The question is in the comment. Expensive is a struct that either doesn't implement Copy, or copying is too expensive.
Update: replaced Option with a user enum Internal.
enum Internal {
Type1(Expensive),
Type2(String),
Empty,
}
struct Foo {
value: Internal,
}
impl Foo {
fn exec(&mut self) -> Result<Expensive, String> {
if let Internal::Type1(_) = &self.value {
let value = std::mem::take(&mut self.value);
// QUESTION: how do I avoid this pattern matching since we know the value must be Internal::Type1
return match value {
Internal::Type1(e) => Result::Ok(e),
_ => Result::Err(String::from("Impossible")),
};
}
// Some other logic that will use self.value
}
}
You can leverage Option::take to make the code shorter:
if let Option::Some(value) = self.value.take() {
return Ok(value);
}
Learning Rust I happen to need to compare variants inside nested enums. Considering following enums how do I compare actual variants of instantinated BuffTurget?
enum Attribute {
Strength,
Agility,
Intellect,
}
enum Parameter {
Health,
Mana,
}
enum BuffTarget {
Attribute(Attribute),
Parameter(Parameter),
}
Searching the web led me to the `discriminant and particularly to comparison function like this:
fn variant_eq<T>(a: &T, b: &T) -> bool {
std::mem::discriminant(a) == std::mem::discriminant(b)
}
Unfortunately this function is not working in my case:
#[test]
fn variant_check_is_working() {
let str = BuffTarget::Attribute(Attribute::Strength);
let int = BuffTarget::Attribute(Attribute::Intellect);
assert_eq!(variant_eq(&str, &int), false);
}
// Output:
// thread 'tests::variant_check' panicked at 'assertion failed: `(left == right)`
// left: `true`,
// right: `false`', src/lib.rs:11:9
Ideally I would like my code to be something like this, using if let:
let type_1 = get_variant(BuffTarget::Attribute(Attribute::Strength));
let type_2 = get_variant(BuffTarget::Attribute(Attribute::Intellect));
if let type_1 = type_2 {
println!("Damn it!")
} else { println!("Success!!!") }
Found suitable solution in this answer. Use #[derive(PartialEq)] for the enums to compare them with ==: enum_1 == enum_2.
#[derive(PartialEq)]
enum Attribute {
Strength,
Agility,
Intellect,
}
#[derive(PartialEq)]
enum Parameter {
Health,
Mana,
}
#[derive(PartialEq)]
enum BuffTarget {
Attribute(Attribute),
Parameter(Parameter),
}
let type_1 = BuffTarget::Attribute(Attribute::Strength));
let type_2 = BuffTarget::Attribute(Attribute::Intellect));
assert_eq!((type_1 == type_2), false);
(first post)
usually im able to find answers here or elsewhere but no luck this time =(
Question: in Swift, how do you filter an array that is of a protocol type by an implementing type supplied as a function parameter?
protocol Aprotocol {
var number:Int { get set }
}
class Aclass: Aprotocol {
var number = 1
}
class AnotherClass: Aprotocol {
var number = 1
}
var array:[Aprotocol] = [ Aclass(), AnotherClass(), Aclass() ]
func foo (parameter:Aprotocol) -> Int {
return array.filter({ /* p in p.self == parameter.self */ }).count
}
var bar:Aprotocol = // Aclass() or AnotherClass()
var result:Int = foo(bar) // should return 2 or 1, depending on bar type
maybe this is not the right approach at all?
thanks!
Here is what I think you want:
return array.filter { (element: Aprotocol) -> Bool in
element.dynamicType == parameter.dynamicType
}.count
But I recommend this, which does the same, but without the useless instance of Aclass() which is passed in the answer on the top. Also this way is faster:
func foo <T: Aprotocol>(type: T.Type) -> Int {
return array.filter { (element: Aprotocol) -> Bool in
element.dynamicType == type
}.count
}
var result:Int = foo(Aclass)
The dynamicType will return the Type of an instance
Very easy:
return array.filter({ parameter.number == $0.number }).count
Kametrixoms solution works (if you use "is T" instead of "== type") but in my case, since i didnt know which implementing class was going to call it, had to go with this solution:
protocol Aprotocol: AnyObject {
var number:Int { get set }
}
class func foo(parameter: AnyObject) -> Int {
return array.filter ({ (element: Aprotocol) -> Bool in
object_getClassName(element) == object_getClassName(parameter)
}).count
}
I have a list of Swift objects that I'd like to get sorted by multiple criteria. The objects in the list are of type DateRange:
class DateRange {
var from: NSDate?
var to: NSDate?
}
The list contains many of these objects where some from or to fields are nil. I want to have this list sorted by:
First all objects that have dates
Then objects that have at least one date (either from or to)
And at the very end objects without any
The dates itself don't matter, just their existence. In Ruby I could do this (if the date is nil I set it to a very low date):
date_ranges.sort { |a, b|
[fix_nil(a.from), fix_nil(a.to)] <=> [fix_nil(b.from), fix_nil(b.to)]
}.reverse
def fix_nil(val)
val.nil? ? Date.new(0) : val
end
What's the best way to do this with Swift? Thanks in advance.
Seems like it might be a good idea to add a dateCount computed property to your DateRange type. This would be a good time for pattern matching:
extension DateRange {
// returns the number of non-nil NSDate members in 'from' and 'to'
var dateCount: Int {
switch (from, to) {
case (nil, nil): return 0
case (nil, _): return 1
case (_, nil): return 1
default: return 2
}
}
}
Then you can sort your list with a simple closure:
var ranges = [DateRange(nil, nil), DateRange(NSDate(), nil), DateRange(nil, NSDate()), DateRange(nil, nil), DateRange(NSDate(), NSDate())]
ranges.sort { $0.dateCount > $1.dateCount }
If you wanted, you could even make it Comparable with a few more lines:
extension DateRange : Comparable { }
func ==(lhs: DateRange, rhs: DateRange) -> Bool {
return lhs.dateCount == rhs.dateCount
}
func <(lhs: DateRange, rhs: DateRange) -> Bool {
return lhs.dateCount > rhs.dateCount
}
This lets you sort your list properly with an operator argument:
ranges.sort(<)
I presume that by list you mean array, so I am basing my answer on that assumption.
You can use the sort method of the array struct, which takes a closure having this signature:
(lhs: T, rhs: T) -> Bool
returning true if lhs is less than rhs, false otherwise.
I came up with this implementation:
var x: [DateRange]
// ... initialize the array
x.sort { (lhs: DateRange, rhs: DateRange) -> Bool in
if lhs.from != nil && lhs.to != nil {
return true
}
if lhs.from == nil && lhs.to == nil {
return false
}
return rhs.from == nil && rhs.to == nil
}
if lhs has both properties not nil, then it comes first, regardless of rhs
if lhs has both properties nil, then if comes after, regardless of rhs
else lhs has one nil, the other not nil, and in that case it comes first only if rhs has both properties nil
If you plan to reuse the sort in several places, it's better to move the code out of the sort method - the best place is probably an overload of the < operator:
func < (lhs: DateRange, rhs: DateRange) -> Bool {
if lhs.from != nil && lhs.to != nil {
return true
}
if lhs.from == nil && lhs.to == nil {
return false
}
return rhs.from == nil && rhs.to == nil
}
and in that case it can be used as follows:
x.sort(<)
If you don't like the operator overload, you can of course give that function any other name.
Note that sorting is done in place.
Here is how I would approach this. To keep things simple, add a scoring function for the date range. In your scenario, you have 3 possibilities:
nil & nil : 0 points
nil & date : 1 point
date & date : 2 points
import Foundation
class DateRange {
var from: NSDate?
var to: NSDate?
init(from: NSDate?, to: NSDate?)
{
self.from = from
self.to = to
}
func scoreDateRange() -> Int
{
var score = 0
if from != nil
{
score++
}
if to != nil
{
score++
}
return score
}
}
func sortDateRange( d1 : DateRange, d2 : DateRange)-> Bool
{
return d1.scoreDateRange() > d2.scoreDateRange()
}
var date_ranges = [DateRange]()
date_ranges.append(DateRange(from:nil, to:nil))
date_ranges.append(DateRange(from:nil, to:nil))
date_ranges.append(DateRange(from:NSDate(), to:NSDate()))
date_ranges.append(DateRange(from:nil, to:NSDate()))
date_ranges.append(DateRange(from:NSDate(), to:nil))
date_ranges.append(DateRange(from:NSDate(), to:NSDate()))
date_ranges.sort(sortDateRange)
How should bit fields be declared and used in Swift?
Declaring an enum like this does work, but trying to OR 2 values together fails to compile:
enum MyEnum: Int
{
case One = 0x01
case Two = 0x02
case Four = 0x04
case Eight = 0x08
}
// This works as expected
let m1: MyEnum = .One
// Compiler error: "Could not find an overload for '|' that accepts the supplied arguments"
let combined: MyEnum = MyEnum.One | MyEnum.Four
I looked at how Swift imports Foundation enum types, and it does so by defining a struct that conforms to the RawOptionSet protocol:
struct NSCalendarUnit : RawOptionSet {
init(_ value: UInt)
var value: UInt
static var CalendarUnitEra: NSCalendarUnit { get }
static var CalendarUnitYear: NSCalendarUnit { get }
// ...
}
And the RawOptionSet protocol is:
protocol RawOptionSet : LogicValue, Equatable {
class func fromMask(raw: Self.RawType) -> Self
}
However, there is no documentation on this protocol and I can't figure out how to implement it myself. Moreover, it's not clear if this is the official Swift way of implementing bit fields or if this is only how the Objective-C bridge represents them.
You can build a struct that conforms to the RawOptionSet protocol, and you'll be able to use it like the built-in enum type but with bitmask functionality as well. The answer here shows how:
Swift NS_OPTIONS-style bitmask enumerations.
Updated for Swift 2/3
Since swift 2, a new solution has been added as "raw option set" (see: Documentation), which is essentially the same as my original response, but using structs that allow arbitrary values.
This is the original question rewritten as an OptionSet:
struct MyOptions: OptionSet
{
let rawValue: UInt8
static let One = MyOptions(rawValue: 0x01)
static let Two = MyOptions(rawValue: 0x02)
static let Four = MyOptions(rawValue: 0x04)
static let Eight = MyOptions(rawValue: 0x08)
}
let m1 : MyOptions = .One
let combined : MyOptions = [MyOptions.One, MyOptions.Four]
Combining with new values can be done exactly as Set operations (thus the OptionSet part), .union, likewise:
m1.union(.Four).rawValue // Produces 5
Same as doing One | Four in its C-equivalent. As for One & Mask != 0, can be specified as a non-empty intersection
// Equivalent of A & B != 0
if !m1.intersection(combined).isEmpty
{
// m1 belongs is in combined
}
Weirdly enough, most of the C-style bitwise enums have been converted to their OptionSet equivalent on Swift 3, but Calendar.Compontents does away with a Set<Enum>:
let compontentKeys : Set<Calendar.Component> = [.day, .month, .year]
Whereas the original NSCalendarUnit was a bitwise enum. So both approaches are usable (thus the original response remains valid)
Original Response
I think the best thing to do, is to simply avoid the bitmask syntax until the Swift devs figure out a better way.
Most of the times, the problem can be solved using an enum and and a Set
enum Options
{
case A, B, C, D
}
var options = Set<Options>(arrayLiteral: .A, .D)
An and check (options & .A) could be defined as:
options.contains(.A)
Or for multiple "flags" could be:
options.isSupersetOf(Set<Options>(arrayLiteral: .A, .D))
Adding new flags (options |= .C):
options.insert(.C)
This also allows for using all the new stuff with enums: custom types, pattern matching with switch case, etc.
Of course, it doesn't have the efficiency of bitwise operations, nor it would be compatible with low level things (like sending bluetooth commands), but it's useful for UI elements that the overhead of the UI outweighs the cost of the Set operations.
They showed how to do this in one of the WWDC videos.
let combined = MyEnum.One.toRaw() | MyEnum.Four.toRaw()
Note that combined will be Int type and will actually get a compiler error if you specify let combined: MyEnum. That is because there is no enum value for 0x05 which is the result of the expression.
I think maybe some of the answers here are outdated with overcomplicated solutions? This works fine for me..
enum MyEnum: Int {
case One = 0
case Two = 1
case Three = 2
case Four = 4
case Five = 8
case Six = 16
}
let enumCombined = MyEnum.Five.rawValue | MyEnum.Six.rawValue
if enumCombined & MyEnum.Six.rawValue != 0 {
println("yay") // prints
}
if enumCombined & MyEnum.Five.rawValue != 0 {
println("yay again") // prints
}
if enumCombined & MyEnum.Two.rawValue != 0 {
println("shouldn't print") // doesn't print
}
If you don't need to interoperate with Objective-C and just want the syntax of bit masks in Swift, I've written a simple "library" called BitwiseOptions that can do this with regular Swift enumerations, e.g.:
enum Animal: BitwiseOptionsType {
case Chicken
case Cow
case Goat
static let allOptions = [.Chicken, .Cow, .Goat]
}
var animals = Animal.Chicken | Animal.Goat
animals ^= .Goat
if animals & .Chicken == .Chicken {
println("Chick-Fil-A!")
}
and so on. No actual bits are being flipped here. These are set operations on opaque values. You can find the gist here.
#Mattt's very famous "NSHipster" has an extensive detailed description of the RawOptionsSetType : http://nshipster.com/rawoptionsettype/
It includes a handy Xcode snipped:
struct <# Options #> : RawOptionSetType, BooleanType {
private var value: UInt = 0
init(_ value: UInt) { self.value = value }
var boolValue: Bool { return value != 0 }
static func fromMask(raw: UInt) -> <# Options #> { return self(raw) }
static func fromRaw(raw: UInt) -> <# Options #>? { return self(raw) }
func toRaw() -> UInt { return value }
static var allZeros: <# Options #> { return self(0) }
static func convertFromNilLiteral() -> <# Options #> { return self(0) }
static var None: <# Options #> { return self(0b0000) }
static var <# Option #>: <# Options #> { return self(0b0001) }
// ...
}
You have to use .toRaw() after each member:
let combined: Int = MyEnum.One.toRaw() | MyEnum.Four.toRaw()
will work. Because as it is you're just trying to assign "One" which is a MyEnum type, not an integer. As Apple's documentation says:
“Unlike C and Objective-C, Swift enumeration members are not assigned a default integer value when they are created. In the CompassPoints example, North, South, East and West do not implicitly equal 0, 1, 2 and 3. Instead, the different enumeration members are fully-fledged values in their own right, with an explicitly-defined type of CompassPoint.”
so you have to use raw values if you want the members to represent some other type, as described here:
Enumeration members can come prepopulated with default values (called raw values), which are all of the same type. The raw value for a particular enumeration member is always the same. Raw values can be strings, characters, or any of the integer or floating-point number types. Each raw value must be unique within its enumeration declaration. When integers are used for raw values, they auto-increment if no value is specified for some of the enumeration members. Access the raw value of an enumeration member with its toRaw method.
I use the following I need the both values I can get, rawValue for indexing arrays and value for flags.
enum MyEnum: Int {
case one
case two
case four
case eight
var value: UInt8 {
return UInt8(1 << self.rawValue)
}
}
let flags: UInt8 = MyEnum.one.value ^ MyEnum.eight.value
(flags & MyEnum.eight.value) > 0 // true
(flags & MyEnum.four.value) > 0 // false
(flags & MyEnum.two.value) > 0 // false
(flags & MyEnum.one.value) > 0 // true
MyEnum.eight.rawValue // 3
MyEnum.four.rawValue // 2
This worked for me.
1 << 0 //0000
1 << 1 //0010
1 << 2 //0100
1 << 3 //1000
enum Collision: Int {
case Enemy, Projectile, Debris, Ground
func bitmask() -> UInt32 {
return 1 << self.rawValue
}
}
I'm taking a guess that something like this is how they are modeling enum options in Foundation:
struct TestOptions: RawOptionSet {
// conform to RawOptionSet
static func fromMask(raw: UInt) -> TestOptions {
return TestOptions(raw)
}
// conform to LogicValue
func getLogicValue() -> Bool {
if contains([1, 2, 4], value) {
return true
}
return false
}
// conform to RawRepresentable
static func fromRaw(raw: UInt) -> TestOptions? {
if contains([1, 2, 4], raw) {
return TestOptions(raw)
}
return nil
}
func toRaw() -> UInt {
return value
}
// options and value
var value: UInt
init(_ value: UInt) {
self.value = value
}
static var OptionOne: TestOptions {
return TestOptions(1)
}
static var OptionTwo: TestOptions {
return TestOptions(2)
}
static var OptionThree: TestOptions {
return TestOptions(4)
}
}
let myOptions = TestOptions.OptionOne | TestOptions.OptionThree
println("myOptions: \(myOptions.toRaw())")
if (myOptions & TestOptions.OptionOne) {
println("OPTION ONE is in there")
} else {
println("nope, no ONE")
}
if (myOptions & TestOptions.OptionTwo) {
println("OPTION TWO is in there")
} else {
println("nope, no TWO")
}
if (myOptions & TestOptions.OptionThree) {
println("OPTION THREE is in there")
} else {
println("nope, no THREE")
}
let nextOptions = myOptions | TestOptions.OptionTwo
println("options: \(nextOptions.toRaw())")
if (nextOptions & TestOptions.OptionOne) {
println("OPTION ONE is in there")
} else {
println("nope, no ONE")
}
if (nextOptions & TestOptions.OptionTwo) {
println("OPTION TWO is in there")
} else {
println("nope, no TWO")
}
if (nextOptions & TestOptions.OptionThree) {
println("OPTION THREE is in there")
} else {
println("nope, no THREE")
}
...where myOptions and nextOptions are of type TestOptions - I'm not exactly sure how fromMask() and getLogicValue() are supposed to act here (I just took some best guesses), maybe somebody could pick this up and work it out?
If you want bitfield in Swift, then enum is the wrong way. Better just do like this
class MyBits {
static let One = 0x01
static let Two = 0x02
static let Four = 0x04
static let Eight = 0x08
}
let m1 = MyBits.One
let combined = MyBits.One | MyBits.Four
You don't really need the class/static wrapper, but I include it as a kind of pseudo namespace.
Do bitwise operation using raw value then create a new enum object using the result.
let mask = UIViewAutoresizing(rawValue: UIViewAutoresizing.FlexibleWidth.rawValue|UIViewAutoresizing.FlexibleHeight.rawValue)
self.view.autoresizingMask = mask
Here's something I put together to try to make a Swift enum that resembles to some extent a C# flags-style enum. But I'm just learning Swift, so this should only be considered to be "proof of concept" code.
/// This EnumBitFlags protocol can be applied to a Swift enum definition, providing a small amount
/// of compatibility with the flags-style enums available in C#.
///
/// The enum should be defined as based on UInt, and enum values should be defined that are powers
/// of two (1, 2, 4, 8, ...). The value zero, if defined, should only be used to indicate a lack of
/// data or an error situation.
///
/// Note that with C# the enum may contain a value that does not correspond to the defined enum
/// constants. This is not possible with Swift, it enforces that only valid values can be set.
public protocol EnumBitFlags : RawRepresentable, BitwiseOperations {
var rawValue : UInt { get } // This provided automatically by enum
static func createNew(_ rawValue : UInt) -> Self // Must be defined as some boiler-plate code
}
/// Extension methods for enums that implement the EnumBitFlags protocol.
public extension EnumBitFlags {
// Implement protocol BitwiseOperations. But note that some of these operators, especially ~,
// will almost certainly result in an invalid (nil) enum object, resulting in a crash.
public static func & (leftSide: Self, rightSide: Self) -> Self {
return self.createNew(leftSide.rawValue & rightSide.rawValue)
}
public static func | (leftSide: Self, rightSide: Self) -> Self {
return self.createNew(leftSide.rawValue | rightSide.rawValue)
}
public static func ^ (leftSide: Self, rightSide: Self) -> Self {
return self.createNew(leftSide.rawValue ^ rightSide.rawValue)
}
public static prefix func ~ (x: Self) -> Self {
return self.createNew(~x.rawValue)
}
public static var allZeros: Self {
get {
return self.createNew(0)
}
}
// Method hasFlag() for compatibility with C#
func hasFlag<T : EnumBitFlags>(_ flagToTest : T) -> Bool {
return (self.rawValue & flagToTest.rawValue) != 0
}
}
This shows how it can be used:
class TestEnumBitFlags {
// Flags-style enum specifying where to write the log messages
public enum LogDestination : UInt, EnumBitFlags {
case none = 0 // Error condition
case systemOutput = 0b01 // Logging messages written to system output file
case sdCard = 0b10 // Logging messages written to SD card (or similar storage)
case both = 0b11 // Both of the above options
// Implement EnumBitFlags protocol
public static func createNew(_ rawValue : UInt) -> LogDestination {
return LogDestination(rawValue: rawValue)!
}
}
private var _logDestination : LogDestination = .none
private var _anotherEnum : LogDestination = .none
func doTest() {
_logDestination = .systemOutput
assert(_logDestination.hasFlag(LogDestination.systemOutput))
assert(!_logDestination.hasFlag(LogDestination.sdCard))
_anotherEnum = _logDestination
assert(_logDestination == _anotherEnum)
_logDestination = .systemOutput | .sdCard
assert(_logDestination.hasFlag(LogDestination.systemOutput) &&
_logDestination.hasFlag(LogDestination.sdCard))
/* don't do this, it results in a crash
_logDestination = _logDestination & ~.systemOutput
assert(_logDestination == .sdCard)
*/
_logDestination = .sdCard
_logDestination |= .systemOutput
assert(_logDestination == .both)
}
}
Suggestions for improvement are welcome.
EDIT: I've given up on this technique myself, and therefore obviously can't recommend it anymore.
The big problem is that Swift demands that rawValue must match one of the defined enum values. This is OK if there are only 2 or 3 or maybe even 4 flag bits - just define all of the combination values in order to make Swift happy. But for 5 or more flag bits it becomes totally crazy.
I'll leave this posted in case someone finds it useful, or maybe as a warning of how NOT to do it.
My current solution to this situation is based on using a struct instead of enum, together with a protocol and some extension methods. This works much better. Maybe I'll post it someday when I'm more sure that that isn't also isn't going to backfire on me.
Task
Get all flags from flags_combination. Each flag and flags_combination are integers. flags_combination = flag_1 | flags_2
Details
Xcode 11.2.1 (11B500), Swift 5.1
Solution
import Foundation
protocol FlagPrototype: CaseIterable, RawRepresentable where RawValue == Int {}
extension FlagPrototype {
init?(rawValue: Int) {
for flag in Self.allCases where flag.rawValue == rawValue {
self = flag
return
}
return nil
}
static func all(from combination: Int) -> [Self] {
return Self.allCases.filter { return combination | $0.rawValue == combination }
}
}
Usage
enum Flag { case one, two, three }
extension Flag: FlagPrototype {
var rawValue: Int {
switch self {
case .one: return 0x1
case .two: return 0x2
case .three: return 0x4
}
}
}
var flags = Flag.two.rawValue | Flag.three.rawValue
let selectedFlags = Flag.all(from: flags)
print(selectedFlags)
if selectedFlags == [.two, .three] { print("two | three") }