What is the signification of LDFLAGS - linux-kernel

I'm trying to compile AODV for ARM linux. I use a SabreLite as a board with kernel version 3.0.35_4.1.0. It's worth mention that i'm using openembedded to create my Linux Distribution for my board.
The AODV source code (http://sourceforge.net/projects/aodvuu/) has a README file which give some indications on how to install it on ARM as stated a bit here.
(http://w3.antd.nist.gov/wctg/aodv_kernel/kaodv_arm.html).
I was able to upgrade the makefile in order to be used with post 2.6 kernel version ( as stated above, i have the 3.0.35_4.1.0 kernel version).
So, basically, what i am trying to do is that i have to create a module (let's say file.ko) and then load it into the ARM (with insmod file.ko command).
To do that, i am using a cross compiler which some values are stated below:
echo $CC :
arm-oe-linux-gnueabi-gcc -march=armv7-a -mthumb-interwork -mfloat-abi=hard -mfpu=neon -mtune=cortex-a9 --sysroot=/usr/local/oecore-x86_64/sysroots/cortexa9hf-vfp-neon-oe-linux-gnueabi
echo $ARCH=arm
echo $CFLAGS: O2 -pipe -g -feliminate-unused-debug-types
echo $LD :
arm-oe-linux-gnueabi-ld --sysroot=/usr/local/oecore-x86_64/sysroots/cortexa9hf-vfp-neon-oe-linux-gnueabi
echo $LDFLAGS :
-Wl,-O1 -Wl,--hash-style=gnu -Wl,--as-needed -Wl,--as-needed
when i launch "make command", i get the following errors:
LD [M] /home/scof/script_emulation/AODV/aodv-uu/lnx/kaodv.o
arm-oe-linux-gnueabi-ld: unrecognized option '-Wl,-O1'
arm-oe-linux-gnueabi-ld: use the --help option for usage information
It states that there is something wrong with the linker. This linker comes from the cross compilation tools and i normally shouldn't touch it.
Anyway, to get this above errors fixed, i try to withdraw the LDFLAGS like this:
export LDFLAGS='',
and after this, the make command works and i get the module kaodv.ko. But when i insert it into my ARM to check, it does not work. It actually freeze my terminal
So my question is, do i have to specify the LDFLAGS when compiling ? Does withdrawing LDFLAGS can have impact on the generated kernel module.
Actually, i try to understand where might be the problem and the only thing that come to me is that may be i should not change manually the LDFLAGS. But if i don't change de LDFLAGS, i get the unrecognized option error.
My second question related to that is, what are the possibly value of LDFLAGS
in ARM compilation
Thanks !!

echo $LDFLAGS : -Wl,-O1 -Wl,--hash-style=gnu -Wl,--as-needed -Wl,--as-needed
There are two common methods of invoking the linker in a GCC-based toolchain. One is to do it directly, but another is to use GCC as a front end to invoke the linker, rather than invoke it directly. When doing this, options intended for the linker are prefixed with -Wl, so that GCC knows to pass them through rather than interpret them itself.
In your case the error message from LD itself
arm-oe-linux-gnueabi-ld: unrecognized option '-Wl,-O1'
Indicates that your build system is passing LDFLAGS directly to the linker, and not by way of GCC.
Therefore, you should remove the -Wl, prefix and your LDFLAGS would instead be
-O1 --hash-style=gnu --as-needed --as-needed
(the duplication of the last argument is probably pointless but benign)

-O1 is an option that tells the linker to optimize. I believe it something new, and your linker may be slightly out of date. Try removing -Wl,-O1, it should still work.

Related

What does -Wall flag do when I compile it with the program?

I am following a tutorial that says how to profile the program using
gprof and the command given is like this
gcc -Wall -pg test_gprof.c test_gprof_new.c -o test_gprof
But it doesn'y give any explanation for this flag (-Wall)
As the name suggests it tells the compiler to enable all warning messages i.e. unused variables. This would help you to write better and clean code.

gcc - linker error that makes no sense

Using the Makefile provided by the Pi GPIO library, I made the libpigpio.so shard object using:
# from line 119 in make file
make libpigpio.so
The shared object is created fine. The Makefile first created the pigpio.o object, then the command.o object, and links them together as a shared object. So far so good!
I wrote a very small main function that calls the gpioInitialise and gpioGetPWMfrequency.
It doesn't really matter which functions, what's important is they are defined in pigpio.h and written in pigpio.c.
Meaning the shared object should have them.
The compile command for my code is:
gcc -Wall -pthread -fpic -L. -lpigpio -o drive drive.c
Still I get the undefined reference error to both those functions.
It makes no sense! If it didn't find the shared object, it would reject the command. I also tried it -l:libpigpio.so and still the same problem.
I am compiling directly on the Rpi A+ (not using a cross compiler). So it should work!
What am I missing here?
It is a link order question. Please try the flowing command.
gcc drive.c -Wall -pthread -fpic -o drive -L. -lpigpio
you can read Why does the order in which libraries are linked sometimes cause errors in GCC? for more details.

How can a segfault happen at runtime only because of linking unused modules?

I get a segmentation fault from a memory allocation statement just because I have linked some unrelated procedures to the binary.
I have a very simple Fortran program:
program whatsoever
!USE payload_modules
double precision,allocatable:: Vmat(:,:,:)
allocate(Vmat(2,2,2))
Vmat=1
write(*,*) Vmat
deallocate (Vmat)
! some more lines of code using procedures from payload_module
end program whatsoever
Compiling this using gfortran whatsoever.f95 -o whatsoever leads to a program with the expected behaviour. Of course, this program is not made to print eight times 1.000 but to call the payload_modules, yet hidden in the comments. However, if I compile and link the program with the modules issuing
gfortran -c -g -fPIC -ffpe-trap=overflow -pedantic -fbounds-check \
-fimplicit-none payload_module1.f90 payload_module2.f90 whatsever.f95
gcc -g -nostdlib -v -Wl,--verbose -std=gnu99 -shared -Wl,-Bsymbolic-functions \
-Wl,-z,relro -o whatsoever whatsoever.o payload_module1.o payload_module2.o
the program whatsoever doesn't run any more. I get a segmentation fault at the allocate statement. I have not yet uncommented the lines related to the modules (however, uncommenting them leads to the same behaviour)!
I know that the payload modules' code is not buggy because I ran it before from R and wrapped this working code into a f90-module. There are no name collisions; nothing in the modules is called Vmat. There is only one other call to allocate in the modules. It never caused any trouble. There is still plenty of memory left. gdb didn't give me any hints expect a memory address.
How can linking routines that are actually not called crash a program?
Compiling your code with
gfortran whatsoever.f95 -o whatsoever
is working because you link against the system libraries, everything is in place. This would correspond to
gfortran whatsoever.f95 payload_module1.f90 payload_module2.f90 -o whatsoever
which would also work. The commands you used instead omit the system libraries, and the code fails at the first time you call a function from there (the allocation). You don't see that you are missing the libraries, because you create a shared object (which is typically linked against the libraries later on).
You chose to separate compiling the objects and linking them into an executable. Doing this for Fortran program using gcc you need to specify the Fortran libraries, so there's a -lgfortran missing.
I'm not sure about that particular choice of compile options... -shared is usually used for libraries, are you sure you want a shared binary (whatever that is)?
With -nostdlib you tell the compiler not to link against the system libraries. You would then need to specify those libraries (which you don't).
For the main program test.F90 and a module payload.F90, I run
gfortran -c -g -fPIC -ffpe-trap=overflow -pedantic -fbounds-check \
-fimplicit-none payload.F90 test.F90
gcc -g -v -Wl,--verbose -std=gnu99 -Wl,-Bsymbolic-functions \
-Wl,-z,relro -lgfortran -o whatsoever test.o payload.o
This compiles and executes correctly.
It might be easier to use the advance options with gfortran:
gfortran -g -fPIC -ffpe-trap=overflow -pedantic -fbounds-check \
-fimplicit-none -Wl,-Bsymbolic-functions -Wl,-z,relro \
payload.F90 test.F90 -o whatsoever
The result is the same.

How to (cross-)compile to both ARM hard- and soft-float (softfp) with a single GCC (cross-)compiler?

I'd like to use a single (cross-)compiler to compile code for different ARM calling conventions: since I always want to use floating point and NEON instructions, I just want to select the hard-float calling convention or the soft-float (softfp) calling convention.
My compiler defaults to hard-float, but it supports both architectures that I need:
$ arm-linux-gnueabihf-gcc -print-multi-lib
.;
arm-linux-gnueabi;#marm#march=armv4t#mfloat-abi=soft
$
When I compile with the default parameters:
$ arm-linux-gnueabihf-g++ -Wall -o hello_world_armhf hello_world.cpp
It succeeds without any errors.
If I compile with the parameters returned by -print-multi-lib:
$ arm-linux-gnueabihf-g++ -marm -march=armv4t -mfloat-abi=soft -Wall -o hello_world hello_world.cpp
It again compiles without error (By the way, how can I test that the resultant code is hard- or soft-float?)
Unfortunately, if I try this:
$ arm-linux-gnueabihf-g++ -march=armv7-a -mthumb-interwork -mfloat-abi=softfp -mfpu=neon -Wall -o hello_world hello_world.cpp
[...]/gcc/bin/../lib/gcc/arm-linux-gnueabihf/4.7.3/../../../../arm-linux-gnueabihf/bin/ld: error: hello_world uses VFP register arguments, /tmp/ccwvfDJo.o does not
[...]/gcc/bin/../lib/gcc/arm-linux-gnueabihf/4.7.3/../../../../arm-linux-gnueabihf/bin/ld: failed to merge target specific data of file /tmp/ccwvfDJo.o
collect2: error: ld returned 1 exit status
$
I've tested some other permutations of the parameters, but it seems that anything other than the combination shown by -print-multi-lib results in an error.
I've read ARM compilation error, VFP registered used by executable, not object file but the problem there was that some parts of the binary were soft- and some were hard-float. I have a single C++ file to compile...
What parameter(s) I miss to be able to compile with -march=armv7-a -mthumb-interwork -mfloat-abi=softfp -mfpu=neon?
How is it possible that the error is about VFP register arguments while I explicitly have -mfloat-abi=softfp in the command line which prohibits VFP register arguments?
Thanks!
For the records, hello_world.cpp contains the following:
#include <iostream>
int main()
{
std::cout << "Hello, world!" << std::endl;
return 0;
}
You need another compiler with corresponding multilib support.
You can check multilib support with next command.
arm-none-eabi-gcc -print-multi-lib
.;
thumb;#mthumb
fpu;#mfloat-abi=hard
armv6-m;#mthumb#march=armv6s-m
armv7-m;#mthumb#march=armv7-m
armv7e-m;#mthumb#march=armv7e-m
armv7-ar/thumb;#mthumb#march=armv7
cortex-m7;#mthumb#mcpu=cortex-m7
armv7e-m/softfp;#mthumb#march=armv7e-m#mfloat-abi=softfp#mfpu=fpv4-sp-d16
armv7e-m/fpu;#mthumb#march=armv7e-m#mfloat-abi=hard#mfpu=fpv4-sp-d16
armv7-ar/thumb/softfp;#mthumb#march=armv7#mfloat-abi=softfp#mfpu=vfpv3-d16
armv7-ar/thumb/fpu;#mthumb#march=armv7#mfloat-abi=hard#mfpu=vfpv3-d16
cortex-m7/softfp/fpv5-sp-d16;#mthumb#mcpu=cortex-m7#mfloat-abi=softfp#mfpu=fpv5-sp-d16
cortex-m7/softfp/fpv5-d16;#mthumb#mcpu=cortex-m7#mfloat-abi=softfp#mfpu=fpv5-d16
cortex-m7/fpu/fpv5-sp-d16;#mthumb#mcpu=cortex-m7#mfloat-abi=hard#mfpu=fpv5-sp-d16
cortex-m7/fpu/fpv5-d16;#mthumb#mcpu=cortex-m7#mfloat-abi=hard#mfpu=fpv5-d16
https://stackoverflow.com/questions/37418986/how-to-interpret-the-output-of-gcc-print-multi-lib
How to interpret the output of gcc -print-multi-lib
With this configuration gcc -mfloat-abi=hard not only will build your files using FPU instructions but also link them with corresponding libs, avoiding "X uses VFP register arguments, Y does not" error.
The above-mentioned -print-multi-lib output produced by gcc with this patch and --with-multilib-list=armv6-m,armv7,armv7-m,armv7e-m,armv7-r,armv7-a,cortex-m7 configuration option.
If you are interested in building your own gcc with Cortex-A series multilib support, just use --with-multilib-list=aprofile configuration option for any arm*-*-* target without any patches (at list with gcc-6.2.0).
As per Linaro FAQ if your compiler prints arm-linux-gnueabi;#marm#march=armv4t#mfloat-abi=soft then you can only use -march=armv4t. If you want to use -march=armv7-a you need to build compiler yourself.
Following link could be helpful in building yourself GCC ARM Builds

Does the sequence of the args matters when using gcc?

gcc -o fig fig.c -I./include ./lib/libmylib.a -g
gcc -g fig.c -o fig -I./include ./lib/libmylib.a
gcc -g -o fig fig.c -I./include ./lib/libmylib.a
It seems that the gcc accept different kinds of sequence.
However, what is a not acceptable sequence? Does the sequence of arguments matters?
One sequence that does matter is where you put libraries if you specify -static linkage.
Basically, if you choose to statically link libraries in, the libraries should be specified after your code, as GCC will scan the code first for external library dependencies and then check the libraries to bring in. If you specified the libraries before the code that needs them, GCC would scan and determine no libraries were needed, and you'd end up with linker errors.

Resources