Calculating an AABB for a transformed ellipse - matrix

I am looking to compute the axis-aligned bounding box (AABB) of a 2D ellipse on which a tranformation matrix was applied (rotation, scale, translation, etc.)
Something similar to this solution : Calculating an AABB for a transformed sphere
So far, it doesn't seem to work for 2D ellipses.
This is what I got (in pseudo-code) :
Matrix M; // Transformation matrix (already existing)
Matrix C = new Matrix( // Conic matrix
radiusX, 0, 0,
0, radiusY, 0,
0, 0, -1
);
Matrix MT = M.transpose();
Matrix CI = C.inverse();
Matrix R = M*CI*MT;
int minX = (R13 + sqrt(R13^2 - (R11 * R33))) / R33;
int minY = (R23 + sqrt(R23^2 - (R22 * R33))) / R33;
// maxX etc...
// Build AABB Rectangle out of min & max...
Simple demo of the current behavior
radiusX = 2
radiusY = 2 // To keep it simple, M is identity
// (no transformation on the ellipse)
M = /1 0 0\ // /M11 M21 M31\
|0 1 0| // |M12 M22 M32| Transform matrix format
\0 0 1/ // \0 0 1 /
C = /2 0 0\ // C as conic
|0 2 0|
\0 0 -1/
CI =/0.5 0 0\ // CI as dual conic
|0 0.5 0|
\0 0 -1/
R = /1 0 0\ * /0.5 0 0\ * /1 0 0\ // R = M*CI*MT
|0 1 0| |0 0.5 0| |0 1 0|
\0 0 1/ \0 0 -1/ \0 0 1/
= /0.5 0 0\ // /R11 R12 R13\
|0 0.5 0| // |R12 R22 R23| (R is symmetric)
\0 0 -1/ // \R13 R23 R33/
minX = (0 + sqrt(0^2 - (0.5 * -1))) / -1
= -0.7071 // Should be -2
// Also, using R = MIT*C*MI
// leads to -1.4142
Solution (using dual conic matrix)
Matrix M;
Matrix C = new Matrix(
1/radiusX^2, 0, 0,
0, 1/radiusY^2, 0,
0, 0, -1
);
Matrix MT = M.transpose();
Matrix CI = C.inverse();
Matrix R = M*CI*MT;
int minX = (R13 + sqrt(R13^2 - (R11 * R33))) / R33;
int minY = (R23 + sqrt(R23^2 - (R22 * R33))) / R33;
Final solution (no direct use of conic matrix)
Here's a simplified version.
Matrix M;
int xOffset = sqrt((M11^2 * radiusX^2) + (M21^2 * radiusY^2));
int yOffset = sqrt((M12^2 * radiusX^2) + (M22^2 * radiusY^2));
int centerX = (M11 * ellipse.x + M21 * ellipse.y) + M31; // Transform center of
int centerY = (M12 * ellipse.x + M22 * ellipse.y) + M32; // ellipse using M
// Most probably, ellipse.x = 0 for you, but my implementation has an actual (x,y) AND a translation
int xMin = centerX - xOffset;
int xMax = centerX + xOffset;
int yMin = centerY - yOffset;
int yMax = centerY + yOffset;

From dual conic
So you state that M is a transformation matrix. But what does it transform, is it points or lines? I assume points. How do you represent points, as a row vector so that the point is on the left and the matrix on the right, or as a column vector so that the matrix is on the left and the point on the right of a multiplication? I'll assume column vectors. So a transformation would be p' = M*p for some point p.
Next is C. The way you write it, that's an ellipse but not with the radii you are using. A point lies on the ellipse if it satisfies (x/radiusX)^2 + (y/radiusY)^2 = 1 so the values on the main diagonal have to be (1/radiusX^2, 1/radiusY^2, -1). I repeatedly missed this mistake in pervious revisions of my answer.
Next you combine these things. Suppose CP were the primal conic, i.e. the conic as a set of points. Then you'd obtain the transformed version by doing MT.inverse()*CP*M.inverse(). The reason is because you apply M.inverse() to every point and then check whether it lies on the original conic. But you are not using M.inverse(), you are using M. This indicates that you try to transform a dual conic. If M transforms points, then MT.inverse() transforms lines, so M*CD*MT is the correct transformation if CD is a dual conic.
And if R is a dual conic, then your formulas are correct. So perhaps the main problem with your code is the fact that you forgot to use inverse radii in the matrix C.
From primal conic
When I read your post for the first time, I assumed R would describe a set of points, i.e. that a point (x,y) lies on that ellipse if (x,y,1)*R*(x,y,1).transpose()=0. Based on this, I did come up with formulas for the AABB without using the dual conic. I'm not saying that this is simpler, particularly not if you have matrix inversion available as a building block. But I'll still leave it here for reference. Keep in mind that the R in this paragraph is a different one from the one used in your code example.
For my approach, consider that R*(1,0,0) (which is simply the first column of R) is some vector (a,b,c) which you can interpret as a definition of a line ax+by+c=0. Intersect that line with the conic and you get the points where the tangents are horizontal, which are the extrema in y direction. Do the same for R*(0,1,0) (i.e. the seond column) to find extrema in the x direction.
The key idea here is that R*p computes the polar line for some point p, so we are constructing the polar line for the point at infinity in x resp. y direction. That polar line will intersect the conic in those points where the tangents through p touch the conic, which in this case would be horizontal resp. vertical tangents since parallel lines intersect at infinity.
If I do the above computation symbolically, I get the following formulas:
xmin, xmax = (R13*R22^2 - R12*R22*R23 ± sqrt(R13^2*R22^4 - 2*R12*R13*R22^3*R23 + R11*R22^3*R23^2 + (R12^2*R22^3 - R11*R22^4)*R33))/(R12^2*R22 - R11*R22^2)
ymin, ymax = (R11*R12*R13 - R11^2*R23 ± sqrt(R11^3*R13^2*R22 - 2*R11^3*R12*R13*R23 + R11^4*R23^2 + (R11^3*R12^2 - R11^4*R22)*R33))/(R11^2*R22 - R11*R12^2)
These expressions can certainly be simplified, but it should get you started. Feel free to edit this post if you reformulate this to something simpler, or easier to read, or whatever.

Related

How to use Bresenham's line drawing algorithm with sub pixel bias?

Bresenham's line drawing algorithm is well known and quite simple to implement.
While there are more advanced ways to draw anti-ailesed lines, Im interested in writing a function which draws a single pixel width non anti-aliased line, based on floating point coordinates.
This means while the first and last pixels will remain the same, the pixels drawn between them will have a bias based on the sub-pixel position of both end-points.
In principle this shouldn't be all that complicated, since I assume its possible to use the sub-pixel offsets to calculate an initial error value to use when plotting the line, and all other parts of the algorithm remain the same.
No sub pixel offset:
X###
###X
Assuming the right hand point has a sub-pixel position close to the top, the line could look like this:
With sub pixel offset for example:
X######
X
Is there a tried & true method of drawing a line that takes sub-pixel coordinates into account?
Note:
This seems like a common operation, I've seen OpenGL drivers take this into account for example - using GL_LINE, though from a quick search I didn't find any answers online - maybe used wrong search terms?
At a glance this question looks like it might be a duplicate of: Precise subpixel line drawing algorithm (rasterization algorithm)However that is asking about drawing a wide line, this is asking about offsetting a single pixel line.
If there isn't some standard method, I'll try write this up to post as an answer.
Having just encountered the same challenge, I can confirm that this is possible as you expected.
First, return to the simplest form of the algorithm: (ignore the fractions; they'll disappear later)
x = x0
y = y0
dx = x1 - x0
dy = y1 - y0
error = -0.5
while x < x1:
if error > 0:
y += 1
error -= 1
paint(x, y)
x += 1
error += dy/dx
This means that for integer coordinates, we start half a pixel above the pixel boundary (error = -0.5), and for each pixel we advance in x, we increase the ideal y coordinate (and therefore the current error) by dy/dx.
First let's see what happens if we stop forcing x0, y0, x1 and y1 to be integers: (this will also assume that instead of using pixel centres, the coordinates are relative to the bottom-left of each pixel1, since once you support sub-pixel positions you can simply add half the pixel width to the x and y to return to pixel-centred logic)
x = x0
y = y0
dx = x1 - x0
dy = y1 - y0
error = (0.5 - (x0 % 1)) * dy/dx + (y0 % 1) - 1
while x < x1:
if error > 0:
y += 1
error -= 1
paint(x, y)
x += 1
error += dy/dx
The only change was the initial error calculation. The new value comes from simple trig to calculate the y coordinate when x is at the pixel centre. It's worth noting that you can use the same idea to clip the line's start position to be within some bound, which is another challenge you'll likely face when you want to start optimising things.
Now we just need to convert this into integer-only arithmetic. We'll need some fixed multiplier for the fractional inputs (scale), and the divisions can be handled by multiplying them out, just as the standard algorithm does.
# assumes x0, y0, x1 and y1 are pre-multiplied by scale
x = x0
y = y0
dx = x1 - x0
dy = y1 - y0
error = (scale - 2 * (x0 % scale)) * dy + 2 * (y0 % scale) * dx - 2 * dx * scale
while x < x1:
if error > 0:
y += scale
error -= 2 * dx * scale
paint(x / scale, y / scale)
x += scale
error += 2 * dy * scale
Note that x, y, dx and dy keep the same scaling factor as the input variables (scale), whereas error has a more complex scaling factor: 2 * dx * scale. This allows it to absorb the division and fraction in its original formulation, but means we need to apply the same scale everywhere we use it.
Obviously there's a lot of room to optimise here, but that's the basic algorithm. If we assume scale is a power-of-two (2^n), we can start to make things a little more efficient:
dx = x1 - x0
dy = y1 - y0
mask = (1 << n) - 1
error = (2 * (y0 & mask) - (2 << n)) * dx - (2 * (x0 & mask) - (1 << n)) * dy
x = x0 >> n
y = y0 >> n
while x < (x1 >> n):
if error > 0:
y += 1
error -= 2 * dx << n
paint(x, y)
x += 1
error += 2 * dy << n
As with the original, this only works in the (x >= y, x > 0, y >= 0) octant. The usual rules apply for extending it to all cases, but note that there are a few extra gotchyas due to the coordinates no-longer being centred in the pixel (i.e. reflections become more complex).
You'll also need to watch out for integer overflows: error has twice the precision of the input variables, and a range of up to twice the length of the line. Plan your inputs, precision, and variable types accordingly!
1: Coordinates are relative to the corner which is closest to 0,0. For an OpenGL-style coordinate system that's the bottom left, but it could be the top-left depending on your particular scenario.
I had a similar problem, with the addition of needing sub-pixel endpoints, I also needed to make sure all pixels which intersect the line are drawn.
I'm not sure that my solution will be helpful to OP, both because its been 4+ years, and because of the sentence "This means while the first and last pixels will remain the same..." For me, that is actually a problem (More on that later). Hopefully this may be helpful to others.
I don't know if this can be considered to be Bresenham's algorithm, but it is awful similar. I'll explain it for the (+,+) quadrant. Lets say you wish to draw a line from point (Px,Py) to (Qx,Qy) over a grid of pixels with width W. Having a grid width W > 1 allows for sub-pixel endpoints.
For a line going in the (+,+) quadrant, the starting point is easy to calculate, just take the floor of (Px,Py). As you will see later, this only works if Qx >= Px & Qy >= Py.
Now you need to find which pixel to go to next. There are 3 possibilities: (x+1,y), (x,y+1), & (x+1,y+1). To make this decision, I use the 2D cross product defined as:
If this value is negative, vector b is right/clockwise of vector a.
If this value is positive, vector b is left/anti-clockwise of vector a.
If this value is zero vector b points in the same direction as vector a.
To make the decision on which pixel is next, compare the cross product between the line P-Q [red in image below] and a line between the point P and the top-right pixel (x+1,y+1) [blue in image below].
The vector between P & the top-right pixel can be calculated as:
So, we will use the value from the 2D cross product:
If this value is negative, the next pixel will be (x,y+1).
If this value is positive, the next pixel will be (x+1,y).
If this value is exactly zero, the next pixel will be (x+1,y+1).
That works fine for the starting pixel, but the rest of the pixels will not have a point that lies inside them. Luckily, after the initial point, you don't need a point to be inside the pixel for the blue vector. You can keep extending it like so:
The blue vector starts at the starting point of the line, and is updated to the (x+1,y+1) for every pixel. The rule for which pixel to take is the same. As you can see, the red vector is right of the blue vector. So, the next pixel will be the one right of the green pixel.
The value for the cross product needs updated for every pixel, depending on which pixel you took.
Add dx if the next pixel was (x+1), add dy if the pixel was (y+1). Add both if the pixel went to (x+1,y+1).
This process is repeated until it reaches the ending pixel, (Qx / W, Qy / W).
All combined this leads to the following code:
int dx = x2 - x2;
int dy = y2 - y1;
int local_x = x1 % width;
int local_y = y1 % width;
int cross_product = dx*(width-local_y) - dy*(width-local_x);
int dx_cross = -dy*width;
int dy_cross = dx*width;
int x = x1 / width;
int y = y1 / width;
int end_x = x2 / width;
int end_y = y2 / width;
while (x != end_x || y != end_y) {
SetPixel(x,y,color);
int old_cross = cross_product;
if (old_cross >= 0) {
x++;
cross_product += dx_cross;
}
if (old_cross <= 0) {
y++;
cross_product += dy_cross;
}
}
Making it work for all quadrants is a matter of reversing the local coordinates and some absolute values. Heres the code which works for all quadrants:
int dx = x2 - x1;
int dy = y2 - y1;
int dx_x = (dx >= 0) ? 1 : -1;
int dy_y = (dy >= 0) ? 1 : -1;
int local_x = x1 % square_width;
int local_y = y1 % square_width;
int x_dist = (dx >= 0) ? (square_width - local_x) : (local_x);
int y_dist = (dy >= 0) ? (square_width - local_y) : (local_y);
int cross_product = abs(dx) * abs(y_dist) - abs(dy) * abs(x_dist);
dx_cross = -abs(dy) * square_width;
dy_cross = abs(dx) * square_width;
int x = x1 / square_width;
int y = y1 / square_width;
int end_x = x2 / square_width;
int end_y = y2 / square_width;
while (x != end_x || y != end_y) {
SetPixel(x,y,color);
int old_cross = cross_product;
if (old_cross >= 0) {
x += dx_x;
cross_product += dx_cross;
}
if (old_cross <= 0) {
y += dy_y;
cross_product += dy_cross;
}
}
However there is a problem! This code will not stop in some cases. To understand why, you need to really look into exactly what conditions count as the intersection between a line and a pixel.
When exactly is a pixel drawn?
I said I need to make that all pixels which intersect a line need to be drawn. But there's some ambiguity in the edge cases.
Here is a list of all possible intersections in which a pixel will be drawn for a line where Qx >= Px & Qy >= Py:
A - If a line intersects the pixel completely, the pixel will be drawn.
B - If a vertical line intersects the pixel completely, the pixel will be drawn.
C - If a horizontal line intersects the pixel completely, the pixel will be drawn.
D - If a vertical line perfectly touches the left of the pixel, the pixel will be drawn.
E - If a horizontal line perfectly touches the bottom of the pixel, the pixel will be drawn.
F - If a line endpoint starts inside of a pixel going (+,+), the pixel will be drawn.
G - If a line endpoint starts exactly on the left side of a pixel going (+,+), the pixel will be drawn.
H - If a line endpoint starts exactly on the bottom side of a pixel going (+,+), the pixel will be drawn.
I - If a line endpoint starts exactly on the bottom left corner of a pixel going (+,+), the pixel will be drawn.
And here are some pixels which do NOT intersect the line:
A' - If a line obviously doesn't intersect a pixel, the pixel will NOT be drawn.
B' - If a vertical line obviously doesn't intersect a pixel, the pixel will NOT be drawn.
C' - If a horizontal line obviously doesn't intersect a pixel, the pixel will NOT be drawn.
D' - If a vertical line exactly touches the right side of a pixel, the pixel will NOT be drawn.
E' - If a horizontal line exactly touches the top side of a pixel, the pixel will NOT be drawn.
F' - If a line endpoint starts exactly on the top right corner of a pixel going in the (+,+) direction, the pixel will NOT be drawn.
G' - If a line endpoint starts exactly on the top side of a pixel going in the (+,+) direction, the pixel will NOT be drawn.
H' - If a line endpoint starts exactly on the right side of a pixel going in the (+,+) direction, the pixel will NOT be drawn.
I' - If a line exactly touches a corner of the pixel, the pixel will NOT be drawn. This applies to all corners.
Those rules apply as you would expect (just flip the image) for the other quadrants. The problem I need to highlight is when an endpoint lies exactly on the edge of a pixel. Take a look at this case:
This is like image G' above, except the y-axis is flipped because the Qy < Py. There are 4x4 red dots because W is 4, making the pixel dimensions 4x4. Each of the 4 dots are the ONLY endpoints a line can touch. The line drawn goes from (1.25, 1.0) to (somewhere).
This shows why it's incorrect (at least how I defined pixel-line intersections) to say the pixel endpoints can be calculated as the floor of the line endpoints. The floored pixel coordinate for that endpoint seems to be (1,1), but it is clear that the line never really intersects that pixel. It just touches it, so I don't want to draw it.
Instead of flooring the line endpoints, you need to floor the minimal endpoints, and ceil the maximal endpoints minus 1 across both x & y dimensions.
So finally here is the complete code which does this flooring/ceiling:
int dx = x2 - x1;
int dy = y2 - y1;
int dx_x = (dx >= 0) ? 1 : -1;
int dy_y = (dy >= 0) ? 1 : -1;
int local_x = x1 % square_width;
int local_y = y1 % square_width;
int x_dist = (dx >= 0) ? (square_width - local_x) : (local_x);
int y_dist = (dy >= 0) ? (square_width - local_y) : (local_y);
int cross_product = abs(dx) * abs(y_dist) - abs(dy) * abs(x_dist);
dx_cross = -abs(dy) * square_width;
dy_cross = abs(dx) * square_width;
int x = x1 / square_width;
int y = y1 / square_width;
int end_x = x2 / square_width;
int end_y = y2 / square_width;
// Perform ceiling/flooring of the pixel endpoints
if (dy < 0)
{
if ((y1 % square_width) == 0)
{
y--;
cross_product += dy_cross;
}
}
else if (dy > 0)
{
if ((y2 % square_width) == 0)
end_y--;
}
if (dx < 0)
{
if ((x1 % square_width) == 0)
{
x--;
cross_product += dx_cross;
}
}
else if (dx > 0)
{
if ((x2 % square_width) == 0)
end_x--;
}
while (x != end_x || y != end_y) {
SetPixel(x,y,color);
int old_cross = cross_product;
if (old_cross >= 0) {
x += dx_x;
cross_product += dx_cross;
}
if (old_cross <= 0) {
y += dy_y;
cross_product += dy_cross;
}
}
This code itself hasn't been tested, but it comes slightly modified from my GitHub project where it has been tested.
Let's assume you want to draw a line from P1 = (x1, y1) to P2 = (x2, y2) where all the numbers are floating point pixel coordinates.
Calculate the true pixel coordinates of P1 and P2 and paint them: P* = (round(x), round(y)).
If abs(x1* - x2*) <= 1 && abs(y1* - y2*) <= 1 then you are finished.
Decide whether it is a horizontal (true) or a vertical line (false): abs(x1 - x2) >= abs(y1 - y2).
If it is a horizontal line and x1 > x2 or if it is a vertical line and y1 > y2: swap P1 with P2 (and also P1* with P2*).
If it is a horizontal line you can get the y-coordinates for all the x-coordinates between x1* and x2* with the following formula:
y(x) = round(y1 + (x - x1) / (x2 - x1) * (y2 - y1))
If you have a vertical line you can get the x-coordinates for all the y-coordinates between y1* and y2* with this formula:
x(y) = round(x1 + (y - y1) / (y2 - y1) * (x2 - x1))
Here is a demo you can play around with, you can try different points on line 12.

Calculating a location on a circle given an angle of rotation

Okay algebra and trig are not my strong suit by any means so here is what I need to do.
I have a circle which is measured in degrees from +180 to -180 (360 total)
Given the center point of the circle stays the same, Cx , Cy.
The angle varies from -180 to +180
I need to locate a point that regardless the given angle is + 3 units away that is at the 90 degree position and the 270 degree position (from the given degrees)
So like...
Angle = 0
Point 1 -> x = 0, y -3
Point 2 -> x = 0, y + 3
And if the angle was say 90 (provided its measured Clockwise)
Point 1 -> x = -3, y = 0
Point 2 -> x = 3, y = 0
What I need is a forumla that will accept Angle, then tell me what my x/y should be 3 units away from the origin.
I have tried: EDIT Updated to double precision using Java.
`double x = Cx + 3 * Math.cos((d + 90) * Math.PI / 180);'
'double y = Cy + 3 * Math.sin((d + 90) * Math.PI / 180);`
this gives me mixed results, I mean sometimes it's where I think it should be and other times its quite wrong.
Assuming Cx = 0.500, Cy = 0.500
Sample Data: Result:
Deg = 0 x = 2 / y = 5
Deg = 90 x = -1 / y = 2
Deg = 125 x = -0.457 / y = 0.297
Deg = 159 x = 0.924 / y = -0.800
I realize I am only calculating one point at this point but do you have any suggestions on how to get the first point working? at say 90 degrees from whatever degree I start with?
x = Cx + r * Math.cos( (d+90) * Math.PI / 180 );
y = Cy + r * Math.sin( (d+90) * Math.PI / 180 );
Seems that this is the correct formula for what I was trying to accomplish. This will take any value for Cx/Cy's origin add the Radius r, then calculate the degrees + 90 and convert to radians.. Once all that magic takes place, you're left with an x/y coord that is 90 degrees of where you started.

How to find endpoint coordinates with given start, length, and euler angles

I'm working on some 3d fractals... If I take any arbitrary point (x,y,z), start from there, and then draw a line of given length "d", in a direction defined by Euler angles... (by rotation A about the x-axis, B about the y-axis, and C about the z-axis) -- and then calculate the resulting endpoint of the line.
This would be simple in 2 dimensions, as I could find the endpoint like:
endX = beginX + d * cos(angle)
endY = beginY + d * sin(angle)
Basically, I need to fill in the blanks here:
endX = beginX + d * (??)
endY = beginY + d * (??)
endZ = beginZ + d * (??)
Where I only know angles defined by 3 rotations, 1 about each axis

Color gradient algorithm

Given two rgb colors and a rectangle, I'm able to create a basic linear gradient. This blog post gives very good explanation on how to create it. But I want to add one more variable to this algorithm, angle. I want to create linear gradient where I can specified the angle of the color.
For example, I have a rectangle (400x100). From color is red (255, 0, 0) and to color is green (0, 255, 0) and angle is 0°, so I will have the following color gradient.
Given I have the same rectangle, from color and to color. But this time I change angle to 45°. So I should have the following color gradient.
Your question actually consists of two parts:
How to generate a smooth color gradient between two colors.
How to render a gradient on an angle.
The intensity of the gradient must be constant in a perceptual color space or it will look unnaturally dark or light at points in the gradient. You can see this easily in a gradient based on simple interpolation of the sRGB values, particularly the red-green gradient is too dark in the middle. Using interpolation on linear values rather than gamma-corrected values makes the red-green gradient better, but at the expense of the back-white gradient. By separating the light intensities from the color you can get the best of both worlds.
Often when a perceptual color space is required, the Lab color space will be proposed. I think sometimes it goes too far, because it tries to accommodate the perception that blue is darker than an equivalent intensity of other colors such as yellow. This is true, but we are used to seeing this effect in our natural environment and in a gradient you end up with an overcompensation.
A power-law function of 0.43 was experimentally determined by researchers to be the best fit for relating gray light intensity to perceived brightness.
I have taken here the wonderful samples prepared by Ian Boyd and added my own proposed method at the end. I hope you'll agree that this new method is superior in all cases.
Algorithm MarkMix
Input:
color1: Color, (rgb) The first color to mix
color2: Color, (rgb) The second color to mix
mix: Number, (0..1) The mix ratio. 0 ==> pure Color1, 1 ==> pure Color2
Output:
color: Color, (rgb) The mixed color
//Convert each color component from 0..255 to 0..1
r1, g1, b1 ← Normalize(color1)
r2, g2, b2 ← Normalize(color1)
//Apply inverse sRGB companding to convert each channel into linear light
r1, g1, b1 ← sRGBInverseCompanding(r1, g1, b1)
r2, g2, b2 ← sRGBInverseCompanding(r2, g2, b2)
//Linearly interpolate r, g, b values using mix (0..1)
r ← LinearInterpolation(r1, r2, mix)
g ← LinearInterpolation(g1, g2, mix)
b ← LinearInterpolation(b1, b2, mix)
//Compute a measure of brightness of the two colors using empirically determined gamma
gamma ← 0.43
brightness1 ← Pow(r1+g1+b1, gamma)
brightness2 ← Pow(r2+g2+b2, gamma)
//Interpolate a new brightness value, and convert back to linear light
brightness ← LinearInterpolation(brightness1, brightness2, mix)
intensity ← Pow(brightness, 1/gamma)
//Apply adjustment factor to each rgb value based
if ((r+g+b) != 0) then
factor ← (intensity / (r+g+b))
r ← r * factor
g ← g * factor
b ← b * factor
end if
//Apply sRGB companding to convert from linear to perceptual light
r, g, b ← sRGBCompanding(r, g, b)
//Convert color components from 0..1 to 0..255
Result ← MakeColor(r, g, b)
End Algorithm MarkMix
Here's the code in Python:
def all_channels(func):
def wrapper(channel, *args, **kwargs):
try:
return func(channel, *args, **kwargs)
except TypeError:
return tuple(func(c, *args, **kwargs) for c in channel)
return wrapper
#all_channels
def to_sRGB_f(x):
''' Returns a sRGB value in the range [0,1]
for linear input in [0,1].
'''
return 12.92*x if x <= 0.0031308 else (1.055 * (x ** (1/2.4))) - 0.055
#all_channels
def to_sRGB(x):
''' Returns a sRGB value in the range [0,255]
for linear input in [0,1]
'''
return int(255.9999 * to_sRGB_f(x))
#all_channels
def from_sRGB(x):
''' Returns a linear value in the range [0,1]
for sRGB input in [0,255].
'''
x /= 255.0
if x <= 0.04045:
y = x / 12.92
else:
y = ((x + 0.055) / 1.055) ** 2.4
return y
def all_channels2(func):
def wrapper(channel1, channel2, *args, **kwargs):
try:
return func(channel1, channel2, *args, **kwargs)
except TypeError:
return tuple(func(c1, c2, *args, **kwargs) for c1,c2 in zip(channel1, channel2))
return wrapper
#all_channels2
def lerp(color1, color2, frac):
return color1 * (1 - frac) + color2 * frac
def perceptual_steps(color1, color2, steps):
gamma = .43
color1_lin = from_sRGB(color1)
bright1 = sum(color1_lin)**gamma
color2_lin = from_sRGB(color2)
bright2 = sum(color2_lin)**gamma
for step in range(steps):
intensity = lerp(bright1, bright2, step, steps) ** (1/gamma)
color = lerp(color1_lin, color2_lin, step, steps)
if sum(color) != 0:
color = [c * intensity / sum(color) for c in color]
color = to_sRGB(color)
yield color
Now for part 2 of your question. You need an equation to define the line that represents the midpoint of the gradient, and a distance from the line that corresponds to the endpoint colors of the gradient. It would be natural to put the endpoints at the farthest corners of the rectangle, but judging by your example in the question that is not what you did. I picked a distance of 71 pixels to approximate the example.
The code to generate the gradient needs to change slightly from what's shown above, to be a little more flexible. Instead of breaking the gradient into a fixed number of steps, it is calculated on a continuum based on the parameter t which ranges between 0.0 and 1.0.
class Line:
''' Defines a line of the form ax + by + c = 0 '''
def __init__(self, a, b, c=None):
if c is None:
x1,y1 = a
x2,y2 = b
a = y2 - y1
b = x1 - x2
c = x2*y1 - y2*x1
self.a = a
self.b = b
self.c = c
self.distance_multiplier = 1.0 / sqrt(a*a + b*b)
def distance(self, x, y):
''' Using the equation from
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Line_defined_by_an_equation
modified so that the distance can be positive or negative depending
on which side of the line it's on.
'''
return (self.a * x + self.b * y + self.c) * self.distance_multiplier
class PerceptualGradient:
GAMMA = .43
def __init__(self, color1, color2):
self.color1_lin = from_sRGB(color1)
self.bright1 = sum(self.color1_lin)**self.GAMMA
self.color2_lin = from_sRGB(color2)
self.bright2 = sum(self.color2_lin)**self.GAMMA
def color(self, t):
''' Return the gradient color for a parameter in the range [0.0, 1.0].
'''
intensity = lerp(self.bright1, self.bright2, t) ** (1/self.GAMMA)
col = lerp(self.color1_lin, self.color2_lin, t)
total = sum(col)
if total != 0:
col = [c * intensity / total for c in col]
col = to_sRGB(col)
return col
def fill_gradient(im, gradient_color, line_distance=None, max_distance=None):
w, h = im.size
if line_distance is None:
def line_distance(x, y):
return x - ((w-1) / 2.0) # vertical line through the middle
ul = line_distance(0, 0)
ur = line_distance(w-1, 0)
ll = line_distance(0, h-1)
lr = line_distance(w-1, h-1)
if max_distance is None:
low = min([ul, ur, ll, lr])
high = max([ul, ur, ll, lr])
max_distance = min(abs(low), abs(high))
pix = im.load()
for y in range(h):
for x in range(w):
dist = line_distance(x, y)
ratio = 0.5 + 0.5 * dist / max_distance
ratio = max(0.0, min(1.0, ratio))
if ul > ur: ratio = 1.0 - ratio
pix[x, y] = gradient_color(ratio)
>>> w, h = 406, 101
>>> im = Image.new('RGB', [w, h])
>>> line = Line([w/2 - h/2, 0], [w/2 + h/2, h-1])
>>> grad = PerceptualGradient([252, 13, 27], [41, 253, 46])
>>> fill_gradient(im, grad.color, line.distance, 71)
And here's the result of the above:
I wanted to point out the common mistake that happens in color mixing when people try average the r, g, and b components:
R = (R1 + R2) / 2;
G = (G1 + G2) / 2;
B = (B1 + B2) / 2;
You can watch the excellent 4 Minute Physics video on the subject:
Computer Color is Broken
The short version is that trying to niavely mixing two colors by averaging the components is wrong:
R = R1*(1-mix) + R2*mix;
G = G1*(1-mix) + G2*mix;
B = B1*(1-mix) + B2*mix;
The problem is that RGB colors on computers are in the sRGB color space. And those numerical values have a gamma of approx 2.4 applied. In order to mix the colors correctly you must first undo this gamma adjustment:
undo the gamma adjustment
apply your r,g,b mixing algorithm above
reapply the gamma
Without applying the inverse gamma, the mixed colors are darker than they're supposed to be. This can be seen in a side-by-side color gradient experiment.
Top (wrong): without accounting for sRGB gamma
Bottom (right): with accounting for sRGB gamma
The algorithm
Rather than the naive:
//This is the wrong algorithm. Don't do this
Color ColorMixWrong(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
Color result;
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
return result;
}
The correct form is:
//This is the wrong algorithm. Don't do this
Color ColorMix(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
//Invert sRGB gamma compression
c1 = InverseSrgbCompanding(c1);
c2 = InverseSrgbCompanding(c2);
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
//Reapply sRGB gamma compression
result = SrgbCompanding(result);
return result;
}
The gamma adjustment of sRGB isn't quite just 2.4. They actually have a linear section near black - so it's a piecewise function.
Color InverseSrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Inverse Red, Green, and Blue
if (r > 0.04045) r = Power((r+0.055)/1.055, 2.4) else r = r / 12.92;
if (g > 0.04045) g = Power((g+0.055)/1.055, 2.4) else g = g / 12.92;
if (b > 0.04045) b = Power((b+0.055)/1.055, 2.4) else b = b / 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
And you re-apply the companding as:
Color SrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Apply companding to Red, Green, and Blue
if (r > 0.0031308) r = 1.055*Power(r, 1/2.4)-0.055 else r = r * 12.92;
if (g > 0.0031308) g = 1.055*Power(g, 1/2.4)-0.055 else g = g * 12.92;
if (b > 0.0031308) b = 1.055*Power(b, 1/2.4)-0.055 else b = b * 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
Update: Mark's right
I tested #MarkRansom comment that the color blending in linear RGB space is good when colors are equal RGB total value; but the linear blending scale does not seem linear - especially for the black-white case.
So i tried mixing in Lab color space, as my intuition suggested (as well as this photography stackexchange answer):
Mark's algorithm sometimes falls over
That's quite simple. Besides angle, you would actually need one more parameter, i.e. how tight/wide the gradient should be. Let's instead just work with two points:
__D
__--
__--
__--
__--
M
Where M is the middle point of the gradient (between red and green) and D shows the direction and distance. Therefore, the gradient becomes:
M'
| __D
| __--
| __--
| __--
| __--
M
__-- |
__-- |
__-- |
__-- |
D'-- |
M"
Which means, along the vector D'D, you change from red to green, linearly as you already know. Along the vector M'M", you keep the color constant.
That was the theory. Now implementation depends on how you actually draw the pixels. Let's assume nothing and say you want to decide the color pixel by pixel (so you can draw in any pixel order.)
That's simple! Let's take a point:
M'
| SA __D
__--| __--
P-- |__ A __--
| -- /| \ __--
| -- | |_--
| --M
|__-- |
__--CA |
__-- |
__-- |
D'-- |
M"
Point P, has angle A with the coordinate system defined by M and D. We know that along the vector M'M", the color doesn't change, so sin(A) doesn't have any significance. Instead, cos(A) shows relatively how far towards D or D' the pixels color should go to. The point CA shows |PM|cos(A) which means the mapping of P over the line defined by M and D, or in details the length of the line PM multiplied by cos(A).
So the algorithm becomes as follows
For every pixel
Calculate CA
If farther than D, definitely green. If before D', definitely red.
Else find the color from red to green based on the ratio of |D'CA|/|D'D|
Based on your comments, if you want to determine the wideness from the canvas size, you can easily calculate D based on your input angle and canvas size, although I personally advise using a separate parameter.
The way I solved this is first by being able to calculate L (lightness) for an RGB color: calculate only the Y (luminance) of CIE XYZ and use that to get L.
static private float rgbToL (float r, float g, float b) {
float Y = 0.21263900587151f * r + 0.71516867876775f * g + 0.072192315360733f * b;
return Y <= 0.0088564516f ? Y * 9.032962962f : 1.16f * (float)Math.pow(Y, 1 / 3f) - 0.16f;
}
That gives L as 0-1 for any RGB. Then to lerp RGB: first interpolate linear RGB, then fix lightness by lerping the start/end L and scale the RGB by targetL / resultL. I posted an Rgb class that does this.
The same library also has an Hsl class which stores a color as HSLuv. It does interpolation by converting to linear RGB, interpolating, converting back to HSLuv and then fixing the brightness by interpolating L from the start/end HSLuv colors.
The comment of #user2799037 is totally correct:
each line is moved by some pixels to the right compared to the previous one.
The actual constant can be computed as the tangent of the angle you specified.

How to transform mouse location in isometric tiling map?

So I've managed myself to write the first part (algorithm) to calculate each tile's position where should it be placed while drawing this map (see bellow). However I need to be able to convert mouse location to the appropriate cell and I've been almost pulling my hair off because I can't figure out a way how to get the cell from mouse location. My concern is that it involves some pretty high math or something i'm just something easy i'm not capable to notice.
For example if the mouse position is 112;35 how do i calculate/transform it to to get that the cell is 2;3 at that position?
Maybe there is some really good math-thinking programmer here who would help me on this or someone who knows how to do it or can give some information?
var cord:Point = new Point();
cord.x = (x - 1) * 28 + (y - 1) * 28;
cord.y = (y - 1) * 14 + (x - 1) * (- 14);
Speaking of the map, each cell (transparent tile 56x28 pixels) is placed in the center of the previous cell (or at zero position for the cell 1;1), above is the code I use for converting cell-to-position. I tried lot of things and calculations for position-to-cell but each of them failed.
Edit:
After reading lot of information it seems that using off screen color map (where colors are mapped to tiles) is the fastest and most efficient solution?
I know this is an old post, but I want to update this since some people might still look for answers to this issue, just like I was earlier today. However, I figured this out myself. There is also a much better way to render this so you don't get tile overlapping issues.
The code is as simple as this:
mouse_grid_x = floor((mouse_y / tile_height) + (mouse_x / tile_width));
mouse_grid_y = floor((-mouse_x / tile_width) + (mouse_y / tile_height));
mouse_x and mouse_y are mouse screen coordinates.
tile_height and tile_width are actual tile size, not the image itself. As you see on my example picture I've added dirt under my tile, this is just for easier rendering, actual size is 24 x 12. The coordinates are also "floored" to keep the result grid x and y rounded down.
Also notice that I render these tiles from the y=0 and x=tile_with / 2 (red dot). This means my 0,0 actually starts at the top corner of the tile (tilted) and not out in open air. See these tiles as rotated squares, you still want to start from the 0,0 pixel.
Tiles will be rendered beginning with the Y = 0 and X = 0 to map size. After first row is rendered you skip a few pixels down and to the left. This will make the next line of tiles overlap the first one, which is a great way to keep the layers overlapping coorectly. You should render tiles, then whatever in on that tile before moving on to the next.
I'll add a render example too:
for (yy = 0; yy < map_height; yy++)
{
for (xx = 0; xx < map_width; xx++)
{
draw tiles here with tile coordinates:
tile_x = (xx * 12) - (yy * 12) - (tile_width / 2)
tile_y = (yy * 6) + (xx * 6)
also draw whatever is on this tile here before moving on
}
}
(1) x` = 28x -28 + 28y -28 = 28x + 28y -56
(2) y` = -14x +14 +14y -14 = -14x + 14y
Transformation table:
[x] [28 28 -56 ] = [x`]
[y] [-14 14 0 ] [y`]
[1] [0 0 1 ] [1 ]
[28 28 -56 ] ^ -1
[-14 14 0 ]
[0 0 1 ]
Calculate that with a plotter ( I like wims )
[1/56 -1/28 1 ]
[1/56 1/28 1 ]
[0 0 1 ]
x = 1/56*x` - 1/28y` + 1
y = 1/56*x` + 1/28y` + 1
I rendered the tiles like above.
the sollution is VERY simple!
first thing:
my Tile width and height are both = 32
this means that in isometric view,
the width = 32 and height = 16!
Mapheight in this case is 5 (max. Y value)
y_iso & x_iso == 0 when y_mouse=MapHeight/tilewidth/2 and x_mouse = 0
when x_mouse +=1, y_iso -=1
so first of all I calculate the "per-pixel transformation"
TileY = ((y_mouse*2)-((MapHeight*tilewidth)/2)+x_mouse)/2;
TileX = x_mouse-TileY;
to find the tile coordinates I just devide both by tilewidth
TileY = TileY/32;
TileX = TileX/32;
DONE!!
never had any problems!
I've found algorithm on this site http://www.tonypa.pri.ee/tbw/tut18.html. I couldn't get it to work for me properly, but I change it by trial and error to this form and it works for me now.
int x = mouse.x + offset.x - tile[0;0].x; //tile[0;0].x is the value of x form witch map was drawn
int y = mouse.y + offset.y;
double _x =((2 * y + x) / 2);
double _y= ((2 * y - x) / 2);
double tileX = Math.round(_x / (tile.height - 1)) - 1;
double tileY = Math.round(_y / (tile.height - 1));
This is my map generation
for(int x=0;x<max_X;x++)
for(int y=0;y<max_Y;y++)
map.drawImage(image, ((max_X - 1) * tile.width / 2) - ((tile.width - 1) / 2 * (y - x)), ((tile.height - 1) / 2) * (y + x));
One way would be to rotate it back to a square projection:
First translate y so that the dimensions are relative to the origin:
x0 = x_mouse;
y0 = y_mouse-14
Then scale by your tile size:
x1 = x/28; //or maybe 56?
y1 = y/28
Then rotate by the projection angle
a = atan(2/1);
x_tile = x1 * cos(a) - y1 * sin(a);
y_tile = y1 * cos(a) + x1 * sin(a);
I may be missing a minus sign, but that's the general idea.
Although you didn't mention it in your original question, in comments I think you said you're programming this in Flash. In which case Flash comes with Matrix transformation functions. The most robust way to convert between coordinate systems (eg. to isometric coordinates) is using Matrix transformations:
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Matrix.html
You would want to rotate and scale the matrix in the inverse of how you rotated and scaled the graphics.

Resources