What is the difference between FS0 and BLK0 in UEFI shell mappings? - shell

I think FS stands for filesystem, but I don't know what BLK stands for. Not only that, but what are the meanings behind the pci hierarchy parameters. i.e. When I see HD(1,MBR,0x0003B) what does "1","MBR", and what looks to be an address, stand for?
Here's the mapping table I'm looking at in UEFI shell:
Mapping table
FS0: Alias(s):HD21a0e0b:;BLK1:
PciRoot(0x0)/Pci(0x1D,0x0)/USB(0x0,0x0)/USB(0x4,0x0)/HD(1,MBR,0x0003B)
FS1: Alias(s):HD23a0a1:;BLK4:
PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x0,0x0,0x0)/HD(1,MBR,0x00000000,0x3F)
BLK3: Alias(s):
PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x0,0x0,0x0)
BLK0: Alias(s):
PciRoot(0x0)/Pci(0x1D,0x0)/USB(0x0,0x0)/USB(0x4,0x0)
BLK2: Alias(s):
PciRoot(0x0)/Pci(0x1D,0x0)/USB(0x0,0x0)/USB(0x4,0x0)/HD(2,MBR,0x0003B)
I'm guessing BLK's are available ports and FS's are physical things that are plugged into those ports. It looks like once somethign is plugged into a BLK, it becomes an FS, but still retains its BLK value. i.g. FS0=BLK1

According to archwiki:
fsX means filesystem
blkX means block device or data storage device
MBR should mean Master Boot Record
HD should mean Hard Drive
1 might mean Primary, 2 Secondary Partition
That hex number after MBR could be the device signature or disk identifier. Or maybe an offset of that device to important information.
Links that might help further:
RHEL 5 Installation Guide EFI Shell Guide
Red Hat 7.1 Itanium EFI Shell Guide
HP Knowledge Base: "UEFI Shell 'fs' devices gone after restore from image backup"
OpenVMS: Firmware upgrades from a USB stick (on UEFI)
SourceForge EFI Shell Development Documentation

Related

How to find out physical slot number of a PCI(E) device with system calls?

I'd like to find a way to figure out physical slot of a PCI-E device from the bus address. I would like to use to modify a driver/kernel module, so it would enumerate the devices (with the same ID) and disambiguate the device files according to physical slot. Like /dev/device_physslot . The driver will run on Ubuntu 18
lspci is capable to show physical slot number in the verbose presentation
However, as I found out, it accomplishes it over sysfs, which cannot be accessed from kernel module.
So I need to do it somehow with system calls.
Or perhaps it is possible to figure out, where sysfs gets /sys/bus/pci/slots/slot_num/address property?

What happens when we press a key on Windows?

First of all, I would say to you that I write this question from nothing because I have attempt to find good documentation but nothing stand out...
What happens when we squeeze a key?
I think this is complex but I hope you can help me.
What I search to know : all (but especially the program start on the host machine and how the key electric signal is encoded and send...)
The eXtensible Host Controller (xHC) has a Periodic Transfer Ring. Windows programs this ring to trigger a transfer every time an interval in milliseconds has passed. The right interval is specified in the USB descriptor returned by the USB device. When the transfer occurs, the xHC puts a Transfer Event TRB on the event ring and triggers an MSI-X interrupt which bypasses the IOAPIC as some kind of inter-processor interrupt. If Windows detects some change in the keys pressed, it will send a message to the application which currently has focus (calling the window's procedure) with the key pressed in one of the argument.
I don't know about electrical signals but I know the eXtensible Host Controller is the USB controller responsible to interact with USB on modern Windows systems. Since Windows nowadays requires an x64 processor, the xHC must be present on your motherboard. The xHC is a PCI-Express device which is compliant with the PCI-Express specification.
To find an xHC, you:
Find the RSDP ACPI table in RAM;
This table will be found by the UEFI firmware which acts as some kind of small operating-system (OS) during boot of the computer. Then, the OS developers will write a small UEFI application named bootx64.efi that they will place on a FAT32 partition on the hard-disk. They will place this app in the /boot/efi directory. The UEFI firmware will directly launch that application on boot of the computer which allows to have an OS which doesn't require user input to be launched (similarly to how it used to work with the legacy BIOS fetching the first sector of the hard-disk and executing the instructions found there).
The UEFI application is compiled in practice with either EDK2 or gnu-efi. These compilers are aware of the UEFI environment and specification. They thus compile the code to system calls that are present during boot and available for the UEFI application written by the OS developers. The System Tables (often the ACPI tables) are given as an argument to the "main" function (often called UefiMain) called by the UEFI firmware in the UEFI application. The code of the application can thus simply use these arguments to find the RSDP table and pass it to the OS.
Find the MCFG ACPI table using the RSDP;
The chain of table is RSDP -> XSDT -> MCFG. Once the OS found the MCFG, this table specifies the base address of the PCI configuration space. To interact with PCI devices you use memory mapped IO (MMIO). You write to some position in RAM and it will instead write to the registers of the PCI devices. The MCFG thus specifies the base address at which you will start finding MMIO registers for the different PCI devices that are plugged into the computer.
Iterate on the PCI devices and look at their IDs until you find an xHC.
To iterate on the PCI devices, the PCI convention specifies a formula which is the following:
UINT64 physical_address = base_address + ((bus - first_bus) << 20 | device << 15 | function << 12);
The base_address is for a specific segment group. Each segment group can have 256 buses (suitable for large servers or large computers with lots of components). There can be up to 65536 segment groups and each can have up to 256 PCI buses. Each PCI bus can have up to 32 devices plugged onto it and each device can have up to 8 functions. Each function can also be a PCI bridge. This is quite straightforward to understand because the terminology is clear. The bus here is an actual serial bus that the PCI devices (like a network card, a graphics card, an xHC, an AHCI, etc.) use to communicate with RAM. The function is a functionality of the PCI device like controlling USB devices, hard-disks, HDMI screens (for graphics cards), etc. The PCI bridge bridges a PCI bus to another PCI bus. It means you can have almost an infinite amount of devices with the PCI specification because the bridges allow to extend the tree of devices by adding other PCI host controllers.
Meanwhile, the bus is simply a number between 0 and 255. The first bus is specified in the MCFG ACPI table for a specific segment group. The device is a number between 0 and 31 and the function is a number between 0 and 7. This formula returns a physical address which points to a conventional configuration space (it is the same for all functions) which has specific registers. These registers are used to determine what is the type of device and to load a proper driver for it. Each function of each device thus gets a configuration space.
For the xHC, there will be only one function and the IDs returned by its configuration space will be 0x0C for the class ID and 0x03 for the subclass ID (https://wiki.osdev.org/EXtensible_Host_Controller_Interface).
Once you found an xHC, it gets rather complex. You need to initialize it and get the USB devices which are plugged in the computer at the current moment. You need to take several steps to get the xHC operational. For this part, I'll leave you to read the xHCI specification which (on chapter 4) specifies exactly the steps which need to be taken (https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf).
For the keyboard portion I'll leave you to read one of my answer on the stackexchange for computer science: https://cs.stackexchange.com/questions/141870/when-are-a-controllers-registers-loaded-and-ready-to-inform-an-i-o-operation/141918#141918.
Some good links:
https://wiki.osdev.org/Universal_Serial_Bus
https://wiki.osdev.org/PCI

What is the meaning of se_*** prefix in LIO SCSI Target code base

LIO code base is scattered w/ a lot of constructs prefixed w/ se (e.g. se_cmd, se_session etc.)
What is the meaning of this se prefix ? (I've failed to find some comment about it in LIO kernel code base)
It came from "Storage Engine" term which is used widely in LIO.
In addition to modularizing the transport protocol used for carrying
SCSI commands ("fabrics"), the Linux kernel target, LIO, also
modularizes the actual data storage as well. These are referred to as
"backstores" or "storage engines". The target comes with backstores
that allow a file, a block device, RAM, or another SCSI device to be used
for the local storage needed for the exported SCSI LUN. Like the rest
of LIO, these are implemented entirely as kernel code.

How to identify PC (motherboard) in win32 api? [duplicate]

How to uniquely identify computer (mainboard) using C#(.Net/Mono, local application)?
Edition. We can identify mainboard in .Net using something like this (see Get Unique System Identifiers in C#):
using System.Management;
...
ManagementObjectSearcher searcher = new ManagementObjectSearcher("select * from Win32_MotherboardDevice");
...
But unfortunately Mono does not support System.Management. How to do it under Mono for Linux? - I don't know :(
Write a function that takes a few unique hardware parameters as input and generates a hash out of them.
For example, Windows activation looks at the following hardware characteristics:
Display Adapter
SCSI Adapter
IDE Adapter (effectively the motherboard)
Network Adapter (NIC) and its MAC Address
RAM Amount Range (i.e., 0-64mb, 64-128mb, etc.)
Processor Type
Processor Serial Number
Hard Drive Device
Hard Drive Volume Serial Number (VSN)
CD-ROM / CD-RW / DVD-ROM
You can pick up a few of them to generate your unique computer identifier.
Please see: Get Unique System Identifiers in C#
You realistically have MotherboardID, CPUID, Disk Serial and MAC address, from experience none of them are 100%.
Our stats show
Disk serial Is missing 0.1 %
MAC Is missing 1.3 %
Motherboard ID Is missing 30 %
CPUID Is missing 99 %
0.04% of machines tested yielded no information, we couldn't even read the computer name. It maybe that these were some kind of virtual PC, HyperV or VMWare instance, or maybe just very locked down? In any case your design has to be able to cope with these cases.
Disk serial is the most reliable, but easy to change, mac can be changed and depending on the filtering applied when reading it can change if device drivers are added (hyperv, wireshark etc).
Motherboard and CPUID sometimes return values that are invalid "NONE", "AAAA..", "XXXX..." etc.
You should also note that these functions can be very slow to call (they may take a few seconds even on a fast PC), so it may be worth kicking them off on a background thread as early as possible, you ideally don't want to be blocking on them.
Try this:
http://carso-owen.blogspot.com/2007/02/how-to-get-my-motherboard-serial-number.html
Personally though, I'd go with hard drive serial number. If a mainboard dies and is replaced, that PC isn't valid any more. If the HDD drive is replaced, it doesn't matter too much because the software was on it.
Of course, on the other hand, if the HDD is just moved elsewhere, the information goes with it, so you might want to look at a combination of serial numbers, depending what you want it for.
How about the MAC address of the network card?

How can I shrink the OS region in RAM through U-boot?

From my understanding, after a PC/embedded system booted up, the OS will occupy the entire RAM region, the RAM will look like this:
Which means, while I'm running a program I write, all the variables, dynamic memory allocated in the stacks, heaps and etc, will remain inside the region. If I run firefox, paint, gedit, etc, they will also be running in this region. (Is this understanding correct?)
However, I would like to shrink the OS region. Below is an illustration of how I want to divide the RAM:
The reason that I want to do this is because, I want to store some data receive externally through the driver into the Custom Region at fixed physical location, then I will be able to access it directly from the user space without using copy_to_user().
I think it is possible to do that by configuring u-boot, but I have no experience in u-boot, can anyone give me some directions where to begin with, such as: do I need to modify the source of u-boot, or changing the environment variables of u-boot will be sufficient?
Or is there any alternative method of doing this?
Any help is much appreciated. Thanks!
p/s: I'm using TI ARM processor, and booting up from an SD card, I'm not sure if it matters.
The platform is ARM. min_addr and max_addr will not work on these platform since these are for Intel-only implementations.
For the ARM platform try to look at "mem=size#start" kernel parameter. Read up on Documentation/kernel-parameters.txt and arch/arm/kernel/setup.c. This option is available on most new Linux code base (ie. 2.6.XX).
You need to set the following parameters:
max_addr=some_max_physical
min_addr=some_min_physical
to be passed to the kernel through uboot in the 'bootargs' u-boot environment variable.
I found myself trying to do the opposite recently - in other words get Linux to use the additional memory in my system - although I'm using Barebox rather than u-boot on a OMAP4 platform.
I found (a bit to my surprise) that once the Barebox MLO first stage boot-loader was aware of the extra RAM, the kernel then detected and used it as well without any bootargs. Since the memory size is not passed anywhere on the boot-line, I can only assume the kernel inspects the memory mappings set up by the boot-loader to determine RAM size. This suggests that modifying your u-boot to not map all of the RAM is the way to go.
On the subject of boot-args, there was a time when you it was recommended that you mapped out a chunk of RAM (used by the frame buffer?) on OMAP4 systems, using the boot-line. It's still unclear whether this is still necessary.

Resources