efficient and i think that the generated data are highly equiprobable.
package rndsqmatrix;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class RndSqMatrix {
/**
* Generate a random matrix
* #param size the size of the matrix
* #return the matrix encoded in 1d array i=(x+y*size)
*/
public static int[] generate(final int size) {
return generate(size, new int[size * size], new int[size],
new int[size]);
}
/**
* Build a matrix recursivly with a random walk
* #param size the size of the matrix
* #param matrix the matrix encoded in 1d array i=(x+y*size)
* #param rowSum
* #param colSum
* #return
*/
private static int[] generate(final int size, final int[] matrix,
final int[] rowSum, final int[] colSum) {
// generate list of valid positions
final List<Integer> positions = new ArrayList();
for (int y = 0; y < size; y++) {
if (rowSum[y] < 2) {
for (int x = 0; x < size; x++) {
if (colSum[x] < 2) {
final int p = x + y * size;
if (matrix[p] == 0
&& (x == 0 || matrix[p - 1] == 0)
&& (x == size - 1 || matrix[p + 1] == 0)
&& (y == 0 || matrix[p - size] == 0)
&& (y == size - 1 || matrix[p + size] == 0)) {
positions.add(p);
}
}
}
}
}
// no valid positions ?
if (positions.isEmpty()) {
// if the matrix is incomplete => return null
for (int i = 0; i < size; i++) {
if (rowSum[i] != 2 || colSum[i] != 2) {
return null;
}
}
// the matrix is complete => return it
return matrix;
}
// random walk
Collections.shuffle(positions);
for (int p : positions) {
// set '1' and continue recursivly the exploration
matrix[p] = 1;
rowSum[p / size]++;
colSum[p % size]++;
final int[] solMatrix = generate(size, matrix, rowSum, colSum);
if (solMatrix != null) {
return solMatrix;
}
// rollback
matrix[p] = 0;
rowSum[p / size]--;
colSum[p % size]--;
}
// we can't find a valid matrix from here => return null
return null;
}
public static void printMatrix(final int size, final int[] matrix) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
System.out.print(matrix[x + y * size]);
System.out.print(" ");
}
System.out.println();
}
}
public static void printStatistics(final int size, final int count) {
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
printMatrix(size, sumMatrix);
}
public static void checkAlgorithm() {
final int size = 8;
final int count = 2215764;
final int divisor = 122;
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count/divisor ; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
int total = 0;
for(int i=0; i < sumMatrix.length; i++) {
total += sumMatrix[i];
}
final double factor = (double)total / (count/divisor);
System.out.println("Factor=" + factor + " (theory=16.0)");
}
public static void benchmark(final int size, final int count,
final boolean parallel) {
final long begin = System.currentTimeMillis();
if (!parallel) {
for (int i = 0; i < count; i++) {
generate(size);
}
} else {
IntStream.range(0, count).parallel().forEach(i -> generate(size));
}
final long end = System.currentTimeMillis();
System.out.println("rate="
+ (double) (end - begin) / count + "ms/matrix");
}
public static void main(String[] args) {
checkAlgorithm();
benchmark(8, 10000, true);
//printStatistics(8, 2215764/36);
printStatistics(8, 2215764);
}
}
The output is:
Factor=16.0 (theory=16.0)
rate=0.2835ms/matrix
552969 554643 552895 554632 555680 552753 554567 553389
554071 554847 553441 553315 553425 553883 554485 554061
554272 552633 555130 553699 553604 554298 553864 554028
554118 554299 553565 552986 553786 554473 553530 554771
554474 553604 554473 554231 553617 553556 553581 553992
554960 554572 552861 552732 553782 554039 553921 554661
553578 553253 555721 554235 554107 553676 553776 553182
553086 553677 553442 555698 553527 554850 553804 553444
Here is a very fast approach of generating the matrix row by row, written in Java:
public static void main(String[] args) throws Exception {
int n = 100;
Random rnd = new Random();
byte[] mat = new byte[n*n];
byte[] colCount = new byte[n];
//generate row by row
for (int x = 0; x < n; x++) {
//generate a random first bit
int b1 = rnd.nextInt(n);
while ( (x > 0 && mat[(x-1)*n + b1] == 1) || //not adjacent to the one above
(colCount[b1] == 2) //not in a column which has 2
) b1 = rnd.nextInt(n);
//generate a second bit, not equal to the first one
int b2 = rnd.nextInt(n);
while ( (b2 == b1) || //not the same as bit 1
(x > 0 && mat[(x-1)*n + b2] == 1) || //not adjacent to the one above
(colCount[b2] == 2) || //not in a column which has 2
(b2 == b1 - 1) || //not adjacent to b1
(b2 == b1 + 1)
) b2 = rnd.nextInt(n);
//fill the matrix values and increment column counts
mat[x*n + b1] = 1;
mat[x*n + b2] = 1;
colCount[b1]++;
colCount[b2]++;
}
String arr = Arrays.toString(mat).substring(1, n*n*3 - 1);
System.out.println(arr.replaceAll("(.{" + n*3 + "})", "$1\n"));
}
It essentially generates each a random row at a time. If the row will violate any of the conditions, it is generated again (again randomly). I believe this will satisfy condition 4 as well.
Adding a quick note that it will spin forever for N-s where there is no solutions (like N=3).
Write a program that can display all the possible numbers in between given two numbers, having its digits in ascending order.
For Example:-
Input: 5000 to 6000
Output: 5678 5679 5689 5789
Input: 90 to 124
Output: 123 124
Brute force approach can make it count to all numbers and check of digits for each one of them. But I want approaches that can skip some numbers and can bring complexity lesser than O(n). Do any such solution(s) exists that can give better approach for this problem?
I offer a solution in Python. It is efficient as it considers only the relevant numbers. The basic idea is to count upwards, but handle overflow somewhat differently. While we normally set overflowing digits to 0, here we set them to the previous digit +1. Please check the inline comments for further details. You can play with it here: http://ideone.com/ePvVsQ
def ascending( na, nb ):
assert nb>=na
# split each number into a list of digits
a = list( int(x) for x in str(na))
b = list( int(x) for x in str(nb))
d = len(b) - len(a)
# if both numbers have different length add leading zeros
if d>0:
a = [0]*d + a # add leading zeros
assert len(a) == len(b)
n = len(a)
# check if the initial value has increasing digits as required,
# and fix if necessary
for x in range(d+1, n):
if a[x] <= a[x-1]:
for y in range(x, n):
a[y] = a[y-1] + 1
break
res = [] # result set
while a<=b:
# if we found a value and add it to the result list
# turn the list of digits back into an integer
if max(a) < 10:
res.append( int( ''.join( str(k) for k in a ) ) )
# in order to increase the number we look for the
# least significant digit that can be increased
for x in range( n-1, -1, -1): # count down from n-1 to 0
if a[x] < 10+x-n:
break
# digit x is to be increased
a[x] += 1
# all subsequent digits must be increased accordingly
for y in range( x+1, n ):
a[y] = a[y-1] + 1
return res
print( ascending( 5000, 9000 ) )
Sounds like task from Project Euler. Here is the solution in C++. It is not short, but it is straightforward and effective. Oh, and hey, it uses backtracking.
// Higher order digits at the back
typedef std::vector<int> Digits;
// Extract decimal digits of a number
Digits ExtractDigits(int n)
{
Digits digits;
while (n > 0)
{
digits.push_back(n % 10);
n /= 10;
}
if (digits.empty())
{
digits.push_back(0);
}
return digits;
}
// Main function
void PrintNumsRec(
const Digits& minDigits, // digits of the min value
const Digits& maxDigits, // digits of the max value
Digits& digits, // digits of current value
int pos, // current digits with index greater than pos are already filled
bool minEq, // currently filled digits are the same as of min value
bool maxEq) // currently filled digits are the same as of max value
{
if (pos < 0)
{
// Print current value. Handle leading zeros by yourself, if need
for (auto pDigit = digits.rbegin(); pDigit != digits.rend(); ++pDigit)
{
if (*pDigit >= 0)
{
std::cout << *pDigit;
}
}
std::cout << std::endl;
return;
}
// Compute iteration boundaries for current position
int first = minEq ? minDigits[pos] : 0;
int last = maxEq ? maxDigits[pos] : 9;
// The last filled digit
int prev = digits[pos + 1];
// Make sure generated number has increasing digits
int firstInc = std::max(first, prev + 1);
// Iterate through possible cases for current digit
for (int d = firstInc; d <= last; ++d)
{
digits[pos] = d;
if (d == 0 && prev == -1)
{
// Mark leading zeros with -1
digits[pos] = -1;
}
PrintNumsRec(minDigits, maxDigits, digits, pos - 1, minEq && (d == first), maxEq && (d == last));
}
}
// High-level function
void PrintNums(int min, int max)
{
auto minDigits = ExtractDigits(min);
auto maxDigits = ExtractDigits(max);
// Make digits array of the same size
while (minDigits.size() < maxDigits.size())
{
minDigits.push_back(0);
}
Digits digits(minDigits.size());
int pos = digits.size() - 1;
// Placeholder for leading zero
digits.push_back(-1);
PrintNumsRec(minDigits, maxDigits, digits, pos, true, true);
}
void main()
{
PrintNums(53, 297);
}
It uses recursion to handle arbitrary amount of digits, but it is essentially the same as the nested loops approach. Here is the output for (53, 297):
056
057
058
059
067
068
069
078
079
089
123
124
125
126
127
128
129
134
135
136
137
138
139
145
146
147
148
149
156
157
158
159
167
168
169
178
179
189
234
235
236
237
238
239
245
246
247
248
249
256
257
258
259
267
268
269
278
279
289
Much more interesting problem would be to count all these numbers without explicitly computing it. One would use dynamic programming for that.
There is only a very limited number of numbers which can match your definition (with 9 digits max) and these can be generated very fast. But if you really need speed, just cache the tree or the generated list and do a lookup when you need your result.
using System;
using System.Collections.Generic;
namespace so_ascending_digits
{
class Program
{
class Node
{
int digit;
int value;
List<Node> children;
public Node(int val = 0, int dig = 0)
{
digit = dig;
value = (val * 10) + digit;
children = new List<Node>();
for (int i = digit + 1; i < 10; i++)
{
children.Add(new Node(value, i));
}
}
public void Collect(ref List<int> collection, int min = 0, int max = Int16.MaxValue)
{
if ((value >= min) && (value <= max)) collection.Add(value);
foreach (Node n in children) if (value * 10 < max) n.Collect(ref collection, min, max);
}
}
static void Main(string[] args)
{
Node root = new Node();
List<int> numbers = new List<int>();
root.Collect(ref numbers, 5000, 6000);
numbers.Sort();
Console.WriteLine(String.Join("\n", numbers));
}
}
}
Why the brute force algorithm may be very inefficient.
One efficient way of encoding the input is to provide two numbers: the lower end of the range, a, and the number of values in the range, b-a-1. This can be encoded in O(lg a + lg (b - a)) bits, since the number of bits needed to represent a number in base-2 is roughly equal to the base-2 logarithm of the number. We can simplify this to O(lg b), because intuitively if b - a is small, then a = O(b), and if b - a is large, then b - a = O(b). Either way, the total input size is O(2 lg b) = O(lg b).
Now the brute force algorithm just checks each number from a to b, and outputs the numbers whose digits in base 10 are in increasing order. There are b - a + 1 possible numbers in that range. However, when you represent this in terms of the input size, you find that b - a + 1 = 2lg (b - a + 1) = 2O(lg b) for a large enough interval.
This means that for an input size n = O(lg b), you may need to check in the worst case O(2 n) values.
A better algorithm
Instead of checking every possible number in the interval, you can simply generate the valid numbers directly. Here's a rough overview of how. A number n can be thought of as a sequence of digits n1 ... nk, where k is again roughly log10 n.
For a and a four-digit number b, the iteration would look something like
for w in a1 .. 9:
for x in w+1 .. 9:
for y in x+1 .. 9:
for x in y+1 .. 9:
m = 1000 * w + 100 * x + 10 * y + w
if m < a:
next
if m > b:
exit
output w ++ x ++ y ++ z (++ is just string concatenation)
where a1 can be considered 0 if a has fewer digits than b.
For larger numbers, you can imagine just adding more nested for loops. In general, if b has d digits, you need d = O(lg b) loops, each of which iterates at most 10 times. The running time is thus O(10 lg b) = O(lg b) , which is a far better than the O(2lg b) running time you get by checking if every number is sorted or not.
One other detail that I have glossed over, which actually does affect the running time. As written, the algorithm needs to consider the time it takes to generate m. Without going into the details, you could assume that this adds at worst a factor of O(lg b) to the running time, resulting in an O(lg2 b) algorithm. However, using a little extra space at the top of each for loop to store partial products would save lots of redundant multiplication, allowing us to preserve the originally stated O(lg b) running time.
One way (pseudo-code):
for (digit3 = '5'; digit3 <= '6'; digit3++)
for (digit2 = digit3+1; digit2 <= '9'; digit2++)
for (digit1 = digit2+1; digit1 <= '9'; digit1++)
for (digit0 = digit1+1; digit0 <= '9'; digit0++)
output = digit3 + digit2 + digit1 + digit0; // concatenation
I don't know how to go about this programming problem.
Given two integers n and m, how many numbers exist such that all numbers have all digits from 0 to n-1 and the difference between two adjacent digits is exactly 1 and the number of digits in the number is atmost 'm'.
What is the best way to solve this problem? Is there a direct mathematical formula?
Edit: The number cannot start with 0.
Example:
for n = 3 and m = 6 there are 18 such numbers (210, 2101, 21012, 210121 ... etc)
Update (some people have encountered an ambiguity):
All digits from 0 to n-1 must be present.
This Python code computes the answer in O(nm) by keeping track of the numbers ending with a particular digit.
Different arrays (A,B,C,D) are used to track numbers that have hit the maximum or minimum of the range.
n=3
m=6
A=[1]*n # Number of ways of being at digit i and never being to min or max
B=[0]*n # number of ways with minimum being observed
C=[0]*n # number of ways with maximum being observed
D=[0]*n # number of ways with both being observed
A[0]=0 # Cannot start with 0
A[n-1]=0 # Have seen max so this 1 moves from A to C
C[n-1]=1 # Have seen max if start with highest digit
t=0
for k in range(m-1):
A2=[0]*n
B2=[0]*n
C2=[0]*n
D2=[0]*n
for i in range(1,n-1):
A2[i]=A[i+1]+A[i-1]
B2[i]=B[i+1]+B[i-1]
C2[i]=C[i+1]+C[i-1]
D2[i]=D[i+1]+D[i-1]
B2[0]=A[1]+B[1]
C2[n-1]=A[n-2]+C[n-2]
D2[0]=C[1]+D[1]
D2[n-1]=B[n-2]+D[n-2]
A=A2
B=B2
C=C2
D=D2
x=sum(d for d in D2)
t+=x
print t
After doing some more research, I think there may actually be a mathematical approach after all, although the math is advanced for me. Douglas S. Stones pointed me in the direction of Joseph Myers' (2008) article, BMO 2008–2009 Round 1 Problem 1—Generalisation, which derives formulas for calculating the number of zig-zag paths across a rectangular board.
As I understand it, in Anirudh's example, our board would have 6 rows of length 3 (I believe this would mean n=3 and r=6 in the article's terms). We can visualize our board so:
0 1 2 example zig-zag path: 0
0 1 2 1
0 1 2 0
0 1 2 1
0 1 2 2
0 1 2 1
Since Myers' formula m(n,r) would generate the number for all the zig-zag paths, that is, the number of all 6-digit numbers where all adjacent digits are consecutive and digits are chosen from (0,1,2), we would still need to determine and subtract those that begin with zero and those that do not include all digits.
If I understand correctly, we may do this in the following way for our example, although generalizing the concept to arbitrary m and n may prove more complicated:
Let m(3,6) equal the number of 6-digit numbers where all adjacent digits
are consecutive and digits are chosen from (0,1,2). According to Myers,
m(3,r) is given by formula and also equals OEIS sequence A029744 at
index r+2, so we have
m(3,6) = 16
How many of these numbers start with zero? Myers describes c(n,r) as the
number of zig-zag paths whose colour is that of the square in the top
right corner of the board. In our case, c(3,6) would include the total
for starting-digit 0 as well as starting-digit 2. He gives c(3,2r) as 2^r,
so we have
c(3,6) = 8. For starting-digit 0 only, we divide by two to get 4.
Now we need to obtain only those numbers that include all the digits in
the range, but how? We can do this be subtracting m(n-1,r) from m(n,r).
In our case, we have all the m(2,6) that would include only 0's and 1's,
and all the m(2,6) that would include 1's and 2's. Myers gives
m(2,anything) as 2, so we have
2*m(2,6) = 2*2 = 4
But we must remember that one of the zero-starting numbers is included
in our total for 2*m(2,6), namely 010101. So all together we have
m(3,6) - c(3,6)/2 - 4 + 1
= 16 - 4 - 4 + 1
= 9
To complete our example, we must follow a similar process for m(3,5),
m(3,4) and m(3,3). Since it's late here, I might follow up tomorrow...
One approach could be to program it recursively, calling the function to add as well as subtract from the last digit.
Haskell code:
import Data.List (sort,nub)
f n m = concatMap (combs n) [n..m]
combs n m = concatMap (\x -> combs' 1 [x]) [1..n - 1] where
combs' count result
| count == m = if test then [concatMap show result] else []
| otherwise = combs' (count + 1) (result ++ [r + 1])
++ combs' (count + 1) (result ++ [r - 1])
where r = last result
test = (nub . sort $ result) == [0..n - 1]
Output:
*Main> f 3 6
["210","1210","1012","2101","12101","10121","21210","21012"
,"21010","121210","121012","121010","101212","101210","101012"
,"212101","210121","210101"]
In response to Anirudh Rayabharam's comment, I hope the following code will be more 'pseudocode' like. When the total number of digits reaches m, the function g outputs 1 if the solution has hashed all [0..n-1], and 0 if not. The function f accumulates the results for g for starting digits [1..n-1] and total number of digits [n..m].
Haskell code:
import qualified Data.Set as S
g :: Int -> Int -> Int -> Int -> (S.Set Int, Int) -> Int
g n m digitCount lastDigit (hash,hashCount)
| digitCount == m = if test then 1 else 0
| otherwise =
if lastDigit == 0
then g n m d' (lastDigit + 1) (hash'',hashCount')
else if lastDigit == n - 1
then g n m d' (lastDigit - 1) (hash'',hashCount')
else g n m d' (lastDigit + 1) (hash'',hashCount')
+ g n m d' (lastDigit - 1) (hash'',hashCount')
where test = hashCount' == n
d' = digitCount + 1
hash'' = if test then S.empty else hash'
(hash',hashCount')
| hashCount == n = (S.empty,hashCount)
| S.member lastDigit hash = (hash,hashCount)
| otherwise = (S.insert lastDigit hash,hashCount + 1)
f n m = foldr forEachNumDigits 0 [n..m] where
forEachNumDigits numDigits accumulator =
accumulator + foldr forEachStartingDigit 0 [1..n - 1] where
forEachStartingDigit startingDigit accumulator' =
accumulator' + g n numDigits 1 startingDigit (S.empty,0)
Output:
*Main> f 3 6
18
(0.01 secs, 571980 bytes)
*Main> f 4 20
62784
(1.23 secs, 97795656 bytes)
*Main> f 4 25
762465
(11.73 secs, 1068373268 bytes)
model your problem as 2 superimposed lattices in 2 dimensions, specifically as pairs (i,j) interconnected with oriented edges ((i0,j0),(i1,j1)) where i1 = i0 + 1, |j1 - j0| = 1, modified as follows:
dropping all pairs (i,j) with j > 9 and its incident edges
dropping all pairs (i,j) with i > m-1 and its incident edges
dropping edge ((0,0), (1,1))
this construction results in a structure like in this diagram:
:
the requested numbers map to paths in the lattice starting at one of the green elements ((0,j), j=1..min(n-1,9)) that contain at least one pink and one red element ((i,0), i=1..m-1, (i,n-1), i=0..m-1 ). to see this, identify the i-th digit j of a given number with point (i,j). including pink and red elements ('extremal digits') guarantee that all available diguts are represented in the number.
Analysis
for convenience, let q1, q2 denote the position-1.
let q1 be the position of a number's first digit being either 0 or min(n-1,9).
let q2 be the position of a number's first 0 if the digit at position q1 is min(n-1,9) and vv.
case 1: first extremal digit is 0
the number of valid prefixes containing no 0 can be expressed as sum_{k=1..min(n-1,9)} (paths_to_0(k,1,q1), the function paths_to_0 being recursively defined as
paths_to_0(0,q1-1,q1) = 0;
paths_to_0(1,q1-1,q1) = 1;
paths_to_0(digit,i,q1) = 0; if q1-i < digit;
paths_to_0(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before position q2,
// x > min(n-1,9) not at all
paths_to_0(x,_,_) = 0; if x <= 0;
// x=0 mustn't occur before position q1,
// x < 0 not at all
and else paths_to_0(digit,i,q1) =
paths_to_0(digit+1,i+1,q1) + paths_to_0(digit-1,i+1,q1);
similarly we have
paths_to_max(min(n-1,9),q2-1,q2) = 0;
paths_to_max(min(n-2,8),q2-1,q2) = 1;
paths_to_max(digit,i,q2) = 0 if q2-i < n-1;
paths_to_max(x,_,_) = 0; if x >= min(n-1,9)
// x=min(n-1,9) mustn't occur before
// position q2,
// x > min(n-1,9) not at all
paths_to_max(x,_,_) = 0; if x < 0;
and else paths_to_max(digit,q1,q2) =
paths_max(digit+1,q1+1,q2) + paths_to_max(digit-1,q1+1,q2);
and finally
paths_suffix(digit,length-1,length) = 2; if digit > 0 and digit < min(n-1,9)
paths_suffix(digit,length-1,length) = 1; if digit = 0 or digit = min(n-1,9)
paths_suffix(digit,k,length) = 0; if length > m-1
or length < q2
or k > length
paths_suffix(digit,k,0) = 1; // the empty path
and else paths_suffix(digit,k,length) =
paths_suffix(digit+1,k+1,length) + paths_suffix(digit-1,k+1,length);
... for a grand total of
number_count_case_1(n, m) =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
case 2: first extremal digit is min(n-1,9)
case 2.1: initial digit is not min(n-1,9)
this is symmetrical to case 1 with all digits d replaced by min(n,10) - d. as the lattice structure is symmetrical, this means number_count_case_2_1 = number_count_case_1.
case 2.2: initial digit is min(n-1,9)
note that q1 is 1 and the second digit must be min(n-2,8).
thus
number_count_case_2_2 (n, m) =
sum_{q2=1..m-2, l_suffix=0..m-2-q2} (
paths_to_max(1,1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
so the grand grand total will be
number_count ( n, m ) = 2 * number_count_case_1 (n, m) + number_count_case_2_2 (n, m);
Code
i don't know whether a closed expression for number_count exists, but the following perl code will compute it (the code is but a proof of concept as it does not use memoization techniques to avoid recomputing results already obtained):
use strict;
use warnings;
my ($n, $m) = ( 5, 7 ); # for example
$n = ($n > 10) ? 10 : $n; # cutoff
sub min
sub paths_to_0 ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == 0) && ($at == $until - 1)) { return 0; }
if (($d == 1) && ($at == $until - 1)) { return 1; }
if ($until - $at < $d) { return 0; }
if (($d <= 0) || ($d >= $n))) { return 0; }
return paths_to_0($d+1, $at+1, $until) + paths_to_0($d-1, $at+1, $until);
} # paths_to_0
sub paths_to_max ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d == $n-1) && ($at == $until - 1)) { return 0; }
if (($d == $n-2) && ($at == $until - 1)) { return 1; }
if ($until - $at < $n-1) { return 0; }
if (($d < 0) || ($d >= $n-1)) { return 0; }
return paths_to_max($d+1, $at+1, $until) + paths_to_max($d-1, $at+1, $until);
} # paths_to_max
sub paths_suffix ($$$) {
my (
$d
, $at
, $until
) = #_;
#
if (($d < $n-1) && ($d > 0) && ($at == $until - 1)) { return 2; }
if ((($d == $n-1) && ($d == 0)) && ($at == $until - 1)) { return 1; }
if (($until > $m-1) || ($at > $until)) { return 0; }
if ($until == 0) { return 1; }
return paths_suffix($d+1, $at+1, $until) + paths_suffix($d-1, $at+1, $until);
} # paths_suffix
#
# main
#
number_count =
sum_{first=1..min(n-1,9), q1=1..m-1-(n-1), q2=q1..m-1, l_suffix=0..m-1-q2} (
paths_to_0(first,1,q1)
+ paths_to_max(0,q1,q2)
+ paths_suffix(min(n-1,9),q2,l_suffix+q2)
)
my ($number_count, $number_count_2_2) = (0, 0);
my ($first, $q1, i, $l_suffix);
for ($first = 1; $first <= $n-1; $first++) {
for ($q1 = 1; $q1 <= $m-1 - ($n-1); $q1++) {
for ($q2 = $q1; $q2 <= $m-1; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-1 - $q2; $l_suffix++) {
$number_count =
$number_count
+ paths_to_0($first,1,$q1)
+ paths_to_max(0,$q1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
}
}
#
# case 2.2
#
for ($q2 = 1; $q2 <= $m-2; $q2++) {
for ($l_suffix = 0; $l_suffix <= $m-2 - $q2; $l_suffix++) {
$number_count_2_2 =
$number_count_2_2
+ paths_to_max(1,1,$q2)
+ paths_suffix($n-1,$q2,$l_suffix+$q2)
;
}
}
$number_count = 2 * $number_count + number_count_2_2;
This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):
One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1
Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37
Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99
I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119
I would appreciate it if someone could explain how this relation is derived!
Well, it's not that complicated...
The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.
The function has three cases:
a == 0 -> returns 0. Obviously.
a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.
The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?
Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):
000 (aka. 0)
010 (aka. 2)
100 (aka. 4)
and
001 (aka 1)
011 (aka 3)
101 (aka 5)
Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.
All but the last bits looks like this:
00
01
10
...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)
The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.
So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).
This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.
Cast the array into a series of integers. Then for each integer do:
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
Also this is portable, unlike __builtin_popcount
See here: How to count the number of set bits in a 32-bit integer?
when a is positive, the better explanation was already been posted.
If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.
So, in a better way,
long long solve(int a) {
if (a >= 0){
if (a == 0) return 0;
else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
}else {
a++;
return ((long long)(-a) + 1) * 32 - solve(-a);
}
}
In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.
For example:
bitsum(0) is 0
bitsum(1) is 1
bitsum(2) is 1
bitsum(3) is 4
..etc
10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000 2^i
00000000000000000000000000001001 (2^i)+1
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE
The formula of the bitsum is:
bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )
Note that x - 2^i = x & (2^i)-1
Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:
Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.
The number of zeros in a negative number x is equal to the number of ones in -x - 1.
public class TwosComplement {
//t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
private static long[] t = new long[32];
static {
t[0] = 0;
t[1] = 1;
int p = 2;
for (int i = 2; i < 32; i++) {
t[i] = 2*t[i-1] + p;
p = p << 1;
}
}
//count the bits between x and y inclusive
public static long bitsum(int x, int y) {
if (y > x && x > 0) {
return bitsum(y) - bitsum(x-1);
}
else if (y >= 0 && x == 0) {
return bitsum(y);
}
else if (y == x) {
return Integer.bitCount(y);
}
else if (x < 0 && y == 0) {
return bitsum(x);
} else if (x < 0 && x < y && y < 0 ) {
return bitsum(x) - bitsum(y+1);
} else if (x < 0 && x < y && 0 < y) {
return bitsum(x) + bitsum(y);
}
throw new RuntimeException(x + " " + y);
}
//count the bits between 0 and x
public static long bitsum(int x) {
if (x == 0) return 0;
if (x < 0) {
if (x == -1) {
return 32;
} else {
long y = -(long)x;
return 32 * y - bitsum((int)(y - 1));
}
} else {
int n = x;
int sum = 0; //x & (2^i)-1
int j = 0;
int i = 1; //i = 2^j
int lsb = n & 1; //least significant bit
n = n >>> 1;
while (n != 0) {
sum += lsb * i;
lsb = n & 1;
n = n >>> 1;
i = i << 1;
j++;
}
long tot = t[j] + 1 + sum + bitsum(sum);
return tot;
}
}
}
I know that there is an algorithm that permits, given a combination of number (no repetitions, no order), calculates the index of the lexicographic order.
It would be very useful for my application to speedup things...
For example:
combination(10, 5)
1 - 1 2 3 4 5
2 - 1 2 3 4 6
3 - 1 2 3 4 7
....
251 - 5 7 8 9 10
252 - 6 7 8 9 10
I need that the algorithm returns the index of the given combination.
es: index( 2, 5, 7, 8, 10 ) --> index
EDIT: actually I'm using a java application that generates all combinations C(53, 5) and inserts them into a TreeMap.
My idea is to create an array that contains all combinations (and related data) that I can index with this algorithm.
Everything is to speedup combination searching.
However I tried some (not all) of your solutions and the algorithms that you proposed are slower that a get() from TreeMap.
If it helps: my needs are for a combination of 5 from 53 starting from 0 to 52.
Thank you again to all :-)
Here is a snippet that will do the work.
#include <iostream>
int main()
{
const int n = 10;
const int k = 5;
int combination[k] = {2, 5, 7, 8, 10};
int index = 0;
int j = 0;
for (int i = 0; i != k; ++i)
{
for (++j; j != combination[i]; ++j)
{
index += c(n - j, k - i - 1);
}
}
std::cout << index + 1 << std::endl;
return 0;
}
It assumes you have a function
int c(int n, int k);
that will return the number of combinations of choosing k elements out of n elements.
The loop calculates the number of combinations preceding the given combination.
By adding one at the end we get the actual index.
For the given combination there are
c(9, 4) = 126 combinations containing 1 and hence preceding it in lexicographic order.
Of the combinations containing 2 as the smallest number there are
c(7, 3) = 35 combinations having 3 as the second smallest number
c(6, 3) = 20 combinations having 4 as the second smallest number
All of these are preceding the given combination.
Of the combinations containing 2 and 5 as the two smallest numbers there are
c(4, 2) = 6 combinations having 6 as the third smallest number.
All of these are preceding the given combination.
Etc.
If you put a print statement in the inner loop you will get the numbers
126, 35, 20, 6, 1.
Hope that explains the code.
Convert your number selections to a factorial base number. This number will be the index you want. Technically this calculates the lexicographical index of all permutations, but if you only give it combinations, the indexes will still be well ordered, just with some large gaps for all the permutations that come in between each combination.
Edit: pseudocode removed, it was incorrect, but the method above should work. Too tired to come up with correct pseudocode at the moment.
Edit 2: Here's an example. Say we were choosing a combination of 5 elements from a set of 10 elements, like in your example above. If the combination was 2 3 4 6 8, you would get the related factorial base number like so:
Take the unselected elements and count how many you have to pass by to get to the one you are selecting.
1 2 3 4 5 6 7 8 9 10
2 -> 1
1 3 4 5 6 7 8 9 10
3 -> 1
1 4 5 6 7 8 9 10
4 -> 1
1 5 6 7 8 9 10
6 -> 2
1 5 7 8 9 10
8 -> 3
So the index in factorial base is 1112300000
In decimal base, it's
1*9! + 1*8! + 1*7! + 2*6! + 3*5! = 410040
This is Algorithm 2.7 kSubsetLexRank on page 44 of Combinatorial Algorithms by Kreher and Stinson.
r = 0
t[0] = 0
for i from 1 to k
if t[i - 1] + 1 <= t[i] - 1
for j from t[i - 1] to t[i] - 1
r = r + choose(n - j, k - i)
return r
The array t holds your values, for example [5 7 8 9 10]. The function choose(n, k) calculates the number "n choose k". The result value r will be the index, 251 for the example. Other inputs are n and k, for the example they would be 10 and 5.
zero-base,
# v: array of length k consisting of numbers between 0 and n-1 (ascending)
def index_of_combination(n,k,v):
idx = 0
for p in range(k-1):
if p == 0: arrg = range(1,v[p]+1)
else: arrg = range(v[p-1]+2, v[p]+1)
for a in arrg:
idx += combi[n-a, k-1-p]
idx += v[k-1] - v[k-2] - 1
return idx
Null Set has the right approach. The index corresponds to the factorial-base number of the sequence. You build a factorial-base number just like any other base number, except that the base decreases for each digit.
Now, the value of each digit in the factorial-base number is the number of elements less than it that have not yet been used. So, for combination(10, 5):
(1 2 3 4 5) == 0*9!/5! + 0*8!/5! + 0*7!/5! + 0*6!/5! + 0*5!/5!
== 0*3024 + 0*336 + 0*42 + 0*6 + 0*1
== 0
(10 9 8 7 6) == 9*3024 + 8*336 + 7*42 + 6*6 + 5*1
== 30239
It should be pretty easy to calculate the index incrementally.
If you have a set of positive integers 0<=x_1 < x_2< ... < x_k , then you could use something called the squashed order:
I = sum(j=1..k) Choose(x_j,j)
The beauty of the squashed order is that it works independent of the largest value in the parent set.
The squashed order is not the order you are looking for, but it is related.
To use the squashed order to get the lexicographic order in the set of k-subsets of {1,...,n) is by taking
1 <= x1 < ... < x_k <=n
compute
0 <= n-x_k < n-x_(k-1) ... < n-x_1
Then compute the squashed order index of (n-x_k,...,n-k_1)
Then subtract the squashed order index from Choose(n,k) to get your result, which is the lexicographic index.
If you have relatively small values of n and k, you can cache all the values Choose(a,b) with a
See Anderson, Combinatorics on Finite Sets, pp 112-119
I needed also the same for a project of mine and the fastest solution I found was (Python):
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def index(comb,n,k):
r=nCr(n,k)
for i in range(k):
if n-comb[i]<k-i:continue
r=r-nCr(n-comb[i],k-i)
return r
My input "comb" contained elements in increasing order You can test the code with for example:
import itertools
k=3
t=[1,2,3,4,5]
for x in itertools.combinations(t, k):
print x,index(x,len(t),k)
It is not hard to prove that if comb=(a1,a2,a3...,ak) (in increasing order) then:
index=[nCk-(n-a1+1)Ck] + [(n-a1)C(k-1)-(n-a2+1)C(k-1)] + ... =
nCk -(n-a1)Ck -(n-a2)C(k-1) - .... -(n-ak)C1
There's another way to do all this. You could generate all possible combinations and write them into a binary file where each comb is represented by it's index starting from zero. Then, when you need to find an index, and the combination is given, you apply a binary search on the file. Here's the function. It's written in VB.NET 2010 for my lotto program, it works with Israel lottery system so there's a bonus (7th) number; just ignore it.
Public Function Comb2Index( _
ByVal gAr() As Byte) As UInt32
Dim mxPntr As UInt32 = WHL.AMT.WHL_SYS_00 '(16.273.488)
Dim mdPntr As UInt32 = mxPntr \ 2
Dim eqCntr As Byte
Dim rdAr() As Byte
modBinary.OpenFile(WHL.WHL_SYS_00, _
FileMode.Open, FileAccess.Read)
Do
modBinary.ReadBlock(mdPntr, rdAr)
RP: If eqCntr = 7 Then GoTo EX
If gAr(eqCntr) = rdAr(eqCntr) Then
eqCntr += 1
GoTo RP
ElseIf gAr(eqCntr) < rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mxPntr = mdPntr
mdPntr \= 2
ElseIf gAr(eqCntr) > rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mdPntr += (mxPntr - mdPntr) \ 2
End If
Loop Until eqCntr = 7
EX: modBinary.CloseFile()
Return mdPntr
End Function
P.S. It takes 5 to 10 mins to generate 16 million combs on a Core 2 Duo. To find the index using binary search on file takes 397 milliseconds on a SATA drive.
Assuming the maximum setSize is not too large, you can simply generate a lookup table, where the inputs are encoded this way:
int index(a,b,c,...)
{
int key = 0;
key |= 1<<a;
key |= 1<<b;
key |= 1<<c;
//repeat for all arguments
return Lookup[key];
}
To generate the lookup table, look at this "banker's order" algorithm. Generate all the combinations, and also store the base index for each nItems. (For the example on p6, this would be [0,1,5,11,15]). Note that by you storing the answers in the opposite order from the example (LSBs set first) you will only need one table, sized for the largest possible set.
Populate the lookup table by walking through the combinations doing Lookup[combination[i]]=i-baseIdx[nItems]
EDIT: Never mind. This is completely wrong.
Let your combination be (a1, a2, ..., ak-1, ak) where a1 < a2 < ... < ak. Let choose(a,b) = a!/(b!*(a-b)!) if a >= b and 0 otherwise. Then, the index you are looking for is
choose(ak-1, k) + choose(ak-1-1, k-1) + choose(ak-2-1, k-2) + ... + choose (a2-1, 2) + choose (a1-1, 1) + 1
The first term counts the number of k-element combinations such that the largest element is less than ak. The second term counts the number of (k-1)-element combinations such that the largest element is less than ak-1. And, so on.
Notice that the size of the universe of elements to be chosen from (10 in your example) does not play a role in the computation of the index. Can you see why?
Sample solution:
class Program
{
static void Main(string[] args)
{
// The input
var n = 5;
var t = new[] { 2, 4, 5 };
// Helping transformations
ComputeDistances(t);
CorrectDistances(t);
// The algorithm
var r = CalculateRank(t, n);
Console.WriteLine("n = 5");
Console.WriteLine("t = {2, 4, 5}");
Console.WriteLine("r = {0}", r);
Console.ReadKey();
}
static void ComputeDistances(int[] t)
{
var k = t.Length;
while (--k >= 0)
t[k] -= (k + 1);
}
static void CorrectDistances(int[] t)
{
var k = t.Length;
while (--k > 0)
t[k] -= t[k - 1];
}
static int CalculateRank(int[] t, int n)
{
int k = t.Length - 1, r = 0;
for (var i = 0; i < t.Length; i++)
{
if (t[i] == 0)
{
n--;
k--;
continue;
}
for (var j = 0; j < t[i]; j++)
{
n--;
r += CalculateBinomialCoefficient(n, k);
}
n--;
k--;
}
return r;
}
static int CalculateBinomialCoefficient(int n, int k)
{
int i, l = 1, m, x, y;
if (n - k < k)
{
x = k;
y = n - k;
}
else
{
x = n - k;
y = k;
}
for (i = x + 1; i <= n; i++)
l *= i;
m = CalculateFactorial(y);
return l/m;
}
static int CalculateFactorial(int n)
{
int i, w = 1;
for (i = 1; i <= n; i++)
w *= i;
return w;
}
}
The idea behind the scenes is to associate a k-subset with an operation of drawing k-elements from the n-size set. It is a combination, so the overall count of possible items will be (n k). It is a clue that we could seek the solution in Pascal Triangle. After a while of comparing manually written examples with the appropriate numbers from the Pascal Triangle, we will find the pattern and hence the algorithm.
I used user515430's answer and converted to python3. Also this supports non-continuous values so you could pass in [1,3,5,7,9] as your pool instead of range(1,11)
from itertools import combinations
from scipy.special import comb
from pandas import Index
debugcombinations = False
class IndexedCombination:
def __init__(self, _setsize, _poolvalues):
self.setsize = _setsize
self.poolvals = Index(_poolvalues)
self.poolsize = len(self.poolvals)
self.totalcombinations = 1
fast_k = min(self.setsize, self.poolsize - self.setsize)
for i in range(1, fast_k + 1):
self.totalcombinations = self.totalcombinations * (self.poolsize - fast_k + i) // i
#fill the nCr cache
self.choose_cache = {}
n = self.poolsize
k = self.setsize
for i in range(k + 1):
for j in range(n + 1):
if n - j >= k - i:
self.choose_cache[n - j,k - i] = comb(n - j,k - i, exact=True)
if debugcombinations:
print('testnth = ' + str(self.testnth()))
def get_nth_combination(self,index):
n = self.poolsize
r = self.setsize
c = self.totalcombinations
#if index < 0 or index >= c:
# raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(self.poolvals[-1 - n])
return tuple(result)
def get_n_from_combination(self,someset):
n = self.poolsize
k = self.setsize
index = 0
j = 0
for i in range(k):
setidx = self.poolvals.get_loc(someset[i])
for j in range(j + 1, setidx + 1):
index += self.choose_cache[n - j, k - i - 1]
j += 1
return index
#just used to test whether nth_combination from the internet actually works
def testnth(self):
n = 0
_setsize = self.setsize
mainset = self.poolvals
for someset in combinations(mainset, _setsize):
nthset = self.get_nth_combination(n)
n2 = self.get_n_from_combination(nthset)
if debugcombinations:
print(str(n) + ': ' + str(someset) + ' vs ' + str(n2) + ': ' + str(nthset))
if n != n2:
return False
for x in range(_setsize):
if someset[x] != nthset[x]:
return False
n += 1
return True
setcombination = IndexedCombination(5, list(range(1,10+1)))
print( str(setcombination.get_n_from_combination([2,5,7,8,10])))
returns 188