Realistic Data Backup method for Parse.com - parse-platform

We are building an iOS app with Parse.com, but still can't figure out the right way to backup data efficiently.
As a premise, we have and will have a LOT of data store rows.
Say we have a class with 1million rows, assume we have it backed up, then want to bring it back to Parse, after a hazardous situation (like data loss on production).
The few solutions we have considered are the following:
1) Use external server for backup
BackUp:
- use the REST API to constantly back up data to a remote MySQL server (we chose MySQL for customized analytics purpose, since it's way faster and easier to handle data with MySQL for us)
ImportBack:
a) - recreate JSON objects from MySQL backup and use the REST API to send back to Parse.
Say we use the batch operation which permits 50 simultaneous objects to be created with 1 query, and assume it takes 1 sec for every query, 1million data sets will take 5.5hours to transfer to Parse.
b) - recreate one JSON file from MySQL backup and use the Dashboard to import data manually.
We just tried with 700,000 records file with this method: it took about 2 hours for the loading indicator to stop and show the number of rows in the left pane, but now it never opens in the right pane (it says "operation time out") and it's over 6hours since the upload started.
So we can't rely on 1.b, and 1.a seems to take too long to recover from a disaster (if we have 10 million records, it'll be like 55 hours = 2.2 days).
Now we are thinking about the following:
2) Constantly replicate data to another app
Create the following in Parse:
- Production App: A
- Replication App: B
So while A is in production, every single query will be duplicated to B (using background job constantly).
The downside is of course that it'll eat up the burst limit of A as it'll simply double the amount of query. So not ideal thinking of scaling up.
What we want is something like AWS RDS which gives an option to automatically backup daily.
I wonder how this could be difficult for Parse since it's based on AWS infra.
Please let me know if you have any idea on this, will be happy to share know-hows.
P.S.:
We’ve noticed an important flaw in the above 2) idea.
If we replicate using REST API, all the objectIds of all Classes will be changed, so every 1to1 or 1toMany relations will be broken.
So we think about putting a uuid for every object class.
Is there any problem about this method?
One thing we want to achieve is
query.include(“ObjectName”)
( or in Obj-C “includeKey”),
but I suppose that won’t be possible if we don’t base our app logic on objectId.
Looking for a work around for this issue;
but will uuid-based management be functional under Parse’s Datastore logic?

Parse has never lost production data. While we don't currently offer automated backups, you can request one any time you like, and we're working on making all of this even nicer. Additionally, it's easier in most cases to import the JSON export file through the data browser rather than using the REST batch.

I can confirm that today, Parse did lost my data. Or at least it appeared to be so.
After several errors where detected on multiple apps (agreed by Parse Status twitter account), we could not retrieve data for an app, without any error.
It was because an entire column of one of our class (type pointer) disappeared and data was not present anymore in the dashboard.
We are using this pointer column to filter / retrieve data, so the returned queries and collections were empty.
So we decided to recreate the column manually. By chance, recreating the column, with the same name and type, solved the issue and the data was still there... I can't explain it but I really thought, and the app reacted as if, data were lost.
So an automated backup and restore option is mandatory, it is not an option.

On December 2015 parse.com released a new dashboard with an improved export feature.
Just select your app, click on "App Settings" -> "General" -> "Export app data". Parse generates a json-file for every class in your app and sends an email to you, if the export-progress is done.
UPDATE:
Sad but true, parse.com is winding down: http://blog.parse.com/announcements/moving-on/

I had the same issue of backing up parse server data. As parse server is using mongodb that is why backing up data is not an issue I have just done a simple thing. downloaded the mongodb backup from the server. And then restored it using
mongorestore /path-to-mongodump (extracted files)
As parse has been turned to open source.Therefore we can adopt this technique.

For accidental deletes, writing a cloud function 'beforedelete' to backup the current row to another class would work.
For regular backups, manual export of changed records (use filter) will be useful. For recovery this requires you to write scripts / use import option (not so sure) in data browser. You could also write a cloud function replicate data on your backup server (haven't tried this yet).
However there are some limitations to cloud code that you should consider before venturing into it:
https://parse.com/docs/cloud_code_guide#functions-resource

Related

Data integration for Magento to Quick Book

I'm currently new to Talend and I'm learning through videos and documentation, so I'm just not sure how to approach/implement this with best practices.
Goal
Integrate Magento and Quick Book using Talend.
My thoughts
Initially my first thought was I will setup direct DB connection for Magento and will take relevant data which I need and will process it and will send to QuickBook using REST API's(specifically bulk API's in batch)
But then again I thought it would be little hectic for me to query Magento database(multiple joins) so I've another option to use Magento's REST API.
But as I'm not much familiar with the tool I'm struggling little to find best suitable approach, so any help is appreciated.
What I've done till now?
I've saved my auth(for QB) and db(Magento) credentials data in file and using tFileInputDelimited and tContextLoad, I'm storing them in context variables so they can be accessible globally.
I've successfully configured database connection and dbinput but I've not used metadata for connection(should I use that and if Yes how can I pass dynamic values there?). I've used my context variables data in db connection settings.
I've taken relevant fields for now but if I want multiple fields simple query is not enough as Magento stores data in multiple tables for Customer etc but it's not big deal I know but I think it might increase my work.
For now that's what I've built and my next step is send the data to QB using REST while getting access_token and saving it to context variable and again storing the QB reference into Magento DB.
Also I've decided to use QB bulk API's but I'm not sure how I can process data in chunks in Talend(I tried to check multiple resources but no luck) i.e. if the Magento is returning 500 rows I want to process them in chunks of 30 as QB batch max limit is 30, so I will be sending it using REST to QB and as I said I also want to store back QB reference ID in magento(so I can update it later).
Also this all will be on local, then how can I do same in production? how I can maintain development and production environment?
Resources I'm referring
For REST and Auth best practices - https://community.talend.com/t5/How-Tos-and-Best-Practices/Using-OAuth-2-0-with-Talend-to-Access-Goo...
Nice example for batch processing here:
https://community.talend.com/t5/Design-and-Development/Batch-processing-in-talend-job/td-p/51952
Redirect your input to a tFileOutputDelimited.
Enter the output filename, tick the option "Split output in several files" from the "Advanced settings" and enter the value of 1000 into the field "Rows in each output file". This will create n files based on the filename with 1000 in each.
On the next subjob, use a tFileList to iterate over this file list to get records from each file.

Example micoservice app with CQRS and Event Sourcing

I'm planning to create a simple microservice app (set and get appointments) with CQRS and Event Sourcing but I'm not sure if I'm getting everything correctly. Here's the plan:
docker container: public delivery app with REST endpoints for getting and settings appointments. The endpoints for settings data are triggering a RabbitMQ event (async), the endpoint for getting data are calling the command service (sync).
docker container: for the command service with connection to a SQL database for setting (and editing) appointments. It's listening to the RabbidMQ event of the main app. A change doesn't overwrite the data but creates a new entry with a new version. When data has changed it also fires an event to sync the new data to the query service.
docker container: the SQL database for the command service.
docker container: the query service with connection to a MongoDB. It's listening for changes in the command service to update its database. It's possible for the main app to call for data but not with REST but with ??
docker container: an event sourcing service to listen to all commands and storing them in a MongoDB.
docker container: the event MongoDB.
Here are a couple of questions I don't get:
let's say there is one appointment in the command database and it already got synced to the query service. Now there is a call for changing the title of this appointment. So the command service is not performing an UPDATE but an INSERT with the same id but a new version number. What is it doing afterwards? Reading the new data from the SQL and triggering an event with it? The query service is listening and storing the same data in its MongoDB? Is it overwriting the old data or also creating a new entry with a version? That seems to be quite redundant? Do I in fact really need the SQL database here?
how can the main app call for data from the query service if one don't want to uses REST?
Because it stores all commands in the event DB (6. docker container) it is possible to restore every state by running all commands again in order. Is that "event sourcing"? Or is it "event sourcing" to not change the data in the SQL but creating a new version for each change? I'm confused what exactely event sourcing is and where to apply it. Do I really need the 5. (and 6.) docker container for event sourcing?
When a client wants to change something but afterwards also show the changed data the only way I see is to trigger the change and than wait (let's say with polling) for the query service to have that data. What's a good way to achieve that? Maybe checking for the existing of the future version number?
Is this whole structure a reasonable architecture or am I completely missing something?
Sorry, a lot of questions but thanks for any help!
Let’s take this one first.
Is this whole structure a reasonable architecture or am I completely
missing something?
Nice architecture plan! I know it feels like there are a lot of moving pieces, but having lots of small pieces instead of one big one is what makes this my favorite pattern.
What is it doing afterwards? Reading the new data from the SQL and
triggering an event with it? The query service is listening and
storing the same data in its MongoDB? Is it overwriting the old data
or also creating a new entry with a version? That seems to be quite
redundant? Do I in fact really need the SQL database here?
There are 2 logical databases (which can be in the same physical database but for scaling reasons it's best if they are not) in CQRS – the domain model and the read model. These are very different structures. The domain model is stored as in any CRUD app with third normal form, etc. The read model is meant to make data reads blazing fast by custom designing tables that match the data a view needs. There will be a lot of data duplication in these tables. The idea is that it’s more responsive to have a table for each view and update that table in when the domain model changes because there’s nobody sitting at a keyboard waiting for the view to render so it’s OK for the view model data generation to take a little longer. This results in some wasted CPU cycles because you could update the view model several times before anyone asked for that view, but that’s OK since we were really using up idle time anyway.
When a command updates an aggregate and persists it to the DB, it generates a message for the view side of CQRS to update the view. There are 2 ways to do this. The first is to send a message saying “aggregate 83483 needs to be updated” and the view model requeries everything it needs from the domain model and updates the view model. The other approach is to send a message saying “aggregate 83483 was updated to have the following values: …” and the read side can update its tables without having to query. The first approach requires fewer message types but more querying, while the second is the opposite. You can mix and match these two approaches in the same system.
Since the read side has very different table structures, you need both databases. On the read side, unless you want the user to be able to see old versions of the appointments, you only have to store the current state of the view so just update existing data. On the command side, keeping historical state using a version number is a good idea, but can make db size grow.
how can the main app call for data from the query service if one don't
want to uses REST?
How the request gets to the query side is unimportant, so you can use REST, postback, GraphQL or whatever.
Is that "event sourcing"?
Event Sourcing is when you persist all changes made to all entities. If the entities are small enough you can persist all properties, but in general events only have changes. Then to get current state you add up all those changes to see what your entities look like at a certain point in time. It has nothing to do with the read model – that’s CQRS. Note that events are not the request from the user to make a change, that’s a message which then is used to create a command. An event is a record of all fields that changed as a result of the command. That’s an important distinction because you don’t want to re-run all that business logic when rehydrating an entity or aggregate.
When a client wants to change something but afterwards also show the
changed data the only way I see is to trigger the change and than wait
(let's say with polling) for the query service to have that data.
What's a good way to achieve that? Maybe checking for the existing of
the future version number?
Showing historical data is a bit sticky. I would push back on this requirement if you can, but sometimes it’s necessary. If you must do it, take the standard read model approach and save all changes to a view model table. If the circumstances are right you can cheat and read historical data directly from the domain model tables, but that’s breaking a CQRS rule. This is important because one of the advantages of CQRS is its scalability. You can scale the read side as much as you want if each read instance maintains its own read database, but having to read from the domain model will ruin this. This is situation dependent so you’ll have to decide on your own, but the best course of action is to try to get that requirement removed.
In terms of timing, CQRS is all about eventual consistency. The data changes may not show up on the read side for a while (typically fractions of a second but that's enough to cause problems). If you must show new and old data, you can poll and wait for the proper version number to appear, which is ugly. There are other alternatives involving result queues in Rabbit, but they are even uglier.

Exporting 8million records from Oracle to MongoDB

Now I have an Oracle Database with 8 millions records and I need to move them to MongoDB.
I know how to import some data to MongoDB with JSON file using import command but I want to know that is there a better way to achieve this regarding these issues.
Due to the limit of execution time, how to handle it?
The database is going up every seconds so what's the plan to make sure that every records have been moved.
Due to the limit of execution time, how to handle it?
Don't do it with the JSON export / import. Instead you should write a script that reads the data, transforms into the correct format for MongoDB and then inserts it there.
There are a few reasons for this:
Your tables / collections will not be organized the same way. (If they are, then why are you using MongoDB?)
This will allow you to monitor progress of the operation. In particular you can output to log files every 1000th entry or so to get some progress and be able to recover from failures.
This will test your new MongoDB code.
The database is going up every seconds so what's the plan to make sure that every records have been moved.
There are two strategies here.
Track the entries that are updated and re-run your script on newly updated records until you are caught up.
Write to both databases while you run the script to copy data. Then once you've done the script and everything it up to date, you can cut over to just using MongoDB.
I personally suggest #2, this is the easiest method to manage and test while maintaining up-time. It's still going to be a lot of work, but this will allow the transition to happen.

update app database regularly without needing an app update

I am working on a WP7 app that contains
CategoryGroups
Categories
Products
The rows for each of these entities are populated on first run of the application.
The issues is that when the app gets published, the rows in each of the entities will change (added, deleted, modified). I would like some suggestions on how I should handle this? Any pointers to existing code samples will be great?
I am using an object oriented database to store my entities. The app also allows the user to add their own entities (which get added to the database as personalized (flagged) entities). One solution I was thinking was to read an xml file from the server and then loop through the database entries and make the necessary modifications in the database. So, on the first run, all the entities will just get inserted. On subsequent runs, if the version number attribute in xml is different, then the system populated data is reloaded from xml but the user data is preserved.
Also, maybe only check for the new xml file on the server when internet connection is available and only periodically (like every 2 weeks).
Any other suggestions are welcome. If there is a simpler, cleaner way - please share.
Pratik
I think it's fair to say that this question has nothing to do with WP7 and everything to do with finding an efficient way to to compute and deliver update deltas.
Timestamp your items. When requesting an update, specify the time of last update. You server can trivially query for items newer than this and return a delta. At the client (ie in the phone) it is not necessary to store a last update time because you can simply add one second to the most recent timestamp in the items present on the phone.

Can DB2 tell a web-app when a table data is updated?

I have a table of non trivial size on a DB2 database that is updated X times a day per user input in another application. This table is also read by my web-app to display some info to another set of users. I have a large number of users on my web app and they need to do lots of fuzzy string lookups with data that is up-to-the-minute accurate. So, I need a server side cache to do my fuzzy logic on and to keep the DB from getting hammered.
So, what's the best option? I would hate to pull the entire table every minute when the data changes so rarely. I could setup a trigger to update a timestamp of a smaller table and poll that to see if I need refresh my cache, but that seems hacky to.
Ideally I would like to have DB2 tell my web-app when something changes, or at least provide a very lightweight mechanism to detect data level changes.
I think if your web application is running in WebSphere, setting up MQ would be a pretty good solution.
You could write triggers that use the MQ Series routines to add things to a queue, and your web app could subscribe to the queue and listen for updates.
If your web app is not in WebSphere then you could still look at this option but it might be more difficult.
A simple solution could be to have a timestamp (somewhere) for the latest change on to table.
The timestamp could be located in a small table/view that is updated by either the application that updates the big table or by an update-trigger on the big table.
The update-triggers only task would be to update the "help"-timestamp with currenttimestamp.
Then the webapp only checks this timestamp.
If the timestamp is newer then what the webapp has then the data is reread from the big table.
A "low-tech"-solution thats fairly non intrusive to the exsisting system.
Hope this solution fits your setup.
Regards
Sigersted
Having the database push a message to your webapp is certainly doable via a variety of mechanisms (like mqseries, etc). Similar and easier is to write a java stored procedure that gets kicked off by the trigger and hands the data to your cache-maintenance interface. But both of these solutions involve a lot of versioning dependencies, etc that could be a real PITA.
Another option might be to reconsider the entire approach. Is it possible that instead of maintaining a cache on your app's side you could perform your text searching on the original table?
But my suggestion is to do as you (and the other poster) mention - and just update a timestamp in a single-row table purposed to do this, then have your web-app poll that table. Similarly you could just push the changed rows to this small table - and have your cache-maintenance program pull from this table. Either of these is very simple to implement - and should be very reliable.

Resources