Given two rgb colors and a rectangle, I'm able to create a basic linear gradient. This blog post gives very good explanation on how to create it. But I want to add one more variable to this algorithm, angle. I want to create linear gradient where I can specified the angle of the color.
For example, I have a rectangle (400x100). From color is red (255, 0, 0) and to color is green (0, 255, 0) and angle is 0°, so I will have the following color gradient.
Given I have the same rectangle, from color and to color. But this time I change angle to 45°. So I should have the following color gradient.
Your question actually consists of two parts:
How to generate a smooth color gradient between two colors.
How to render a gradient on an angle.
The intensity of the gradient must be constant in a perceptual color space or it will look unnaturally dark or light at points in the gradient. You can see this easily in a gradient based on simple interpolation of the sRGB values, particularly the red-green gradient is too dark in the middle. Using interpolation on linear values rather than gamma-corrected values makes the red-green gradient better, but at the expense of the back-white gradient. By separating the light intensities from the color you can get the best of both worlds.
Often when a perceptual color space is required, the Lab color space will be proposed. I think sometimes it goes too far, because it tries to accommodate the perception that blue is darker than an equivalent intensity of other colors such as yellow. This is true, but we are used to seeing this effect in our natural environment and in a gradient you end up with an overcompensation.
A power-law function of 0.43 was experimentally determined by researchers to be the best fit for relating gray light intensity to perceived brightness.
I have taken here the wonderful samples prepared by Ian Boyd and added my own proposed method at the end. I hope you'll agree that this new method is superior in all cases.
Algorithm MarkMix
Input:
color1: Color, (rgb) The first color to mix
color2: Color, (rgb) The second color to mix
mix: Number, (0..1) The mix ratio. 0 ==> pure Color1, 1 ==> pure Color2
Output:
color: Color, (rgb) The mixed color
//Convert each color component from 0..255 to 0..1
r1, g1, b1 ← Normalize(color1)
r2, g2, b2 ← Normalize(color1)
//Apply inverse sRGB companding to convert each channel into linear light
r1, g1, b1 ← sRGBInverseCompanding(r1, g1, b1)
r2, g2, b2 ← sRGBInverseCompanding(r2, g2, b2)
//Linearly interpolate r, g, b values using mix (0..1)
r ← LinearInterpolation(r1, r2, mix)
g ← LinearInterpolation(g1, g2, mix)
b ← LinearInterpolation(b1, b2, mix)
//Compute a measure of brightness of the two colors using empirically determined gamma
gamma ← 0.43
brightness1 ← Pow(r1+g1+b1, gamma)
brightness2 ← Pow(r2+g2+b2, gamma)
//Interpolate a new brightness value, and convert back to linear light
brightness ← LinearInterpolation(brightness1, brightness2, mix)
intensity ← Pow(brightness, 1/gamma)
//Apply adjustment factor to each rgb value based
if ((r+g+b) != 0) then
factor ← (intensity / (r+g+b))
r ← r * factor
g ← g * factor
b ← b * factor
end if
//Apply sRGB companding to convert from linear to perceptual light
r, g, b ← sRGBCompanding(r, g, b)
//Convert color components from 0..1 to 0..255
Result ← MakeColor(r, g, b)
End Algorithm MarkMix
Here's the code in Python:
def all_channels(func):
def wrapper(channel, *args, **kwargs):
try:
return func(channel, *args, **kwargs)
except TypeError:
return tuple(func(c, *args, **kwargs) for c in channel)
return wrapper
#all_channels
def to_sRGB_f(x):
''' Returns a sRGB value in the range [0,1]
for linear input in [0,1].
'''
return 12.92*x if x <= 0.0031308 else (1.055 * (x ** (1/2.4))) - 0.055
#all_channels
def to_sRGB(x):
''' Returns a sRGB value in the range [0,255]
for linear input in [0,1]
'''
return int(255.9999 * to_sRGB_f(x))
#all_channels
def from_sRGB(x):
''' Returns a linear value in the range [0,1]
for sRGB input in [0,255].
'''
x /= 255.0
if x <= 0.04045:
y = x / 12.92
else:
y = ((x + 0.055) / 1.055) ** 2.4
return y
def all_channels2(func):
def wrapper(channel1, channel2, *args, **kwargs):
try:
return func(channel1, channel2, *args, **kwargs)
except TypeError:
return tuple(func(c1, c2, *args, **kwargs) for c1,c2 in zip(channel1, channel2))
return wrapper
#all_channels2
def lerp(color1, color2, frac):
return color1 * (1 - frac) + color2 * frac
def perceptual_steps(color1, color2, steps):
gamma = .43
color1_lin = from_sRGB(color1)
bright1 = sum(color1_lin)**gamma
color2_lin = from_sRGB(color2)
bright2 = sum(color2_lin)**gamma
for step in range(steps):
intensity = lerp(bright1, bright2, step, steps) ** (1/gamma)
color = lerp(color1_lin, color2_lin, step, steps)
if sum(color) != 0:
color = [c * intensity / sum(color) for c in color]
color = to_sRGB(color)
yield color
Now for part 2 of your question. You need an equation to define the line that represents the midpoint of the gradient, and a distance from the line that corresponds to the endpoint colors of the gradient. It would be natural to put the endpoints at the farthest corners of the rectangle, but judging by your example in the question that is not what you did. I picked a distance of 71 pixels to approximate the example.
The code to generate the gradient needs to change slightly from what's shown above, to be a little more flexible. Instead of breaking the gradient into a fixed number of steps, it is calculated on a continuum based on the parameter t which ranges between 0.0 and 1.0.
class Line:
''' Defines a line of the form ax + by + c = 0 '''
def __init__(self, a, b, c=None):
if c is None:
x1,y1 = a
x2,y2 = b
a = y2 - y1
b = x1 - x2
c = x2*y1 - y2*x1
self.a = a
self.b = b
self.c = c
self.distance_multiplier = 1.0 / sqrt(a*a + b*b)
def distance(self, x, y):
''' Using the equation from
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Line_defined_by_an_equation
modified so that the distance can be positive or negative depending
on which side of the line it's on.
'''
return (self.a * x + self.b * y + self.c) * self.distance_multiplier
class PerceptualGradient:
GAMMA = .43
def __init__(self, color1, color2):
self.color1_lin = from_sRGB(color1)
self.bright1 = sum(self.color1_lin)**self.GAMMA
self.color2_lin = from_sRGB(color2)
self.bright2 = sum(self.color2_lin)**self.GAMMA
def color(self, t):
''' Return the gradient color for a parameter in the range [0.0, 1.0].
'''
intensity = lerp(self.bright1, self.bright2, t) ** (1/self.GAMMA)
col = lerp(self.color1_lin, self.color2_lin, t)
total = sum(col)
if total != 0:
col = [c * intensity / total for c in col]
col = to_sRGB(col)
return col
def fill_gradient(im, gradient_color, line_distance=None, max_distance=None):
w, h = im.size
if line_distance is None:
def line_distance(x, y):
return x - ((w-1) / 2.0) # vertical line through the middle
ul = line_distance(0, 0)
ur = line_distance(w-1, 0)
ll = line_distance(0, h-1)
lr = line_distance(w-1, h-1)
if max_distance is None:
low = min([ul, ur, ll, lr])
high = max([ul, ur, ll, lr])
max_distance = min(abs(low), abs(high))
pix = im.load()
for y in range(h):
for x in range(w):
dist = line_distance(x, y)
ratio = 0.5 + 0.5 * dist / max_distance
ratio = max(0.0, min(1.0, ratio))
if ul > ur: ratio = 1.0 - ratio
pix[x, y] = gradient_color(ratio)
>>> w, h = 406, 101
>>> im = Image.new('RGB', [w, h])
>>> line = Line([w/2 - h/2, 0], [w/2 + h/2, h-1])
>>> grad = PerceptualGradient([252, 13, 27], [41, 253, 46])
>>> fill_gradient(im, grad.color, line.distance, 71)
And here's the result of the above:
I wanted to point out the common mistake that happens in color mixing when people try average the r, g, and b components:
R = (R1 + R2) / 2;
G = (G1 + G2) / 2;
B = (B1 + B2) / 2;
You can watch the excellent 4 Minute Physics video on the subject:
Computer Color is Broken
The short version is that trying to niavely mixing two colors by averaging the components is wrong:
R = R1*(1-mix) + R2*mix;
G = G1*(1-mix) + G2*mix;
B = B1*(1-mix) + B2*mix;
The problem is that RGB colors on computers are in the sRGB color space. And those numerical values have a gamma of approx 2.4 applied. In order to mix the colors correctly you must first undo this gamma adjustment:
undo the gamma adjustment
apply your r,g,b mixing algorithm above
reapply the gamma
Without applying the inverse gamma, the mixed colors are darker than they're supposed to be. This can be seen in a side-by-side color gradient experiment.
Top (wrong): without accounting for sRGB gamma
Bottom (right): with accounting for sRGB gamma
The algorithm
Rather than the naive:
//This is the wrong algorithm. Don't do this
Color ColorMixWrong(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
Color result;
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
return result;
}
The correct form is:
//This is the wrong algorithm. Don't do this
Color ColorMix(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
//Invert sRGB gamma compression
c1 = InverseSrgbCompanding(c1);
c2 = InverseSrgbCompanding(c2);
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
//Reapply sRGB gamma compression
result = SrgbCompanding(result);
return result;
}
The gamma adjustment of sRGB isn't quite just 2.4. They actually have a linear section near black - so it's a piecewise function.
Color InverseSrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Inverse Red, Green, and Blue
if (r > 0.04045) r = Power((r+0.055)/1.055, 2.4) else r = r / 12.92;
if (g > 0.04045) g = Power((g+0.055)/1.055, 2.4) else g = g / 12.92;
if (b > 0.04045) b = Power((b+0.055)/1.055, 2.4) else b = b / 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
And you re-apply the companding as:
Color SrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Apply companding to Red, Green, and Blue
if (r > 0.0031308) r = 1.055*Power(r, 1/2.4)-0.055 else r = r * 12.92;
if (g > 0.0031308) g = 1.055*Power(g, 1/2.4)-0.055 else g = g * 12.92;
if (b > 0.0031308) b = 1.055*Power(b, 1/2.4)-0.055 else b = b * 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
Update: Mark's right
I tested #MarkRansom comment that the color blending in linear RGB space is good when colors are equal RGB total value; but the linear blending scale does not seem linear - especially for the black-white case.
So i tried mixing in Lab color space, as my intuition suggested (as well as this photography stackexchange answer):
Mark's algorithm sometimes falls over
That's quite simple. Besides angle, you would actually need one more parameter, i.e. how tight/wide the gradient should be. Let's instead just work with two points:
__D
__--
__--
__--
__--
M
Where M is the middle point of the gradient (between red and green) and D shows the direction and distance. Therefore, the gradient becomes:
M'
| __D
| __--
| __--
| __--
| __--
M
__-- |
__-- |
__-- |
__-- |
D'-- |
M"
Which means, along the vector D'D, you change from red to green, linearly as you already know. Along the vector M'M", you keep the color constant.
That was the theory. Now implementation depends on how you actually draw the pixels. Let's assume nothing and say you want to decide the color pixel by pixel (so you can draw in any pixel order.)
That's simple! Let's take a point:
M'
| SA __D
__--| __--
P-- |__ A __--
| -- /| \ __--
| -- | |_--
| --M
|__-- |
__--CA |
__-- |
__-- |
D'-- |
M"
Point P, has angle A with the coordinate system defined by M and D. We know that along the vector M'M", the color doesn't change, so sin(A) doesn't have any significance. Instead, cos(A) shows relatively how far towards D or D' the pixels color should go to. The point CA shows |PM|cos(A) which means the mapping of P over the line defined by M and D, or in details the length of the line PM multiplied by cos(A).
So the algorithm becomes as follows
For every pixel
Calculate CA
If farther than D, definitely green. If before D', definitely red.
Else find the color from red to green based on the ratio of |D'CA|/|D'D|
Based on your comments, if you want to determine the wideness from the canvas size, you can easily calculate D based on your input angle and canvas size, although I personally advise using a separate parameter.
The way I solved this is first by being able to calculate L (lightness) for an RGB color: calculate only the Y (luminance) of CIE XYZ and use that to get L.
static private float rgbToL (float r, float g, float b) {
float Y = 0.21263900587151f * r + 0.71516867876775f * g + 0.072192315360733f * b;
return Y <= 0.0088564516f ? Y * 9.032962962f : 1.16f * (float)Math.pow(Y, 1 / 3f) - 0.16f;
}
That gives L as 0-1 for any RGB. Then to lerp RGB: first interpolate linear RGB, then fix lightness by lerping the start/end L and scale the RGB by targetL / resultL. I posted an Rgb class that does this.
The same library also has an Hsl class which stores a color as HSLuv. It does interpolation by converting to linear RGB, interpolating, converting back to HSLuv and then fixing the brightness by interpolating L from the start/end HSLuv colors.
The comment of #user2799037 is totally correct:
each line is moved by some pixels to the right compared to the previous one.
The actual constant can be computed as the tangent of the angle you specified.
Related
Say that I have a scalar information assigned to every pixel of a 2D rectangle R, e.g. a grayscale image, or a depth-map/bump-map.
Such a scalar information is canonically encoded in a 8 bit image, which allows 2^8=256 different tones. Conveniently, tones here have a pretty intuitive meaning, e.g. white=0, black=1, gray=somewhere between 0 and 1.
Once the image is saved, e.g. in .png, the tone t, 0 <= t <= 255, is encoded in the RGB color [t,t,t] (which wastes 16bit per pixel).
Question:
Say, that the resolution provided by the 8 bit grayscale is not enough for my purpose.
Are there established ways to losslessly encode a 24bit (1D) information to the RGB color space preserving some intuitive meaning of colors?
You might want to consider a Hilbert curve. This is an embedding of a one-dimensional curve into a higher dimensional (2, 3 or more) space.
Here's what it might look like in the case of mapping a 1d curve into a two-dimensional colour space. The white curve has 2^16 = 65,536 points, and is embedded into a 2^8 x 2^8 = 256 x 256 dimensional colour space. Any two neighbouring points on the curve are very similar.
It's possible to generalize this to embed a curve into three dimensions, though I haven't got the code to hand. I can make the Matlab code that generates this plot available if you like, though I'm not convinced it will be very helpful...
This is the color scale you end up with by following the Hilbert curve through the image. Not super intuitive, but it does cover all 65,536 colors.
Edit - here's the code
function [x,y] = d2xy(n,d)
# D2XY Embeds a point d into an n*n square (assuming n is a power of 2). For
# example, if n = 8 then we can embed the points d = 0:63 into it.
x = uint32(0);
y = uint32(0);
t = uint32(d);
n = uint32(n);
s = uint32(1);
while s < n
rx = bitand(1, idivide(t, 2));
ry = bitand(1, bitxor(t,rx));
[x,y] = rot(s,x,y,rx,ry);
x = x + s * rx;
y = y + s * ry;
t = idivide(t, 4);
s = s * 2;
end
end
function [x,y] = rot(n,x,y,rx,ry)
if ry == 0
if rx == 1
x = n-1-x;
y = n-1-y;
end
# Swap x and y
t = x; x = y; y = t;
end
end
b = zeros(65536, 2);
for d = 0:65535
[x,y] = d2xy(256, d);
b(d+1,1) = x;
b(d+1,2) = y;
end
plot(b(:,1), b(:,2)), xlim([-1,256]), ylim([-1,256]), axis square
HSV or HSI color space is the exactly what you are looking for:
http://www.mathworks.com/help/matlab/ref/rgb2hsv.html
HSI means hue, saturation and illumination or intensity. Hue gives the color frequency and it is quite intuitive to represent colors
I think you could quantize to 8, i.e. distribute intensity / 8 to as equal to 3 colors (you get a grey) and add the remaining bits (intensity % 8) to LSB of separed R,G,B. We can do with a local addition. Something like (untested but compiled)
int convert(int N) {
int Q = N / 8, // Q + Z == N
Z = N % 8;
int R = (Q >> 0) & 0xFF,
G = (Q >> 8) & 0xFF,
B = (Q >> 16) & 0xFF,
S = R + ((Z >> 0) & 1),
H = G + ((Z >> 1) & 1),
C = B + ((Z >> 2) & 1);
return (S << 0) + (H << 8) + (C << 16);
}
I need an algorithm to convert the HCL color to RGB and backward RGB to HCL keeping in mind that these color spaces have different gamuts (I need to constrain the HCL colors to those that can be reproduced in RGB color space). What is the algorithm for this (the algorithm is intended to be implemented in Wolfram Mathematica that supports natively only RGB color)? I have no experience in working with color spaces.
P.S. Some articles about HCL color:
M. Sarifuddin (2005). A new perceptually uniform color space with associated color similarity measure for content–based image and video retrieval.
Zeileis, Hornik and Murrell (2009): Escaping RGBland: Selecting Colors for Statistical Graphics // Computational Statistics & Data Analysis Volume 53, Issue 9, 1 July 2009, Pages 3259-3270
UPDATE:
As pointed out by Jonathan Jansson, in the above two articles different color spaces are described by the name "HCL": "The second article uses LCh(uv) which is the same as Luv* but described in polar coordiates where h(uv) is the angle of the u* and v* coordinate and C* is the magnitude of that vector". So in fact I need an algorithm for converting RGB to Luv* and backward.
I was just learing about the HCL colorspace too. The colorspace used in the two articles in your question seems to be different color spaces though.
The second article uses L*C*h(uv) which is the same as L*u*v* but described in polar coordiates where h(uv) is the angle of the u* and v* coordiate and C* is the magnitude of that vector.
The LCH color space in the first article seems to describe another color space than that uses a more algorithmical conversion. There is also another version of the first paper here: http://isjd.pdii.lipi.go.id/admin/jurnal/14209102121.pdf
If you meant to use the CIE L*u*v* you need to first convert sRGB to CIE XYZ and then convert to CIE L*u*v*. RGB actually refers to sRGB in most cases so there is no need to convert from RGB to sRGB.
All source code needed
Good article about how conversion to XYZ works
Nice online converter
But I can't answer your question about how to constrain the colors to the sRGB space. You could just throw away RGB colors which are outside the range 0 to 1 after conversion. Just clamping colors can give quite weird results. Try to go to the converter and enter the color RGB 0 0 255 and convert to L*a*b* (similar to L*u*v*) and then increase L* to say 70 and convert it back and the result is certainly not blue anymore.
Edit: Corrected the URL
Edit: Merged another answer into this answer
HCL is a very generic name there are a lot of ways to have a hue, a chroma, and a lightness. Chroma.js for example has something it calls HCL which is polar coord converted Lab (when you look at the actual code). Other implementations, even ones linked from that same site use Polar Luv. Since you can simply borrow the L factor and derive the hue by converting to polar coords these are both valid ways to get those three elements. It is far better to call them Polar Lab and Polar Luv, because of the confusion factor.
M. Sarifuddin (2005)'s algorithm is not Polar Luv or Polar Lab and is computationally simpler (you don't need to derive Lab or Luv space first), and may actually be better. There are some things that seem wrong in the paper. For example applying a Euclidean distance to a CIE L*C*H* colorspace. The use of a Hue means it's necessarily round, and just jamming that number into A²+B²+C² is going to give you issues. The same is true to apply a hue-based colorspace to D94 or D00 as these are distance algorithms with built in corrections specific to Lab colorspace. Unless I'm missing something there, I'd disregard figures 6-8. And I question the rejection tolerances in the graphics. You could set a lower threshold and do better, and the numbers between color spaces are not normalized. In any event, despite a few seeming flaws in the paper, the algorithm described is worth a shot. You might want to do Euclidean on RGB if it doesn't really matter much. But, if you're shopping around for color distance algorithms, here you go.
Here is HCL as given by M. Sarifuddin implemented in Java. Having read the paper repeatedly I cannot avoid the conclusion that it scales the distance by a factor of between 0.16 and 180.16 with regard to the change in hue in the distance_hcl routine. This is such a profound factor that it almost cannot be right at all. And makes the color matching suck. I have the paper's line commented out and use a line with only the Al factor. Scaling Luminescence by constant ~1.4 factor isn't going to make it unusable. With neither scale factor it ends up being identical to cycldistance.
http://w3.uqo.ca/missaoui/Publications/TRColorSpace.zip is corrected and improved version of the paper.
static final public double Y0 = 100;
static final public double gamma = 3;
static final public double Al = 1.4456;
static final public double Ach_inc = 0.16;
public void rgb2hcl(double[] returnarray, int r, int g, int b) {
double min = Math.min(Math.min(r, g), b);
double max = Math.max(Math.max(r, g), b);
if (max == 0) {
returnarray[0] = 0;
returnarray[1] = 0;
returnarray[2] = 0;
return;
}
double alpha = (min / max) / Y0;
double Q = Math.exp(alpha * gamma);
double rg = r - g;
double gb = g - b;
double br = b - r;
double L = ((Q * max) + ((1 - Q) * min)) / 2;
double C = Q * (Math.abs(rg) + Math.abs(gb) + Math.abs(br)) / 3;
double H = Math.toDegrees(Math.atan2(gb, rg));
/*
//the formulae given in paper, don't work.
if (rg >= 0 && gb >= 0) {
H = 2 * H / 3;
} else if (rg >= 0 && gb < 0) {
H = 4 * H / 3;
} else if (rg < 0 && gb >= 0) {
H = 180 + 4 * H / 3;
} else if (rg < 0 && gb < 0) {
H = 2 * H / 3 - 180;
} // 180 causes the parts to overlap (green == red) and it oddly crumples up bits of the hue for no good reason. 2/3H and 4/3H expanding and contracting quandrants.
*/
if (rg < 0) {
if (gb >= 0) H = 90 + H;
else { H = H - 90; }
} //works
returnarray[0] = H;
returnarray[1] = C;
returnarray[2] = L;
}
public double cycldistance(double[] hcl1, double[] hcl2) {
double dL = hcl1[2] - hcl2[2];
double dH = Math.abs(hcl1[0] - hcl2[0]);
double C1 = hcl1[1];
double C2 = hcl2[1];
return Math.sqrt(dL*dL + C1*C1 + C2*C2 - 2*C1*C2*Math.cos(Math.toRadians(dH)));
}
public double distance_hcl(double[] hcl1, double[] hcl2) {
double c1 = hcl1[1];
double c2 = hcl2[1];
double Dh = Math.abs(hcl1[0] - hcl2[0]);
if (Dh > 180) Dh = 360 - Dh;
double Ach = Dh + Ach_inc;
double AlDl = Al * Math.abs(hcl1[2] - hcl2[2]);
return Math.sqrt(AlDl * AlDl + (c1 * c1 + c2 * c2 - 2 * c1 * c2 * Math.cos(Math.toRadians(Dh))));
//return Math.sqrt(AlDl * AlDl + Ach * (c1 * c1 + c2 * c2 - 2 * c1 * c2 * Math.cos(Math.toRadians(Dh))));
}
I'm familiar with quite a few color spaces, but this one is new to me. Alas, Mathematica's ColorConvert doesn't know it either.
I found an rgb2hcl routine here, but no routine going the other way.
A more comprehensive colorspace conversion package can be found here. It seems to be able to do conversions to and from all kinds of color spaces. Look for the file colorspace.c in colorspace_1.1-0.tar.gz\colorspace_1.1-0.tar\colorspace\src. Note that HCL is known as PolarLUV in this package.
As mentioned in other answers, there are a lot of ways to implement an HCL colorspace and map that into RGB.
HSLuv ended up being what I used, and has MIT-licensed implementations in C, C#, Go, Java, PHP, and several other languages. It's similar to CIELUV LCh but fully maps to RGB. The implementations are available on GitHub.
Here's a short graphic from the website describing the HSLuv color space, with the implementation output in the right two panels:
I was looking to interpolate colors on the web and found HCL to be the most fitting color space, I couldn't find any library making the conversion straightforward and performant so I wrote my own.
There's many constants at play, and some of them vary significantly depending on where you source them from.
My target being the web, I figured I'd be better off matching the chromium source code. Here's a minimized snippet written in Typescript, the sRGB XYZ matrix is precomputed and all constants are inlined.
const rgb255 = (v: number) => (v < 255 ? (v > 0 ? v : 0) : 255);
const b1 = (v: number) => (v > 0.0031308 ? v ** (1 / 2.4) * 269.025 - 14.025 : v * 3294.6);
const b2 = (v: number) => (v > 0.2068965 ? v ** 3 : (v - 4 / 29) * (108 / 841));
const a1 = (v: number) => (v > 10.314724 ? ((v + 14.025) / 269.025) ** 2.4 : v / 3294.6);
const a2 = (v: number) => (v > 0.0088564 ? v ** (1 / 3) : v / (108 / 841) + 4 / 29);
function fromHCL(h: number, c: number, l: number): RGB {
const y = b2((l = (l + 16) / 116));
const x = b2(l + (c / 500) * Math.cos((h *= Math.PI / 180)));
const z = b2(l - (c / 200) * Math.sin(h));
return [
rgb255(b1(x * 3.021973625 - y * 1.617392459 - z * 0.404875592)),
rgb255(b1(x * -0.943766287 + y * 1.916279586 + z * 0.027607165)),
rgb255(b1(x * 0.069407491 - y * 0.22898585 + z * 1.159737864)),
];
}
function toHCL(r: number, g: number, b: number) {
const y = a2((r = a1(r)) * 0.222488403 + (g = a1(g)) * 0.716873169 + (b = a1(b)) * 0.06060791);
const l = 500 * (a2(r * 0.452247074 + g * 0.399439023 + b * 0.148375274) - y);
const q = 200 * (y - a2(r * 0.016863605 + g * 0.117638439 + b * 0.865350722));
const h = Math.atan2(q, l) * (180 / Math.PI);
return [h < 0 ? h + 360 : h, Math.sqrt(l * l + q * q), 116 * y - 16];
}
Here's a playground for the above snippet.
It includes d3's interpolateHCL and the browser native css transition for comparaison.
https://svelte.dev/repl/0a40a8348f8841d0b7007c58e4d9b54c
Here's a gist to do the conversion to and from any web color format and interpolate it in the HCL color space.
https://gist.github.com/pushkine/c8ba98294233d32ab71b7e19a0ebdbb9
I think
if (rg < 0) {
if (gb >= 0) H = 90 + H;
else { H = H - 90; }
} //works
is not really necessary because of atan2(,) instead of atan(/) from paper (but dont now anything about java atan2(,) especially
I'm looking for some kind of formula or algorithm to determine the brightness of a color given the RGB values. I know it can't be as simple as adding the RGB values together and having higher sums be brighter, but I'm kind of at a loss as to where to start.
The method could vary depending on your needs. Here are 3 ways to calculate Luminance:
Luminance (standard for certain colour spaces): (0.2126*R + 0.7152*G + 0.0722*B) source
Luminance (perceived option 1): (0.299*R + 0.587*G + 0.114*B) source
Luminance (perceived option 2, slower to calculate): sqrt( 0.241*R^2 + 0.691*G^2 + 0.068*B^2 ) → sqrt( 0.299*R^2 + 0.587*G^2 + 0.114*B^2 ) (thanks to #MatthewHerbst) source
[Edit: added examples using named css colors sorted with each method.]
I think what you are looking for is the RGB -> Luma conversion formula.
Photometric/digital ITU BT.709:
Y = 0.2126 R + 0.7152 G + 0.0722 B
Digital ITU BT.601 (gives more weight to the R and B components):
Y = 0.299 R + 0.587 G + 0.114 B
If you are willing to trade accuracy for perfomance, there are two approximation formulas for this one:
Y = 0.33 R + 0.5 G + 0.16 B
Y = 0.375 R + 0.5 G + 0.125 B
These can be calculated quickly as
Y = (R+R+B+G+G+G)/6
Y = (R+R+R+B+G+G+G+G)>>3
The "Accepted" Answer is Incorrect and Incomplete
The only answers that are accurate are the #jive-dadson and #EddingtonsMonkey answers, and in support #nils-pipenbrinck. The other answers (including the accepted) are linking to or citing sources that are either wrong, irrelevant, obsolete, or broken.
Briefly:
sRGB must be LINEARIZED before applying the coefficients.
Luminance (L or Y) is linear as is light.
Perceived lightness (L*) is nonlinear as is human perception.
HSV and HSL are not even remotely accurate in terms of perception.
The IEC standard for sRGB specifies a threshold of 0.04045 it is NOT 0.03928 (that was from an obsolete early draft).
To be useful (i.e. relative to perception), Euclidian distances require a perceptually uniform Cartesian vector space such as CIELAB. sRGB is not one.
What follows is a correct and complete answer:
Because this thread appears highly in search engines, I am adding this answer to clarify the various misconceptions on the subject.
Luminance is a linear measure of light, spectrally weighted for normal vision but not adjusted for the non-linear perception of lightness. It can be a relative measure, Y as in CIEXYZ, or as L, an absolute measure in cd/m2 (not to be confused with L*).
Perceived lightness is used by some vision models such as CIELAB, here L* (Lstar) is a value of perceptual lightness, and is non-linear to approximate the human vision non-linear response curve. (That is, linear to perception but therefore non linear to light).
Brightness is a perceptual attribute, it does not have a "physical" measure. However some color appearance models do have a value, usualy denoted as "Q" for perceived brightness, which is different than perceived lightness.
Luma (Y´ prime) is a gamma encoded, weighted signal used in some video encodings (Y´I´Q´). It is not to be confused with linear luminance.
Gamma or transfer curve (TRC) is a curve that is often similar to the perceptual curve, and is commonly applied to image data for storage or broadcast to reduce perceived noise and/or improve data utilization (and related reasons).
To determine perceived lightness, first convert gamma encoded R´G´B´ image values to linear luminance (L or Y ) and then to non-linear perceived lightness (L*)
TO FIND LUMINANCE:
...Because apparently it was lost somewhere...
Step One:
Convert all sRGB 8 bit integer values to decimal 0.0-1.0
vR = sR / 255;
vG = sG / 255;
vB = sB / 255;
Step Two:
Convert a gamma encoded RGB to a linear value. sRGB (computer standard) for instance requires a power curve of approximately V^2.2, though the "accurate" transform is:
Where V´ is the gamma-encoded R, G, or B channel of sRGB.
Pseudocode:
function sRGBtoLin(colorChannel) {
// Send this function a decimal sRGB gamma encoded color value
// between 0.0 and 1.0, and it returns a linearized value.
if ( colorChannel <= 0.04045 ) {
return colorChannel / 12.92;
} else {
return pow((( colorChannel + 0.055)/1.055),2.4);
}
}
Step Three:
To find Luminance (Y) apply the standard coefficients for sRGB:
Pseudocode using above functions:
Y = (0.2126 * sRGBtoLin(vR) + 0.7152 * sRGBtoLin(vG) + 0.0722 * sRGBtoLin(vB))
TO FIND PERCEIVED LIGHTNESS:
Step Four:
Take luminance Y from above, and transform to L*
Pseudocode:
function YtoLstar(Y) {
// Send this function a luminance value between 0.0 and 1.0,
// and it returns L* which is "perceptual lightness"
if ( Y <= (216/24389)) { // The CIE standard states 0.008856 but 216/24389 is the intent for 0.008856451679036
return Y * (24389/27); // The CIE standard states 903.3, but 24389/27 is the intent, making 903.296296296296296
} else {
return pow(Y,(1/3)) * 116 - 16;
}
}
L* is a value from 0 (black) to 100 (white) where 50 is the perceptual "middle grey". L* = 50 is the equivalent of Y = 18.4, or in other words an 18% grey card, representing the middle of a photographic exposure (Ansel Adams zone V).
References:
IEC 61966-2-1:1999 Standard
Wikipedia sRGB
Wikipedia CIELAB
Wikipedia CIEXYZ
Charles Poynton's Gamma FAQ
I have made comparison of the three algorithms in the accepted answer. I generated colors in cycle where only about every 400th color was used. Each color is represented by 2x2 pixels, colors are sorted from darkest to lightest (left to right, top to bottom).
1st picture - Luminance (relative)
0.2126 * R + 0.7152 * G + 0.0722 * B
2nd picture - http://www.w3.org/TR/AERT#color-contrast
0.299 * R + 0.587 * G + 0.114 * B
3rd picture - HSP Color Model
sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)
4th picture - WCAG 2.0 SC 1.4.3 relative luminance and contrast ratio formula (see #Synchro's answer here)
Pattern can be sometimes spotted on 1st and 2nd picture depending on the number of colors in one row. I never spotted any pattern on picture from 3rd or 4th algorithm.
If i had to choose i would go with algorithm number 3 since its much easier to implement and its about 33% faster than the 4th.
Below is the only CORRECT algorithm for converting sRGB images, as used in browsers etc., to grayscale.
It is necessary to apply an inverse of the gamma function for the color space before calculating the inner product. Then you apply the gamma function to the reduced value. Failure to incorporate the gamma function can result in errors of up to 20%.
For typical computer stuff, the color space is sRGB. The right numbers for sRGB are approx. 0.21, 0.72, 0.07. Gamma for sRGB is a composite function that approximates exponentiation by 1/(2.2). Here is the whole thing in C++.
// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;
// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
double c = ic/255.0;
if ( c <= 0.04045 )
return c/12.92;
else
return pow(((c+0.055)/(1.055)),2.4);
}
// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
if(v<=0.0031308)
v *= 12.92;
else
v = 1.055*pow(v,1.0/2.4)-0.055;
return int(v*255+0.5); // This is correct in C++. Other languages may not
// require +0.5
}
// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
return gam_sRGB(
rY*inv_gam_sRGB(r) +
gY*inv_gam_sRGB(g) +
bY*inv_gam_sRGB(b)
);
}
Rather than getting lost amongst the random selection of formulae mentioned here, I suggest you go for the formula recommended by W3C standards.
Here's a straightforward but exact PHP implementation of the WCAG 2.0 SC 1.4.3 relative luminance and contrast ratio formulae. It produces values that are appropriate for evaluating the ratios required for WCAG compliance, as on this page, and as such is suitable and appropriate for any web app. This is trivial to port to other languages.
/**
* Calculate relative luminance in sRGB colour space for use in WCAG 2.0 compliance
* #link http://www.w3.org/TR/WCAG20/#relativeluminancedef
* #param string $col A 3 or 6-digit hex colour string
* #return float
* #author Marcus Bointon <marcus#synchromedia.co.uk>
*/
function relativeluminance($col) {
//Remove any leading #
$col = trim($col, '#');
//Convert 3-digit to 6-digit
if (strlen($col) == 3) {
$col = $col[0] . $col[0] . $col[1] . $col[1] . $col[2] . $col[2];
}
//Convert hex to 0-1 scale
$components = array(
'r' => hexdec(substr($col, 0, 2)) / 255,
'g' => hexdec(substr($col, 2, 2)) / 255,
'b' => hexdec(substr($col, 4, 2)) / 255
);
//Correct for sRGB
foreach($components as $c => $v) {
if ($v <= 0.04045) {
$components[$c] = $v / 12.92;
} else {
$components[$c] = pow((($v + 0.055) / 1.055), 2.4);
}
}
//Calculate relative luminance using ITU-R BT. 709 coefficients
return ($components['r'] * 0.2126) + ($components['g'] * 0.7152) + ($components['b'] * 0.0722);
}
/**
* Calculate contrast ratio acording to WCAG 2.0 formula
* Will return a value between 1 (no contrast) and 21 (max contrast)
* #link http://www.w3.org/TR/WCAG20/#contrast-ratiodef
* #param string $c1 A 3 or 6-digit hex colour string
* #param string $c2 A 3 or 6-digit hex colour string
* #return float
* #author Marcus Bointon <marcus#synchromedia.co.uk>
*/
function contrastratio($c1, $c2) {
$y1 = relativeluminance($c1);
$y2 = relativeluminance($c2);
//Arrange so $y1 is lightest
if ($y1 < $y2) {
$y3 = $y1;
$y1 = $y2;
$y2 = $y3;
}
return ($y1 + 0.05) / ($y2 + 0.05);
}
To add what all the others said:
All these equations work kinda well in practice, but if you need to be very precise you have to first convert the color to linear color space (apply inverse image-gamma), do the weight average of the primary colors and - if you want to display the color -
take the luminance back into the monitor gamma.
The luminance difference between ingnoring gamma and doing proper gamma is up to 20% in the dark grays.
Interestingly, this formulation for RGB=>HSV just uses v=MAX3(r,g,b). In other words, you can use the maximum of (r,g,b) as the V in HSV.
I checked and on page 575 of Hearn & Baker this is how they compute "Value" as well.
I was solving a similar task today in javascript.
I've settled on this getPerceivedLightness(rgb) function for a HEX RGB color.
It deals with Helmholtz-Kohlrausch effect via Fairchild and Perrotta formula for luminance correction.
/**
* Converts RGB color to CIE 1931 XYZ color space.
* https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
* #param {string} hex
* #return {number[]}
*/
export function rgbToXyz(hex) {
const [r, g, b] = hexToRgb(hex).map(_ => _ / 255).map(sRGBtoLinearRGB)
const X = 0.4124 * r + 0.3576 * g + 0.1805 * b
const Y = 0.2126 * r + 0.7152 * g + 0.0722 * b
const Z = 0.0193 * r + 0.1192 * g + 0.9505 * b
// For some reason, X, Y and Z are multiplied by 100.
return [X, Y, Z].map(_ => _ * 100)
}
/**
* Undoes gamma-correction from an RGB-encoded color.
* https://en.wikipedia.org/wiki/SRGB#Specification_of_the_transformation
* https://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color
* #param {number}
* #return {number}
*/
function sRGBtoLinearRGB(color) {
// Send this function a decimal sRGB gamma encoded color value
// between 0.0 and 1.0, and it returns a linearized value.
if (color <= 0.04045) {
return color / 12.92
} else {
return Math.pow((color + 0.055) / 1.055, 2.4)
}
}
/**
* Converts hex color to RGB.
* https://stackoverflow.com/questions/5623838/rgb-to-hex-and-hex-to-rgb
* #param {string} hex
* #return {number[]} [rgb]
*/
function hexToRgb(hex) {
const match = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex)
if (match) {
match.shift()
return match.map(_ => parseInt(_, 16))
}
}
/**
* Converts CIE 1931 XYZ colors to CIE L*a*b*.
* The conversion formula comes from <http://www.easyrgb.com/en/math.php>.
* https://github.com/cangoektas/xyz-to-lab/blob/master/src/index.js
* #param {number[]} color The CIE 1931 XYZ color to convert which refers to
* the D65/2° standard illuminant.
* #returns {number[]} The color in the CIE L*a*b* color space.
*/
// X, Y, Z of a "D65" light source.
// "D65" is a standard 6500K Daylight light source.
// https://en.wikipedia.org/wiki/Illuminant_D65
const D65 = [95.047, 100, 108.883]
export function xyzToLab([x, y, z]) {
[x, y, z] = [x, y, z].map((v, i) => {
v = v / D65[i]
return v > 0.008856 ? Math.pow(v, 1 / 3) : v * 7.787 + 16 / 116
})
const l = 116 * y - 16
const a = 500 * (x - y)
const b = 200 * (y - z)
return [l, a, b]
}
/**
* Converts Lab color space to Luminance-Chroma-Hue color space.
* http://www.brucelindbloom.com/index.html?Eqn_Lab_to_LCH.html
* #param {number[]}
* #return {number[]}
*/
export function labToLch([l, a, b]) {
const c = Math.sqrt(a * a + b * b)
const h = abToHue(a, b)
return [l, c, h]
}
/**
* Converts a and b of Lab color space to Hue of LCH color space.
* https://stackoverflow.com/questions/53733379/conversion-of-cielab-to-cielchab-not-yielding-correct-result
* #param {number} a
* #param {number} b
* #return {number}
*/
function abToHue(a, b) {
if (a >= 0 && b === 0) {
return 0
}
if (a < 0 && b === 0) {
return 180
}
if (a === 0 && b > 0) {
return 90
}
if (a === 0 && b < 0) {
return 270
}
let xBias
if (a > 0 && b > 0) {
xBias = 0
} else if (a < 0) {
xBias = 180
} else if (a > 0 && b < 0) {
xBias = 360
}
return radiansToDegrees(Math.atan(b / a)) + xBias
}
function radiansToDegrees(radians) {
return radians * (180 / Math.PI)
}
function degreesToRadians(degrees) {
return degrees * Math.PI / 180
}
/**
* Saturated colors appear brighter to human eye.
* That's called Helmholtz-Kohlrausch effect.
* Fairchild and Pirrotta came up with a formula to
* calculate a correction for that effect.
* "Color Quality of Semiconductor and Conventional Light Sources":
* https://books.google.ru/books?id=ptDJDQAAQBAJ&pg=PA45&lpg=PA45&dq=fairchild+pirrotta+correction&source=bl&ots=7gXR2MGJs7&sig=ACfU3U3uIHo0ZUdZB_Cz9F9NldKzBix0oQ&hl=ru&sa=X&ved=2ahUKEwi47LGivOvmAhUHEpoKHU_ICkIQ6AEwAXoECAkQAQ#v=onepage&q=fairchild%20pirrotta%20correction&f=false
* #return {number}
*/
function getLightnessUsingFairchildPirrottaCorrection([l, c, h]) {
const l_ = 2.5 - 0.025 * l
const g = 0.116 * Math.abs(Math.sin(degreesToRadians((h - 90) / 2))) + 0.085
return l + l_ * g * c
}
export function getPerceivedLightness(hex) {
return getLightnessUsingFairchildPirrottaCorrection(labToLch(xyzToLab(rgbToXyz(hex))))
}
Consider this an addendum to Myndex's excellent answer. As he (and others) explain, the algorithms for calculating the relative luminance (and the perceptual lightness) of an RGB colour are designed to work with linear RGB values. You can't just apply them to raw sRGB values and hope to get the same results.
Well that all sounds great in theory, but I really needed to see the evidence for myself, so, inspired by Petr Hurtak's colour gradients, I went ahead and made my own. They illustrate the two most common algorithms (ITU-R Recommendation BT.601 and BT.709), and clearly demonstrate why you should do your calculations with linear values (not gamma-corrected ones).
Firstly, here are the results from the older ITU BT.601 algorithm. The one on the left uses raw sRGB values. The one on the right uses linear values.
ITU-R BT.601 colour luminance gradients
0.299 R + 0.587 G + 0.114 B
At this resolution, the left one actually looks surprisingly good! But if you look closely, you can see a few issues. At a higher resolution, unwanted artefacts are more obvious:
The linear one doesn't suffer from these, but there's quite a lot of noise there. Let's compare it to ITU-R Recommendation BT.709…
ITU-R BT.709 colour luminance gradients
0.2126 R + 0.7152 G + 0.0722 B
Oh boy. Clearly not intended to be used with raw sRGB values! And yet, that's exactly what most people do!
At high-res, you can really see how effective this algorithm is when using linear values. It doesn't have nearly as much noise as the earlier one. While none of these algorithms are perfect, this one is about as good as it gets.
Here's a bit of C code that should properly calculate perceived luminance.
// reverses the rgb gamma
#define inverseGamma(t) (((t) <= 0.0404482362771076) ? ((t)/12.92) : pow(((t) + 0.055)/1.055, 2.4))
//CIE L*a*b* f function (used to convert XYZ to L*a*b*) http://en.wikipedia.org/wiki/Lab_color_space
#define LABF(t) ((t >= 8.85645167903563082e-3) ? powf(t,0.333333333333333) : (841.0/108.0)*(t) + (4.0/29.0))
float
rgbToCIEL(PIXEL p)
{
float y;
float r=p.r/255.0;
float g=p.g/255.0;
float b=p.b/255.0;
r=inverseGamma(r);
g=inverseGamma(g);
b=inverseGamma(b);
//Observer = 2°, Illuminant = D65
y = 0.2125862307855955516*r + 0.7151703037034108499*g + 0.07220049864333622685*b;
// At this point we've done RGBtoXYZ now do XYZ to Lab
// y /= WHITEPOINT_Y; The white point for y in D65 is 1.0
y = LABF(y);
/* This is the "normal conversion which produces values scaled to 100
Lab.L = 116.0*y - 16.0;
*/
return(1.16*y - 0.16); // return values for 0.0 >=L <=1.0
}
RGB Luminance value = 0.3 R + 0.59 G + 0.11 B
http://www.scantips.com/lumin.html
If you're looking for how close to white the color is you can use Euclidean Distance from (255, 255, 255)
I think RGB color space is perceptively non-uniform with respect to the L2 euclidian distance.
Uniform spaces include CIE LAB and LUV.
The inverse-gamma formula by Jive Dadson needs to have the half-adjust removed when implemented in Javascript, i.e. the return from function gam_sRGB needs to be return int(v*255); not return int(v*255+.5); Half-adjust rounds up, and this can cause a value one too high on a R=G=B i.e. grey colour triad. Greyscale conversion on a R=G=B triad should produce a value equal to R; it's one proof that the formula is valid.
See Nine Shades of Greyscale for the formula in action (without the half-adjust).
I wonder how those rgb coefficients were determined. I did an experiment myself and I ended up with the following:
Y = 0.267 R + 0.642 G + 0.091 B
Close but but obviously different than the long established ITU coefficients. I wonder if those coefficients could be different for each and every observer, because we all may have a different amount of cones and rods on the retina in our eyes, and especially the ratio between the different types of cones may differ.
For reference:
ITU BT.709:
Y = 0.2126 R + 0.7152 G + 0.0722 B
ITU BT.601:
Y = 0.299 R + 0.587 G + 0.114 B
I did the test by quickly moving a small gray bar on a bright red, bright green and bright blue background, and adjusting the gray until it blended in just as much as possible. I also repeated that test with other shades. I repeated the test on different displays, even one with a fixed gamma factor of 3.0, but it all looks the same to me. More over, the ITU coefficients literally are wrong for my eyes.
And yes, I presumably have a normal color vision.
As mentioned by #Nils Pipenbrinck:
All these equations work kinda well in practice, but if you need to be very precise you have to [do some extra gamma stuff]. The luminance difference between ignoring gamma and doing proper gamma is up to 20% in the dark grays.
Here's a fully self-contained JavaScript function that does the "extra" stuff to get that extra accuracy. It's based on Jive Dadson's C++ answer to this same question.
// Returns greyscale "brightness" (0-1) of the given 0-255 RGB values
// Based on this C++ implementation: https://stackoverflow.com/a/13558570/11950764
function rgbBrightness(r, g, b) {
let v = 0;
v += 0.212655 * ((r/255) <= 0.04045 ? (r/255)/12.92 : Math.pow(((r/255)+0.055)/1.055, 2.4));
v += 0.715158 * ((g/255) <= 0.04045 ? (g/255)/12.92 : Math.pow(((g/255)+0.055)/1.055, 2.4));
v += 0.072187 * ((b/255) <= 0.04045 ? (b/255)/12.92 : Math.pow(((b/255)+0.055)/1.055, 2.4));
return v <= 0.0031308 ? v*12.92 : 1.055 * Math.pow(v,1.0/2.4) - 0.055;
}
See Myndex's answer for a more accurate calculation.
The HSV colorspace should do the trick, see the wikipedia article depending on the language you're working in you may get a library conversion .
H is hue which is a numerical value for the color (i.e. red, green...)
S is the saturation of the color, i.e. how 'intense' it is
V is the 'brightness' of the color.
The 'V' of HSV is probably what you're looking for. MATLAB has an rgb2hsv function and the previously cited wikipedia article is full of pseudocode. If an RGB2HSV conversion is not feasible, a less accurate model would be the grayscale version of the image.
To determine the brightness of a color with R, I convert the RGB system color in HSV system color.
In my script, I use the HEX system code before for other reason, but you can start also with RGB system code with rgb2hsv {grDevices}. The documentation is here.
Here is this part of my code:
sample <- c("#010101", "#303030", "#A6A4A4", "#020202", "#010100")
hsvc <-rgb2hsv(col2rgb(sample)) # convert HEX to HSV
value <- as.data.frame(hsvc) # create data.frame
value <- value[3,] # extract the information of brightness
order(value) # ordrer the color by brightness
My SIMPLE conclusion based on all these answers, for most practical use cases, you only need:
brightness = 0.2*r + 0.7*g + 0.1*b
When r,g,b values are between 0 to 255, then the brightness scale is also between 0 (=black) to 255 (=white).
It can be fine tuned, but, there's usually no need.
For clarity, the formulas that use a square root need to be
sqrt(coefficient * (colour_value^2))
not
sqrt((coefficient * colour_value))^2
The proof of this lies in the conversion of a R=G=B triad to greyscale R. That will only be true if you square the colour value, not the colour value times coefficient. See Nine Shades of Greyscale
Please define brightness. If you're looking for how close to white the color is you can use Euclidean Distance from (255, 255, 255)
I'm currently writing a program to generate really enormous (65536x65536 pixels and above) Mandelbrot images, and I'd like to devise a spectrum and coloring scheme that does them justice. The wikipedia featured mandelbrot image seems like an excellent example, especially how the palette remains varied at all zoom levels of the sequence. I'm not sure if it's rotating the palette or doing some other trick to achieve this, though.
I'm familiar with the smooth coloring algorithm for the mandelbrot set, so I can avoid banding, but I still need a way to assign colors to output values from this algorithm.
The images I'm generating are pyramidal (eg, a series of images, each of which has half the dimensions of the previous one), so I can use a rotating palette of some sort, as long as the change in the palette between subsequent zoom levels isn't too obvious.
This is the smooth color algorithm:
Lets say you start with the complex number z0 and iterate n times until it escapes. Let the end point be zn.
A smooth value would be
nsmooth := n + 1 - Math.log(Math.log(zn.abs()))/Math.log(2)
This only works for mandelbrot, if you want to compute a smooth function for julia sets, then use
Complex z = new Complex(x,y);
double smoothcolor = Math.exp(-z.abs());
for(i=0;i<max_iter && z.abs() < 30;i++) {
z = f(z);
smoothcolor += Math.exp(-z.abs());
}
Then smoothcolor is in the interval (0,max_iter).
Divide smoothcolor with max_iter to get a value between 0 and 1.
To get a smooth color from the value:
This can be called, for example (in Java):
Color.HSBtoRGB(0.95f + 10 * smoothcolor ,0.6f,1.0f);
since the first value in HSB color parameters is used to define the color from the color circle.
Use the smooth coloring algorithm to calculate all of the values within the viewport, then map your palette from the lowest to highest value. Thus, as you zoom in and the higher values are no longer visible, the palette will scale down as well. With the same constants for n and B you will end up with a range of 0.0 to 1.0 for a fully zoomed out set, but at deeper zooms the dynamic range will shrink, to say 0.0 to 0.1 at 200% zoom, 0.0 to 0.0001 at 20000% zoom, etc.
Here is a typical inner loop for a naive Mandelbrot generator. To get a smooth colour you want to pass in the real and complex "lengths" and the iteration you bailed out at. I've included the Mandelbrot code so you can see which vars to use to calculate the colour.
for (ix = 0; ix < panelMain.Width; ix++)
{
cx = cxMin + (double )ix * pixelWidth;
// init this go
zx = 0.0;
zy = 0.0;
zx2 = 0.0;
zy2 = 0.0;
for (i = 0; i < iterationMax && ((zx2 + zy2) < er2); i++)
{
zy = zx * zy * 2.0 + cy;
zx = zx2 - zy2 + cx;
zx2 = zx * zx;
zy2 = zy * zy;
}
if (i == iterationMax)
{
// interior, part of set, black
// set colour to black
g.FillRectangle(sbBlack, ix, iy, 1, 1);
}
else
{
// outside, set colour proportional to time/distance it took to converge
// set colour not black
SolidBrush sbNeato = new SolidBrush(MapColor(i, zx2, zy2));
g.FillRectangle(sbNeato, ix, iy, 1, 1);
}
and MapColor below: (see this link to get the ColorFromHSV function)
private Color MapColor(int i, double r, double c)
{
double di=(double )i;
double zn;
double hue;
zn = Math.Sqrt(r + c);
hue = di + 1.0 - Math.Log(Math.Log(Math.Abs(zn))) / Math.Log(2.0); // 2 is escape radius
hue = 0.95 + 20.0 * hue; // adjust to make it prettier
// the hsv function expects values from 0 to 360
while (hue > 360.0)
hue -= 360.0;
while (hue < 0.0)
hue += 360.0;
return ColorFromHSV(hue, 0.8, 1.0);
}
MapColour is "smoothing" the bailout values from 0 to 1 which then can be used to map a colour without horrible banding. Playing with MapColour and/or the hsv function lets you alter what colours are used.
Seems simple to do by trial and error. Assume you can define HSV1 and HSV2 (hue, saturation, value) of the endpoint colors you wish to use (black and white; blue and yellow; dark red and light green; etc.), and assume you have an algorithm to assign a value P between 0.0 and 1.0 to each of your pixels. Then that pixel's color becomes
(H2 - H1) * P + H1 = HP
(S2 - S1) * P + S1 = SP
(V2 - V1) * P + V1 = VP
With that done, just observe the results and see how you like them. If the algorithm to assign P is continuous, then the gradient should be smooth as well.
My eventual solution was to create a nice looking (and fairly large) palette and store it as a constant array in the source, then interpolate between indexes in it using the smooth coloring algorithm. The palette wraps (and is designed to be continuous), but this doesn't appear to matter much.
What's going on with the color mapping in that image is that it's using a 'log transfer function' on the index (according to documentation). How exactly it's doing it I still haven't figured out yet. The program that produced it uses a palette of 400 colors, so index ranges [0,399), wrapping around if needed. I've managed to get pretty close to matching it's behavior. I use an index range of [0,1) and map it like so:
double value = Math.log(0.021 * (iteration + delta + 60)) + 0.72;
value = value - Math.floor(value);
It's kind of odd that I have to use these special constants in there to get my results to match, since I doubt they do any of that. But whatever works in the end, right?
here you can find a version with javascript
usage :
var rgbcol = [] ;
var rgbcol = MapColor ( Iteration , Zy2,Zx2 ) ;
point ( ctx , iX, iY ,rgbcol[0],rgbcol[1],rgbcol[2] );
function
/*
* The Mandelbrot Set, in HTML5 canvas and javascript.
* https://github.com/cslarsen/mandelbrot-js
*
* Copyright (C) 2012 Christian Stigen Larsen
*/
/*
* Convert hue-saturation-value/luminosity to RGB.
*
* Input ranges:
* H = [0, 360] (integer degrees)
* S = [0.0, 1.0] (float)
* V = [0.0, 1.0] (float)
*/
function hsv_to_rgb(h, s, v)
{
if ( v > 1.0 ) v = 1.0;
var hp = h/60.0;
var c = v * s;
var x = c*(1 - Math.abs((hp % 2) - 1));
var rgb = [0,0,0];
if ( 0<=hp && hp<1 ) rgb = [c, x, 0];
if ( 1<=hp && hp<2 ) rgb = [x, c, 0];
if ( 2<=hp && hp<3 ) rgb = [0, c, x];
if ( 3<=hp && hp<4 ) rgb = [0, x, c];
if ( 4<=hp && hp<5 ) rgb = [x, 0, c];
if ( 5<=hp && hp<6 ) rgb = [c, 0, x];
var m = v - c;
rgb[0] += m;
rgb[1] += m;
rgb[2] += m;
rgb[0] *= 255;
rgb[1] *= 255;
rgb[2] *= 255;
rgb[0] = parseInt ( rgb[0] );
rgb[1] = parseInt ( rgb[1] );
rgb[2] = parseInt ( rgb[2] );
return rgb;
}
// http://stackoverflow.com/questions/369438/smooth-spectrum-for-mandelbrot-set-rendering
// alex russel : http://stackoverflow.com/users/2146829/alex-russell
function MapColor(i,r,c)
{
var di= i;
var zn;
var hue;
zn = Math.sqrt(r + c);
hue = di + 1.0 - Math.log(Math.log(Math.abs(zn))) / Math.log(2.0); // 2 is escape radius
hue = 0.95 + 20.0 * hue; // adjust to make it prettier
// the hsv function expects values from 0 to 360
while (hue > 360.0)
hue -= 360.0;
while (hue < 0.0)
hue += 360.0;
return hsv_to_rgb(hue, 0.8, 1.0);
}
Motivation
I'd like to find a way to take an arbitrary color and lighten it a few shades, so that I can programatically create a nice gradient from the one color to a lighter version. The gradient will be used as a background in a UI.
Possibility 1
Obviously I can just split out the RGB values and increase them individually by a certain amount. Is this actually what I want?
Possibility 2
My second thought was to convert the RGB to HSV/HSB/HSL (Hue, Saturation, Value/Brightness/Lightness), increase the brightness a bit, decrease the saturation a bit, and then convert it back to RGB. Will this have the desired effect in general?
As Wedge said, you want to multiply to make things brighter, but that only works until one of the colors becomes saturated (i.e. hits 255 or greater). At that point, you can just clamp the values to 255, but you'll be subtly changing the hue as you get lighter. To keep the hue, you want to maintain the ratio of (middle-lowest)/(highest-lowest).
Here are two functions in Python. The first implements the naive approach which just clamps the RGB values to 255 if they go over. The second redistributes the excess values to keep the hue intact.
def clamp_rgb(r, g, b):
return min(255, int(r)), min(255, int(g)), min(255, int(b))
def redistribute_rgb(r, g, b):
threshold = 255.999
m = max(r, g, b)
if m <= threshold:
return int(r), int(g), int(b)
total = r + g + b
if total >= 3 * threshold:
return int(threshold), int(threshold), int(threshold)
x = (3 * threshold - total) / (3 * m - total)
gray = threshold - x * m
return int(gray + x * r), int(gray + x * g), int(gray + x * b)
I created a gradient starting with the RGB value (224,128,0) and multiplying it by 1.0, 1.1, 1.2, etc. up to 2.0. The upper half is the result using clamp_rgb and the bottom half is the result with redistribute_rgb. I think it's easy to see that redistributing the overflows gives a much better result, without having to leave the RGB color space.
For comparison, here's the same gradient in the HLS and HSV color spaces, as implemented by Python's colorsys module. Only the L component was modified, and clamping was performed on the resulting RGB values. The results are similar, but require color space conversions for every pixel.
I would go for the second option. Generally speaking the RGB space is not really good for doing color manipulation (creating transition from one color to an other, lightening / darkening a color, etc). Below are two sites I've found with a quick search to convert from/to RGB to/from HSL:
from the "Fundamentals of Computer Graphics"
some sourcecode in C# - should be easy to adapt to other programming languages.
In C#:
public static Color Lighten(Color inColor, double inAmount)
{
return Color.FromArgb(
inColor.A,
(int) Math.Min(255, inColor.R + 255 * inAmount),
(int) Math.Min(255, inColor.G + 255 * inAmount),
(int) Math.Min(255, inColor.B + 255 * inAmount) );
}
I've used this all over the place.
ControlPaint class in System.Windows.Forms namespace has static methods Light and Dark:
public static Color Dark(Color baseColor, float percOfDarkDark);
These methods use private implementation of HLSColor. I wish this struct was public and in System.Drawing.
Alternatively, you can use GetHue, GetSaturation, GetBrightness on Color struct to get HSB components. Unfortunately, I didn't find the reverse conversion.
Convert it to RGB and linearly interpolate between the original color and the target color (often white). So, if you want 16 shades between two colors, you do:
for(i = 0; i < 16; i++)
{
colors[i].R = start.R + (i * (end.R - start.R)) / 15;
colors[i].G = start.G + (i * (end.G - start.G)) / 15;
colors[i].B = start.B + (i * (end.B - start.B)) / 15;
}
In order to get a lighter or a darker version of a given color you should modify its brightness. You can do this easily even without converting your color to HSL or HSB color. For example to make a color lighter you can use the following code:
float correctionFactor = 0.5f;
float red = (255 - color.R) * correctionFactor + color.R;
float green = (255 - color.G) * correctionFactor + color.G;
float blue = (255 - color.B) * correctionFactor + color.B;
Color lighterColor = Color.FromArgb(color.A, (int)red, (int)green, (int)blue);
If you need more details, read the full story on my blog.
Converting to HS(LVB), increasing the brightness and then converting back to RGB is the only way to reliably lighten the colour without effecting the hue and saturation values (ie to only lighten the colour without changing it in any other way).
A very similar question, with useful answers, was asked previously:
How do I determine darker or lighter color variant of a given color?
Short answer: multiply the RGB values by a constant if you just need "good enough", translate to HSV if you require accuracy.
I used Andrew's answer and Mark's answer to make this (as of 1/2013 no range input for ff).
function calcLightness(l, r, g, b) {
var tmp_r = r;
var tmp_g = g;
var tmp_b = b;
tmp_r = (255 - r) * l + r;
tmp_g = (255 - g) * l + g;
tmp_b = (255 - b) * l + b;
if (tmp_r > 255 || tmp_g > 255 || tmp_b > 255)
return { r: r, g: g, b: b };
else
return { r:parseInt(tmp_r), g:parseInt(tmp_g), b:parseInt(tmp_b) }
}
I've done this both ways -- you get much better results with Possibility 2.
Any simple algorithm you construct for Possibility 1 will probably work well only for a limited range of starting saturations.
You would want to look into Poss 1 if (1) you can restrict the colors and brightnesses used, and (2) you are performing the calculation a lot in a rendering.
Generating the background for a UI won't need very many shading calculations, so I suggest Poss 2.
-Al.
IF you want to produce a gradient fade-out, I would suggest the following optimization: Rather than doing RGB->HSB->RGB for each individual color you should only calculate the target color. Once you know the target RGB, you can simply calculate the intermediate values in RGB space without having to convert back and forth. Whether you calculate a linear transition of use some sort of curve is up to you.
Method 1: Convert RGB to HSL, adjust HSL, convert back to RGB.
Method 2: Lerp the RGB colour values - http://en.wikipedia.org/wiki/Lerp_(computing)
See my answer to this similar question for a C# implementation of method 2.
Pretend that you alpha blended to white:
oneMinus = 1.0 - amount
r = amount + oneMinus * r
g = amount + oneMinus * g
b = amount + oneMinus * b
where amount is from 0 to 1, with 0 returning the original color and 1 returning white.
You might want to blend with whatever the background color is if you are lightening to display something disabled:
oneMinus = 1.0 - amount
r = amount * dest_r + oneMinus * r
g = amount * dest_g + oneMinus * g
b = amount * dest_b + oneMinus * b
where (dest_r, dest_g, dest_b) is the color being blended to and amount is from 0 to 1, with zero returning (r, g, b) and 1 returning (dest.r, dest.g, dest.b)
I didn't find this question until after it became a related question to my original question.
However, using insight from these great answers. I pieced together a nice two-liner function for this:
Programmatically Lighten or Darken a hex color (or rgb, and blend colors)
Its a version of method 1. But with over saturation taken into account. Like Keith said in his answer above; use Lerp to seemly solve the same problem Mark mentioned, but without redistribution. The results of shadeColor2 should be much closer to doing it the right way with HSL, but without the overhead.
A bit late to the party, but if you use javascript or nodejs, you can use tinycolor library, and manipulate the color the way you want:
tinycolor("red").lighten().desaturate().toHexString() // "#f53d3d"
I would have tried number #1 first, but #2 sounds pretty good. Try doing it yourself and see if you're satisfied with the results, it sounds like it'll take you maybe 10 minutes to whip up a test.
Technically, I don't think either is correct, but I believe you want a variant of option #2. The problem being that taken RGB 990000 and "lightening" it would really just add onto the Red channel (Value, Brightness, Lightness) until you got to FF. After that (solid red), it would be taking down the saturation to go all the way to solid white.
The conversions get annoying, especially since you can't go direct to and from RGB and Lab, but I think you really want to separate the chrominance and luminence values, and just modify the luminence to really achieve what you want.
Here's an example of lightening an RGB colour in Python:
def lighten(hex, amount):
""" Lighten an RGB color by an amount (between 0 and 1),
e.g. lighten('#4290e5', .5) = #C1FFFF
"""
hex = hex.replace('#','')
red = min(255, int(hex[0:2], 16) + 255 * amount)
green = min(255, int(hex[2:4], 16) + 255 * amount)
blue = min(255, int(hex[4:6], 16) + 255 * amount)
return "#%X%X%X" % (int(red), int(green), int(blue))
This is based on Mark Ransom's answer.
Where the clampRGB function tries to maintain the hue, it however miscalculates the scaling to keep the same luminance. This is because the calculation directly uses sRGB values which are not linear.
Here's a Java version that does the same as clampRGB (although with values ranging from 0 to 1) that maintains luminance as well:
private static Color convertToDesiredLuminance(Color input, double desiredLuminance) {
if(desiredLuminance > 1.0) {
return Color.WHITE;
}
if(desiredLuminance < 0.0) {
return Color.BLACK;
}
double ratio = desiredLuminance / luminance(input);
double r = Double.isInfinite(ratio) ? desiredLuminance : toLinear(input.getRed()) * ratio;
double g = Double.isInfinite(ratio) ? desiredLuminance : toLinear(input.getGreen()) * ratio;
double b = Double.isInfinite(ratio) ? desiredLuminance : toLinear(input.getBlue()) * ratio;
if(r > 1.0 || g > 1.0 || b > 1.0) { // anything outside range?
double br = Math.min(r, 1.0); // base values
double bg = Math.min(g, 1.0);
double bb = Math.min(b, 1.0);
double rr = 1.0 - br; // ratios between RGB components to maintain
double rg = 1.0 - bg;
double rb = 1.0 - bb;
double x = (desiredLuminance - luminance(br, bg, bb)) / luminance(rr, rg, rb);
r = 0.0001 * Math.round(10000.0 * (br + rr * x));
g = 0.0001 * Math.round(10000.0 * (bg + rg * x));
b = 0.0001 * Math.round(10000.0 * (bb + rb * x));
}
return Color.color(toGamma(r), toGamma(g), toGamma(b));
}
And supporting functions:
private static double toLinear(double v) { // inverse is #toGamma
return v <= 0.04045 ? v / 12.92 : Math.pow((v + 0.055) / 1.055, 2.4);
}
private static double toGamma(double v) { // inverse is #toLinear
return v <= 0.0031308 ? v * 12.92 : 1.055 * Math.pow(v, 1.0 / 2.4) - 0.055;
}
private static double luminance(Color c) {
return luminance(toLinear(c.getRed()), toLinear(c.getGreen()), toLinear(c.getBlue()));
}
private static double luminance(double r, double g, double b) {
return r * 0.2126 + g * 0.7152 + b * 0.0722;
}