diophantine analysis in maxima - algorithm

I have defined an extended Euclidean algorithm in Maxima as
ext_euclid(a,b):=block(
[x,y,d,x_old,y_old,d_old],
if b = 0 then return([1,0,a])
else ([x_old,y_old,d_old]:ext_euclid(b,mod(a,b)),
[x,y,d]:[y_old,x_old-quotient(a,b)*y_old,d_old],
return([x,y,d])));
in order to solve linear Diophantine equations of the form a+b=c where gcd(a,b)=1, however if a-b=c I get -1 returned by the algorithm for the divisor but gcd(a,-b) as before. Is my algorithm wrong, or can it be used for a-b=c?
Iain

I don't quite understand what the problem is. Can you please give two examples, one in which the result matches what you expected, and one in which it doesn't (and please say what's your expected result in that case).
EDIT: OP replies: "to solve 5x+7y is 23 ext_euclid (5,7) returns [3,-2,1] where gcd(5,7) is 1 however for 5x-7y is 23 ext_euclid(5,-7) returns [-3,1,-1] but gcd(5,-7) is still 1 this fails Bezout's identity ax+by is gcd(a,b)"
Also if you are trying to implement a particular statement of the algorithm, can you please link to it or copy it here.
OP replies: "code at http://mvngu.wordpress.com/2009/08/25/elementary-number-theory-using-maxima/"
One possible thing to look at: does the mod function behave as you expect it?
OP replies: "mod(5,7) is, mod(5,-7) is -2"

Related

Algorithm design manual solution to 1-8

I'm currently reading through The Algorithm Design Manual by Steven S. Skiena. Some of the concepts in the book I haven't used in almost 7 years. Even while I was in college it was difficult for me to understand how some of my classmates came up with some of these proofs. Now, I'm completely stuck on one of the exercises. Please help.
Will you please answer this question and explain how you came up with what to use for your Base case and why each step proves why it is valid and correct. I know this might be asking a lot, but I really need help understanding how to do these.
Thank you in advance!
Proofs of Correctness
Question:
1-8. Proove the correctness of the following algorithm for evaluating a polynomial.
$$P(x) = a_nx_n+a_n−1x_n−1+⋯+a_1x+a_0$$
&function horner(A,x)
p=A_n
for i from n−1 to 0
p=p∗x+Ai
return p$
btw, off topic: Sorry guys, I'm not sure how to correctly add the mathematical formatting for the formula. I tried by addign '$' around each section. Not sure why that isn't working.
https://cs.stackexchange.com/ is probably better for this. Also I'm pretty sure that $$ formatting only works on some StackExchange sites. But anyways, think about what this algorithm is doing at each step.
We start with p = A_n.
Then we take p = p*x + A_{n-1}. So what is this doing? We now have p = x*A_n + A_{n-1}.
I'll try one more step. p = p*x + A_{n-2} so now p = (x^2)*A_n + x*A_{n-1} + A{n-2} (here x^2 means x to the power 2, of course).
You should be able to take it from here.

LightsOut game solving method "reduced echolean ".Does it always gives correct result?

I am studing the algorithm given here, and
somewhere it is claimed that it is efficent and always give correct result.
But, I try to run the algorithm and it is not giving me correct or efficent output for the following patterns.
For 5 x 5 grid, where (n) is light number and 0/1 state whethere the light is on/off, 1 ON and 0 OFF.
(1)1 (2)0 (3)0 (4)0 (5)0 the output should be 1,7,13,19,25(Pressing this light will make the full grid OFF. But what I am getting is this
(6)0 (7)1 (8)0 (9)0 (10)0 3,5,6,7,8,10,13,16,18,19,20,21,23.
(11)0 (12)0 (13)1 (14)0 (15)0
(16)0 (17)0 (18)0 (19)1 (20)0
(21)0 (22)0 (23)0 (24)0 (25)1
While for some pattern it is giving me correct output as below.
(1)0 (2)0 (3)0 (4)0 (5)1 the output should be 5,9,13,17,21, and the algorithm is giving me correct result.
(6)0 (7)0 (8)0 (9)1 (10)0
(11)0 (12)0 (13)1 (14)0 (15)0
(16)0 (17)1 (18)0 (19)0 (20)0
(21)1 (22)0 (23)0 (24)0 (25)0
If somebody need a code let me know I can post it.
Can please somebody let me know if this methods will always give correct as well as efficient result or not ?
(I'm the author of the code you linked to.) To the best of my knowledge, the code is correct (and I'm sure that the high-level algorithm of using Gaussian elimination over GF(2) is correct). The solution it produces is guaranteed to solve the puzzle, though it's not necessarily the minimal number of button presses. The "efficiency" I was referring to in the writeup refers to the time complexity of solving the puzzle overall (it can solve a Lights Out grid in polynomial time, as opposed to the exponential-time brute-force solution of trying all possible combinations) rather than to the "efficiency" of the generated solution.
I actually don't know any efficient algorithms for finding a solution requiring the minimum number of button presses. Let me know if you find one!
Hope this helps!

Finding a value of a variant in a permutation equation [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 9 years ago.
Improve this question
I have a math problem that I can't solve: I don't know how to find the value of n so that
365! / ((365-n)! * 365^n) = 50%.
I am using the Casio 500ms scientific calculator but I don't know how.
Sorry because my question is too easy, I am changing my career so I have to review and upgrade my math, the subject that I have neglected for years.
One COULD in theory use a root-finding scheme like Newton's method, IF you could take derivatives. But this function is defined only on the integers, since it uses factorials.
One way out is to recognize the identity
n! = gamma(n+1)
which will effectively allow you to extend the function onto the real line. The gamma function is defined on the positive real line, though it does have singularities at the negative integers. And of course, you still need the derivative of this expression, which can be done since gamma is differentiable.
By the way, a danger with methods like Newton's method on problems like this is it may still diverge into the negative real line. Choose poor starting values, and you may get garbage out. (I've not looked carefully at the shape of this function, so I won't claim for what set of starting values it will diverge on you.)
Is it worth jumping through the above set of hoops? Of course not. A better choice than Newton's method might be something like Brent's algorithm, or a secant method, which here will not require you to compute the derivative. But even that is a waste of effort.
Recognizing that this is indeed a problem on the integers, one could use a tool like bisection to resolve the solution extremely efficiently. It never requires derivatives, and it will work nicely enough on the integers. Once you have resolved the interval to be as short as possible, the algorithm will terminate, and take vary few function evaluations in the process.
Finally, be careful with this function, as it does involve some rather large factorials, which could easily overflow many tools to evaluate the factorial. For example, in MATLAB, if I did try to evaluate factorial(365):
factorial(365)
ans =
Inf
I get an overflow. I would need to move into a tool like the symbolic toolbox, or my own suite of variable precision integer tools. Alternatively, one could recognize that many of the terms in these factorials will cancel out, so that
365! / (365 - n)! = 365*(365-1)*(365-2)*...*(365-n+1)
The point is, we get an overflow for such a large value if we are not careful. If you have a tool that will not overflow, then use it, and use bisection as I suggested. Here, using the symbolic toolbox in MATLAB, I get a solution using only 7 function evaluations.
f = #(n) vpa(factorial(sym(365))/(factorial(sym(365 - n))*365^sym(n)));
f(0)
ans =
1.0
f(365)
ans =
1.4549552156187034033714015903853e-157
f(182)
ans =
0.00000000000000000000000095339164972764493041114884521295
f(91)
ans =
0.000004634800180846641815683109605743
f(45)
ans =
0.059024100534225072005461014516788
f(22)
ans =
0.52430469233744993108665513602619
f(23)
ans =
0.49270276567601459277458277166297
Or, if you can't take an option like that, but do have a tool that can evaluate the log of the gamma function, AND you have a rootfinder available as MATLAB does...
f = #(n) exp(gammaln(365+1) - gammaln(365-n + 1) - n*log(365));
fzero(#(n) f(n) - .5,10)
ans =
22.7677
As you can see here, I used the identity relating gamma and the factorial function, then used the log of the gamma function, in MATLAB, gammaln. Once all the dirty work was done, then I exponentiated the entire mess, which will be a reasonable number. Fzero tells us that the cross-over occurs between 22 and 23.
If a numerical approximation is ok, ask Wolfram Alpha:
n ~= -22.2298272...
n ~= 22.7676903...
I'm going to assume you have some special reason for wanting an actual algorithm, even though you only have one specific problem to solve.
You're looking for a value n where...
365! / ((365-n)! * 365^n) = 0.5
And therefore...
(365! / ((365-n)! * 365^n)) - 0.5 = 0.0
The general form of the problem is to find a value x such that f(x)=0. One classic algorithm for this kind of thing is the Newton-Raphson method.
[EDIT - as woodchips points out in the comment, the factorial is an integer-only function. My defence - for some problems (the birthday problem among them) it's common to generalise using approximation functions. I remember the Stirling approximation of factorials being used for the birthday problem - according to this, Knuth uses it. The Wikipedia page for the Birthday problem mentions several approximations that generalise to non-integer values.
It's certainly bad that I didn't think to mention this when I first wrote this answer.]
One problem with that is that you need the derivative of that function. That's more a mathematics issue, though you can estimate the derivative at any point by taking values a short distance either side.
You can also look at this as an optimisation problem. The general form of optimisation problems is to find a value x such that f(x) is maximised/minimised. In your case, you could define your function as...
f(x)=((365! / ((365-n)! * 365^n)) - 0.5)^2
Because of the squaring, the result can never be negative, so try to minimise. Whatever value of x gets you the smallest f(x) will also give you the result you want.
There isn't so much an algorithm for optimisation problems as a whole field - the method you use depends on the complexity of your function. However, this case should be simple so long as your language can cope with big numbers. Probably the simplest optimisation algorithm is called hill-climbing, though in this case it should probably be called rolling-down-the-hill. And as luck would have it, Newton-Raphson is a hill-climbing method (or very close to being one - there may be some small technicality that I don't remember).
[EDIT as mentioned above, this won't work if you need an integer solution for the problem as actually stated (rather than a real-valued approximation). Optimisation in the integer domain is one of those awkward issues that helps make optimisation a field in itself. The branch and bound is common for complex functions. However, in this case hill-climbing still works. In principle, you can even still use a tweaked version of Newton-Raphson - you just have to do some rounding and check that you don't keep rounding back to the same place you started if your moves are small.]

Iterative solving for unknowns in a fluids problem

I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.

Eligibility trace algorithm, the update order

I am reading Silver et al (2012) "Temporal-Difference Search in Computer Go", and trying to understand the update order for the eligibility trace algorithm.
In the Algorithm 1 and 2 of the paper, weights are updated before updating the eligibility trace. I wonder if this order is correct (Line 11 and 12 in the Algorithm 1, and Line 12 and 13 of the Algorithm 2).
Thinking about an extreme case with lambda=0, the parameter is not updated with the initial state-action pair (since e is still 0). So I doubt the order possibly should be the opposite.
Can someone clarify the point?
I find the paper very instructive for learning the reinforcement learning area, so would like to understand the paper in detail.
If there is a more suitable platform to ask this question, please kindly let me know as well.
It looks to me like you're correct, e should be updated before theta. That's also what should happen according to the math in the paper. See, for example, Equations (7) and (8), where e_t is first computed using phi(s_t), and only THEN is theta updated using delta V_t (which would be delta Q in the control case).
Note that what you wrote about the extreme case with lambda=0 is not entirely correct. The initial state-action pair will still be involved in an update (not in the first iteration, but they will be incorporated in e during the second iteration). However, it looks to me like the very first reward r will never be used in any updates (because it only appears in the very first iteration, where e is still 0). Since this paper is about Go, I suspect it will not matter though; unless they're doing something unconventional, they probably only use non-zero rewards for the terminal game state.

Resources