Conway's Game of Life having logic issues - ruby

I'm working on Conway's Game of Life. I have some logic issue that it always finishes in 2 or 3 ticks (usually only 2). Most of the time, it is with all cells dead, but occasionally it will have a 1 or 2 still alive. I can't find what part is causing the behavior of the second tick being almost entirely, if not completely, dead.
Do any of you see any major issues that might be causing this behavior?
require 'pry'
class Game
def initialize(size)
#size = size
#ticks = 1
#current_board = Array.new(size) { Array.new(size) { (rand(99) % 5 == 0) ? false : true } }
#future_board = Array.new(size) { Array.new(size) }
# #future_board = #current_board
end
def is_alive?(y, x)
if #current_board[y]
#current_board[y][x]
end
end
def check_neigbors(y, x)
neighbors = {
top: [y-1, x],
top_right: [y-1, x+1],
right: [y, x+1],
bottom_right: [y+1, x+1],
bottom: [y+1, x],
bottom_left: [y+1, x-1],
left: [y, x-1],
top_left: [y-1, x-1]
}
neighbor_state = {
top: false,
top_right: false,
right: false,
bottom_right: false,
bottom: false,
bottom_left: false,
left: false,
top_left: false
}
# binding.pry
neighbors.each { |k, v| neighbor_state[k] = true if is_alive?(v[0], v[1]) }
live_neighbor_count = 0
neighbor_state.each_value { |v| live_neighbor_count += 1 if v }
live_neighbor_count
end
def cell_lives(y, x)
#future_board[y][x] = true
end
def cell_dies(y, x)
#future_board[y][x] = false
end
def display_board
# need to display board here
system("clear")
# #current_board.each do
# |r| puts r.map { |c| c ? 'O' : 'X' }.join(" ")
# |r| puts r.map { |c| c }.join(" ")
puts #current_board.map { |row| row.map { |cell| cell ? 'X' : ' ' }.inspect }
# end
puts "\nTicks: #{#ticks}"
end
def play
loop do
display_board
#current_board.each do |r| # outer loop to iterate through rows
row_index = #current_board.index(r).to_i
r.each do |c| # inner loop to iterate through columns
column_index = r.index(c).to_i
live_neighbor_count = check_neigbors(row_index, column_index) # count the number of live neighbors
cell_dies(row_index, column_index) if ( is_alive?(row_index, column_index) ) && live_neighbor_count < 2 # rule 1
cell_lives(row_index, column_index) if ( is_alive?(row_index, column_index) ) && ( live_neighbor_count == 2 || live_neighbor_count == 3 ) # rule 2
cell_dies(row_index, column_index) if ( is_alive?(row_index, column_index) ) && live_neighbor_count > 3 # rule 3
cell_lives(row_index, column_index) if !( is_alive?(row_index, column_index) ) && live_neighbor_count == 3 # rule 4
end
end
if #current_board == #future_board # board is gridlocked. Game over!
puts "\nGAME OVER!"
exit!
else
#current_board = #future_board # update the board
#ticks += 1
sleep(1)
end
end
end
end
print "How large of a grid do you want: "
grid_size = gets.to_i
game = Game.new grid_size
game.play

In Conway's game of life, if you start with a random arrangement of cells, most of them do die on the second tick just because of the rules of the game, so I have no evidence there is a bug.
How about you make a glider or something and make sure it behaves as expected? If it doesn't work, then please post the output of your program and point out the first frame where the output is wrong, and post what you would expect the output to be.

try :-
#current_board = #futureboard.dup

Related

How do I fix a problem to call a function in Ruby?

I'm trying to use some ruby code that I've found in Github. I've downloaded the code and did the necessary imports the "requires" and tried to run it as it is described in the readme file on github repository. The code is the following:
In the file pcset_test.rb the code is the following:
require './pcset.rb'
require 'test/unit'
#
# When possible, test cases are adapted from
# Introduction to Post-Tonal Theory by Joseph N. Straus,
# unless obvious or otherwise noted.
#
class PCSetTest < Test::Unit::TestCase
def test_init
#assert_raise(ArgumentError) {PCSet.new []}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3, 'string']}
assert_raise(ArgumentError) {PCSet.new "string"}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3.6, 4]}
assert_equal([0, 1, 2, 9], PCSet.new([0, 1, 2, 33, 13]).pitches)
assert_equal([3, 2, 1, 11, 10, 0], PCSet.new_from_string('321bac').pitches)
assert_equal([0,2,4,5,7,11,9], PCSet.new([12,2,4,5,7,11,9]).pitches)
assert_nothing_raised() {PCSet.new []}
end
def test_inversion
end
def test_transposition
end
def test_multiplication
end
#
# set normal prime forte #
# 0,2,4,7,8,11 7,8,11,0,2,4 0,1,4,5,7,9 6-31
# 0,1,2,4,5,7,11 11,0,1,2,4,5,7 0,1,2,3,5,6,8 7-Z36
# 0,1,3,5,6,7,9,10,11 5,6,7,9,10,11,0,1,3 0,1,2,3,4,6,7,8,10 9-8
#
def test_normal_form
testPC = PCSet.new [0,4,8,9,11]
assert_kind_of(PCSet, testPC.normal_form)
assert_equal([8,9,11,0,4], testPC.normal_form.pitches)
assert_equal([10,1,4,6], PCSet.new([1,6,4,10]).normal_form.pitches)
assert_equal([2,4,8,10], PCSet.new([10,8,4,2]).normal_form.pitches)
assert_equal([7,8,11,0,2,4], PCSet.new([0,2,4,7,8,11]).normal_form.pitches)
assert_equal([11,0,1,2,4,5,7], PCSet.new([0,1,2,4,5,7,11]).normal_form.pitches)
assert_equal([5,6,7,9,10,11,0,1,3], PCSet.new([0,1,3,5,6,7,9,10,11]).normal_form.pitches)
end
def test_prime_form
assert_equal([0,1,2,6], PCSet.new([5,6,1,7]).prime.pitches)
assert_equal([0,1,4], PCSet.new([2,5,6]).prime.pitches)
assert_equal([0,1,4,5,7,9], PCSet.new([0,2,4,7,8,11]).prime.pitches)
assert_equal([0,1,2,3,5,6,8], PCSet.new([0,1,2,4,5,7,11]).prime.pitches)
assert_equal([0,1,2,3,4,6,7,8,10], PCSet.new([0,1,3,5,6,7,9,10,11]).prime.pitches)
end
def test_set_class
testPcs = PCSet.new([2,5,6])
testPrime = testPcs.prime
assert_equal([
[2,5,6], [3,6,7], [4,7,8], [5,8,9], [6,9,10], [7,10,11],
[8,11,0],[9,0,1], [10,1,2],[11,2,3],[0,3,4], [1,4,5],
[6,7,10],[7,8,11],[8,9,0], [9,10,1],[10,11,2],[11,0,3],
[0,1,4], [1,2,5], [2,3,6], [3,4,7], [4,5,8], [5,6,9]
].sort, PCSet.new([2,5,6]).set_class.map{|x| x.pitches})
assert_equal(testPcs.set_class.map{|x| x.pitches}, testPrime.set_class.map{|x| x.pitches})
end
def test_interval_vector
assert_equal([2,1,2,1,0,0], PCSet.new([0,1,3,4]).interval_vector)
assert_equal([2,5,4,3,6,1], PCSet.new([0,1,3,5,6,8,10]).interval_vector)
assert_equal([0,6,0,6,0,3], PCSet.new([0,2,4,6,8,10]).interval_vector)
end
def test_complement
assert_equal([6,7,8,9,10,11], PCSet.new([0,1,2,3,4,5]).complement.pitches)
assert_equal([3,4,5], PCSet.new([0,1,2], 6).complement.pitches)
end
#
# Test values from (Morris 1991), pages 105-111
# Citation:
# Morris. Class Notes for Atonal Music Theory
# Lebanon, NH. Frog Peak Music, 1991.
#
def test_invariance_vector
assert_equal([1,0,0,0,5,6,5,5],PCSet.new([0,2,5]).invariance_vector)
assert_equal([2,2,2,2,6,6,6,6],PCSet.new([0,1,6,7]).invariance_vector)
assert_equal([6,6,6,6,6,6,6,6],PCSet.new([0,2,4,6,8,10]).invariance_vector)
assert_equal([1,0,0,0,0,0,0,0],PCSet.new([0,1,2,3,4,5,8]).invariance_vector)
assert_equal([1,0,0,1,0,0,0,0],PCSet.new([0,1,2,3,5,6,8]).invariance_vector)
assert_equal([12,12,12,12,0,0,0,0],PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).invariance_vector)
end
#
# Test values from (Huron 1994). Huron rounds, thus the 0.01 margin of error.
# Citation:
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
#
def test_huron
h1 = PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).huron
assert_in_delta(-0.2, h1[0], 0.01)
assert_in_delta(0.21, h1[1], 0.01)
h2 = PCSet.new([0,2,4,5,7,9,11]).huron
assert_in_delta(4.76, h2[0], 0.01)
assert_in_delta(0.62, h2[1], 0.01)
end
def test_coherence
end
end
And in the file pcset.rb the folloing code:
#
# => PCSet Class for Ruby
# => Beau Sievers
# => Hanover, Fall 2008.
#
#
# TODO: Make this a module to avoid namespace collisions.
# Lilypond and MusicXML output
#
include Math
def choose(n, k)
return [[]] if n.nil? || n.empty? && k == 0
return [] if n.nil? || n.empty? && k > 0
return [[]] if n.size > 0 && k == 0
c2 = n.clone
c2.pop
new_element = n.clone.pop
choose(c2, k) + append_all(choose(c2, k-1), new_element)
end
def append_all(lists, element)
lists.map { |l| l << element }
end
def array_to_binary(array)
array.inject(0) {|sum, n| sum + 2**n}
end
# the following method is horrifically inelegant
# but avoids monkey-patching.
# TODO: do this right, incl. error checking
def pearsons(x, y)
if !x.is_a?(Array) || !y.is_a?(Array) then raise StandardError, "x and y must be arrays", caller end
if x.size != y.size then raise StandardError, "x and y must be same size", caller end
sum_x = x.inject(0) {|sum, n| sum + n}
sum_y = y.inject(0) {|sum, n| sum + n}
sum_square_x = x.inject(0) {|sum, n| sum + n * n}
sum_square_y = y.inject(0) {|sum, n| sum + n * n}
xy = []
x.zip(y) {|a, b| xy.push(a * b)}
sum_xy = xy.inject(0) {|sum, n| sum + n}
num = sum_xy - ((sum_x * sum_y)/x.size)
den = Math.sqrt((sum_square_x - ((sum_x*sum_x)/x.size)) * (sum_square_y - ((sum_y*sum_y)/x.size)))
(num/den)
end
class PCSet
include Comparable
attr_reader :pitches, :base, :input
def initialize(pcarray, base = 12)
if pcarray.instance_of?(Array) && pcarray.all?{|pc| pc.instance_of?(Fixnum)}
#base, #input = base, pcarray
#pitches = pcarray.map{ |x| x % #base }.uniq
else
raise ArgumentError, "Improperly formatted PC array", caller
end
end
def PCSet.new_from_string(pcstring, base = 12)
if base > 36 then raise StandardError, "Use PCSet.new to create pcsets with a base larger than 36", caller end
pcarray = []
pcstring.downcase.split(//).each do |c|
if c <= 'z' and c >= '0' then pcarray.push(c.to_i(36)) end
end
PCSet.new pcarray, base
end
def <=>(pcs)
#pitches <=> pcs.pitches
end
def [](index)
#pitches[index]
end
# Intersection
def &(other)
PCSet.new #pitches & other.pitches
end
# Union
def |(other)
PCSet.new #pitches | other.pitches
end
def inspect
#pitches.inspect
end
def length
#pitches.length
end
def invert(axis = 0)
PCSet.new #pitches.map {|x| (axis-x) % #base}
end
def invert!(axis = 0)
#pitches.map! {|x| (axis-x) % #base}
end
def transpose(interval)
PCSet.new #pitches.map {|x| (x + interval) % #base}
end
def transpose!(interval)
#pitches.map! {|x| (x + interval) % #base}
end
def multiply(m = 5)
PCSet.new #pitches.map {|x| (x * m) % #base}
end
def multiply!(m = 5)
#pitches.map! {|x| (x * m) % #base}
end
def zero
transpose(-1 * #pitches[0])
end
def zero!
transpose!(-1 * #pitches[0])
end
def transpositions
(0..(#base-1)).to_a.map{|x| #pitches.map {|y| (y + x) % #base}}.sort.map {|x| PCSet.new x}
end
def transpositions_and_inversions(axis = 0)
transpositions + invert(axis).transpositions
end
#
# Normal form after Straus. Morris and AthenaCL do this differently.
#
def normal_form
tempar = #pitches.sort
arar = [] # [[1,4,7,8,10],[4,7,8,10,1], etc.] get each cyclic variation
tempar.each {arar.push PCSet.new(tempar.unshift(tempar.pop))}
most_left_compact(arar)
end
def normal_form!
#pitches = normal_form.pitches
end
def is_normal_form?
self.pitches == self.normal_form.pitches
end
def set_class
transpositions_and_inversions.map{|pcs| pcs.normal_form}.sort
end
def prime
most_left_compact([normal_form.zero, invert.normal_form.zero])
end
def prime!
self.pitches = self.prime.pitches
end
def is_prime?
self.pitches == self.prime.pitches
end
def complement
new_pitches = []
#base.times do |p|
if !#pitches.include? p then
new_pitches.push p
end
end
PCSet.new new_pitches
end
def full_interval_vector
pairs = choose(#pitches, 2) # choose every pc pair
intervals = pairs.map {|x| (x[1] - x[0]) % #base} # calculate every interval
i_vector = Array.new(#base-1).fill(0)
intervals.each {|x| i_vector[x-1] += 1} # count the intervals
i_vector
end
def interval_vector
i_vector = full_interval_vector
(0..((#base-1)/2)-1).each {|x| i_vector[x] += i_vector.pop}
i_vector
end
#
# Morris's invariance vector
#
def invariance_vector(m = 5)
t = transpositions.map!{|pcs| self & pcs}
ti = invert.transpositions.map!{|pcs| self & pcs}
tm = multiply(m).transpositions.map!{|pcs| self & pcs}
tmi = invert.multiply(m).transpositions.map!{|pcs| self & pcs}
tc = complement.transpositions.map!{|pcs| self & pcs}
tic = complement.invert.transpositions.map!{|pcs| self & pcs}
tmc = complement.multiply(m).transpositions.map!{|pcs| self & pcs}
tmic = complement.invert.multiply(m).transpositions.map!{|pcs| self & pcs}
[t, ti, tm, tmi, tc, tic, tmc, tmic].map{|x| x.reject{|pcs| pcs.pitches != #pitches}.length}
end
# Huron's aggregate dyadic consonance measure.
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
def huron
if #base != 12 then raise StandardError, "PCSet.huron only makes sense for mod 12 pcsets", caller end
# m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 A4/d5
huron_table = [-1.428, -0.582, 0.594, 0.386, 1.240, -0.453]
interval_consonance = []
interval_vector.zip(huron_table) {|x, y| interval_consonance.push(x * y) }
aggregate_dyadic_consonance = interval_consonance.inject {|sum, n| sum + n}
[aggregate_dyadic_consonance, pearsons(interval_vector, huron_table)]
end
#
# Balzano's vector of relations. Citation for all Balzano methods:
#
# Balzano. "The Pitch Set as a Level of Description for Studying Musical
# Pitch Perception" in Music, Mind, and Brain ed. Clynes. Plenum Press. 1982.
#
def vector_of_relations
(0..length-1).to_a.map do |i|
(0..length-1).to_a.map do |j|
(#pitches[(i + j) % length] - #pitches[i]) % #base
end
end
end
#
# Checks if the set satisfies Balzano's uniqueness.
#
def is_unique?
vector_of_relations.uniq.size == vector_of_relations.size
end
#
# Checks if the set satisfies Balzano's scalestep-semitone coherence.
# For all s[i] and s[i1]:
# j < k => v[i][j] < v[i1][k]
# Where j and k are scalestep-counting indices.
# And unless v[i][j] == 6 (a tritone), in which case the strict inequality is relaxed.
#
def is_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
if v[i][j] == 6
truth_array.push(v[i][j] <= v[i1][k])
else
truth_array.push(v[i][j] < v[i1][k])
end
if v[i1][j] == 6
truth_array.push(v[i1][j] <= v[i][k])
else
truth_array.push(v[i1][j] < v[i][k])
end
end
end
!truth_array.include?(false)
end
#
# Strict Balzano coherence, no inequality relaxation for tritones.
#
def is_strictly_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
truth_array.push(v[i][j] < v[i1][k])
truth_array.push(v[i1][j] < v[i][k])
end
end
!truth_array.include?(false)
end
def notes(middle_c = 0)
noteArray = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B']
if #base != 12 then raise StandardError, "PCSet.notes only makes sense for mod 12 pcsets", caller end
out_string = String.new
transpose(-middle_c).pitches.each do |p|
out_string += noteArray[p] + ", "
end
out_string.chop.chop
end
def info
print "modulo: #{#base}\n"
print "raw input: #{#input.inspect}\n"
print "pitch set: #{#pitches.inspect}\n"
print "notes: #{notes}\n"
print "normal: #{normal_form.inspect}\n"
print "prime: #{prime.inspect}\n"
print "interval vector: #{interval_vector.inspect}\n"
print "invariance vector: #{invariance_vector.inspect}\n"
print "huron ADC: #{huron[0]} pearsons: #{huron[1]}\n"
print "balzano coherence: "
if is_strictly_coherent?
print "strictly coherent\n"
elsif is_coherent?
print "coherent\n"
else
print "false\n"
end
end
# def lilypond
#
# end
#
# def musicXML
#
# end
###############################################################################
private
#
# Convert every pitch array to a binary representation, e.g.:
# [0,2,4,8,10] -> 010100010101
# 2^n: BA9876543210
# The smallest binary number is the most left-compact.
#
def most_left_compact(pcset_array)
if !pcset_array.all? {|pcs| pcs.length == pcset_array[0].length}
raise ArgumentError, "PCSet.most_left_compact: All PCSets must be of same cardinality", caller
end
zeroed_pitch_arrays = pcset_array.map {|pcs| pcs.zero.pitches}
binaries = zeroed_pitch_arrays.map {|array| array_to_binary(array)}
winners = []
binaries.each_with_index do |num, i|
if num == binaries.min then winners.push(pcset_array[i]) end
end
winners.sort[0]
end
end
I'm calling them as follows:
> my_pcset = PCSet.new([0,2,4,6,8,10])
> my_pcset2 = PCSet.new([1,5,9])
It shoud return:
> my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
> my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
But is returning nothing.
The code is available on github
Thanks
Try this in terminal: irb -r ./path_to_directory/pcset.rb and then initialize the objects.
I think the documentation for the repo is bad as it does not explain how you should be running this.
The result of
my_pcset = PCSet.new([0,2,4,6,8,10])
should set my_pcset to an instance of a PCSet not an array, so these lines from the README file are confusing at best.
3. How to use it
Make new PCSets:
my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
Looking at the code, I see inspect has been delegated to #pitches
def inspect
#pitches.inspect
end
I think if you inspect my_pcset you will get the expected result.
my_pcset = PCSet.new([0,2,4,6,8,10])
p my_pcset # will print [0, 2, 4, 6, 8, 10]
or `my_pcset.inspect` will return what you are expecting.

How to optimize code - it works, but I know I'm missing much learning

The exercise I'm working on asks "Write a method, coprime?(num_1, num_2), that accepts two numbers as args. The method should return true if the only common divisor between the two numbers is 1."
I've written a method to complete the task, first by finding all the factors then sorting them and looking for duplicates. But I'm looking for suggestions on areas I should consider to optimize it.
The code works, but it is just not clean.
def factors(num)
return (1..num).select { |n| num % n == 0}
end
def coprime?(num_1, num_2)
num_1_factors = factors(num_1)
num_2_factors = factors(num_2)
all_factors = num_1_factors + num_2_factors
new = all_factors.sort
dups = 0
new.each_index do |i|
dups += 1 if new[i] == new[i+1]
end
if dups > 1
false
else
true
end
end
p coprime?(25, 12) # => true
p coprime?(7, 11) # => true
p coprime?(30, 9) # => false
p coprime?(6, 24) # => false
You could use Euclid's algorithm to find the GCD, then check whether it's 1.
def gcd a, b
while a % b != 0
a, b = b, a % b
end
return b
end
def coprime? a, b
gcd(a, b) == 1
end
p coprime?(25, 12) # => true
p coprime?(7, 11) # => true
p coprime?(30, 9) # => false
p coprime?(6, 24) # => false```
You can just use Integer#gcd:
def coprime?(num_1, num_2)
num_1.gcd(num_2) == 1
end
You don't need to compare all the factors, just the prime ones. Ruby does come with a Prime class
require 'prime'
def prime_numbers(num_1, num_2)
Prime.each([num_1, num_2].max / 2).map(&:itself)
end
def factors(num, prime_numbers)
prime_numbers.select {|n| num % n == 0}
end
def coprime?(num_1, num_2)
prime_numbers = prime_numbers(num_1, num_2)
# & returns the intersection of 2 arrays (https://stackoverflow.com/a/5678143)
(factors(num_1, prime_numbers) & factors(num_2, prime_numbers)).length == 0
end

FizzBuzz Program Output in form of table

I have written the logic for the program to perform FizzBuzz operations:
fizzbuzz
module FizzBuzz
class Operation
def input
puts 'Enter a number upto which Fizz/Buzz needs to be printed'
num = gets.chomp.to_i
fizzbuzz_function(num)
end
def fizzbuzz_function(num)
for i in 1..num
if i % 3 == 0 && i % 5 == 0
puts 'FizzBuzz'
elsif i % 3 == 0
puts 'Fizz'
elsif i % 5 == 0
puts 'Buzz'
else
puts i
end
end
end
end
res = Operation.new
res.input
end
But I am trying to print the output in form of a table.
Here is FizzBuzz in form of a table:
def fizzbuzz_gen(num)
Enumerator.new do |y|
(1..num).each do |i|
if i % 3 == 0 && i % 5 == 0
y << 'FizzBuzz'
elsif i % 3 == 0
y << 'Fizz'
elsif i % 5 == 0
y << 'Buzz'
else
y << i.to_s
end
end
end
end
def fill_to_width(width, e)
result = ""
future_length = -1
while result.length + future_length < width
result << e.next
result << " "
future_length = e.peek.length
end
result.center(width)
end
def format_table(num)
fb = fizzbuzz_gen(num)
begin
puts fill_to_width(75, fb)
puts fill_to_width(75, fb)
loop do
puts "%10s%s%31s%s" % ["", fill_to_width(12, fb), "", fill_to_width(12, fb)]
end
rescue StopIteration
end
end
format_table(100)
There may be less numbers output than specified, in order for one leg not to be shorter than another.

ruby code stopping at run time, seemingly an infinite loop

if i run the code, it will stop and not do anything and i am unable to type. seems to be an infinite loop.
the problem seems to be the end until loop, however if i take that out, my condition will not be met.
can anyone find a solution? i have tried all the loops that i can think of.
/. 2d array board ./
board = Array.new(10) { Array.new(10, 0) }
/. printing board ./
if board.count(5) != 5 && board.count(4) != 4 && board.count(3) != 3
for i in 0..9
for j in 0..9
board[i][j] = 0
end
end
aircraftcoord1 = (rand*10).floor
aircraftcoord2 = (rand 6).floor
aircraftalign = rand
if aircraftalign < 0.5
for i in 0..4
board[aircraftcoord2+i][aircraftcoord1] = 5
end
else
for i in 0..4
board[aircraftcoord1][aircraftcoord2+i] = 5
end
end
cruisercoord1 = (rand*10).floor
cruisercoord2 = (rand 7).floor
cruiseralign = rand
if cruiseralign < 0.5
for i in 0..3
board[cruisercoord2+i][cruisercoord1] = 4
end
else
for i in 0..3
board[cruisercoord1][cruisercoord2+i] = 4
end
end
destroyercoord1 = (rand*10).floor
destroyercoord2 = (rand 8).floor
destroyeralign = rand
if destroyeralign < 0.5
for i in 0..2
board[destroyercoord2+i][destroyercoord1] = 3
end
else
for i in 0..2
board[destroyercoord1][destroyercoord2+i] = 3
end
end
end until board.count(5) == 5 && board.count(4) == 4 && board.count(3) == 3
print " "
for i in 0..9
print i
end
puts
for i in 0..9
print i
for j in 0..9
print board[i][j]
end
puts
end
The line board.count(5) == 5 ... will never be true because board is a two-dimensional array. I can't tell what the condition should be, but it could look something like:
board[5].count(5) == 5

Remove duplicate text from multiple strings

I have:
a = "This is Product A with property B and propery C. Buy it now!"
b = "This is Product B with property X and propery Y. Buy it now!"
c = "This is Product C having no properties. Buy it now!"
I'm looking for an algorithm that can do:
> magic(a, b, c)
=> ['A with property B and propery C',
'B with property X and propery Y',
'C having no properties']
I have to find for duplicates in 1000+ texts. Super performance isn't a must, but would be nice.
-- Update
I'm looking for sequence of words. So if:
d = 'This is Product D with text engraving: "Buy". Buy it now!'
The first "Buy" should not be a duplicate. I'm guessing I have to use a threshold of n words following eachother in order to be seen as duplicate.
def common_prefix_length(*args)
first = args.shift
(0..first.size).find_index { |i| args.any? { |a| a[i] != first[i] } }
end
def magic(*args)
i = common_prefix_length(*args)
args = args.map { |a| a[i..-1].reverse }
i = common_prefix_length(*args)
args.map { |a| a[i..-1].reverse }
end
a = "This is Product A with property B and propery C. Buy it now!"
b = "This is Product B with property X and propery Y. Buy it now!"
c = "This is Product C having no properties. Buy it now!"
magic(a,b,c)
# => ["A with property B and propery C",
# "B with property X and propery Y",
# "C having no properties"]
Your data
sentences = [
"This is Product A with property B and propery C. Buy it now!",
"This is Product B with property X and propery Y. Buy it now!",
"This is Product C having no properties. Buy it now!"
]
Your magic
def magic(data)
prefix, postfix = 0, -1
data.map{ |d| d[prefix] }.uniq.compact.size == 1 && prefix += 1 or break while true
data.map{ |d| d[postfix] }.uniq.compact.size == 1 && prefix > -postfix && postfix -= 1 or break while true
data.map{ |d| d[prefix..postfix] }
end
Your output
magic(sentences)
#=> [
#=> "A with property B and propery C",
#=> "B with property X and propery Y",
#=> "C having no properties"
#=> ]
Or you can use loop instead of while true
def magic(data)
prefix, postfix = 0, -1
loop{ data.map{ |d| d[prefix] }.uniq.compact.size == 1 && prefix += 1 or break }
loop{ data.map{ |d| d[postfix] }.uniq.compact.size == 1 && prefix > -postfix && postfix -= 1 or break }
data.map{ |d| d[prefix..postfix] }
end
edit: this code has bugs. Just leaving my answer for reference and because i dont like it if people delete answers after being downvoted. Everyone makes mistakes :-)
I liked #falsetru's approach but felt the code was unnecessarily complex. Here's my attempt:
def common_prefix_length(strings)
i = 0
i += 1 while strings.map{|s| s[i] }.uniq.size == 1
i
end
def common_suffix_length(strings)
common_prefix_length(strings.map(&:reverse))
end
def uncommon_infixes(strings)
pl = common_prefix_length(strings)
sl = common_suffix_length(strings)
strings.map{|s| s[pl...-sl] }
end
As the OP may be concerned about performance, i did a quick benchmark:
require 'fruity'
require 'securerandom'
prefix = 'PREFIX '
suffix = ' SUFFIX'
test_data = Array.new(1000) do
prefix + SecureRandom.hex + suffix
end
def fl00r_meth(data)
prefix, postfix = 0, -1
data.map{ |d| d[prefix] }.uniq.size == 1 && prefix += 1 or break while true
data.map{ |d| d[postfix] }.uniq.size == 1 && postfix -= 1 or break while true
data.map{ |d| d[prefix..postfix] }
end
def falsetru_common_prefix_length(*args)
first = args.shift
(0..first.size).find_index { |i| args.any? { |a| a[i] != first[i] } }
end
def falsetru_meth(*args)
i = falsetru_common_prefix_length(*args)
args = args.map { |a| a[i..-1].reverse }
i = falsetru_common_prefix_length(*args)
args.map { |a| a[i..-1].reverse }
end
def padde_common_prefix_length(strings)
i = 0
i += 1 while strings.map{|s| s[i] }.uniq.size == 1
i
end
def padde_common_suffix_length(strings)
padde_common_prefix_length(strings.map(&:reverse))
end
def padde_meth(strings)
pl = padde_common_prefix_length(strings)
sl = padde_common_suffix_length(strings)
strings.map{|s| s[pl...-sl] }
end
compare do
fl00r do
fl00r_meth(test_data.dup)
end
falsetru do
falsetru_meth(*test_data.dup)
end
padde do
padde_meth(test_data.dup)
end
end
These are the results:
Running each test once. Test will take about 1 second.
fl00r is similar to padde
padde is faster than falsetru by 30.000000000000004% ± 10.0%

Resources