How do I fix a problem to call a function in Ruby? - ruby
I'm trying to use some ruby code that I've found in Github. I've downloaded the code and did the necessary imports the "requires" and tried to run it as it is described in the readme file on github repository. The code is the following:
In the file pcset_test.rb the code is the following:
require './pcset.rb'
require 'test/unit'
#
# When possible, test cases are adapted from
# Introduction to Post-Tonal Theory by Joseph N. Straus,
# unless obvious or otherwise noted.
#
class PCSetTest < Test::Unit::TestCase
def test_init
#assert_raise(ArgumentError) {PCSet.new []}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3, 'string']}
assert_raise(ArgumentError) {PCSet.new "string"}
assert_raise(ArgumentError) {PCSet.new [1, 2, 3.6, 4]}
assert_equal([0, 1, 2, 9], PCSet.new([0, 1, 2, 33, 13]).pitches)
assert_equal([3, 2, 1, 11, 10, 0], PCSet.new_from_string('321bac').pitches)
assert_equal([0,2,4,5,7,11,9], PCSet.new([12,2,4,5,7,11,9]).pitches)
assert_nothing_raised() {PCSet.new []}
end
def test_inversion
end
def test_transposition
end
def test_multiplication
end
#
# set normal prime forte #
# 0,2,4,7,8,11 7,8,11,0,2,4 0,1,4,5,7,9 6-31
# 0,1,2,4,5,7,11 11,0,1,2,4,5,7 0,1,2,3,5,6,8 7-Z36
# 0,1,3,5,6,7,9,10,11 5,6,7,9,10,11,0,1,3 0,1,2,3,4,6,7,8,10 9-8
#
def test_normal_form
testPC = PCSet.new [0,4,8,9,11]
assert_kind_of(PCSet, testPC.normal_form)
assert_equal([8,9,11,0,4], testPC.normal_form.pitches)
assert_equal([10,1,4,6], PCSet.new([1,6,4,10]).normal_form.pitches)
assert_equal([2,4,8,10], PCSet.new([10,8,4,2]).normal_form.pitches)
assert_equal([7,8,11,0,2,4], PCSet.new([0,2,4,7,8,11]).normal_form.pitches)
assert_equal([11,0,1,2,4,5,7], PCSet.new([0,1,2,4,5,7,11]).normal_form.pitches)
assert_equal([5,6,7,9,10,11,0,1,3], PCSet.new([0,1,3,5,6,7,9,10,11]).normal_form.pitches)
end
def test_prime_form
assert_equal([0,1,2,6], PCSet.new([5,6,1,7]).prime.pitches)
assert_equal([0,1,4], PCSet.new([2,5,6]).prime.pitches)
assert_equal([0,1,4,5,7,9], PCSet.new([0,2,4,7,8,11]).prime.pitches)
assert_equal([0,1,2,3,5,6,8], PCSet.new([0,1,2,4,5,7,11]).prime.pitches)
assert_equal([0,1,2,3,4,6,7,8,10], PCSet.new([0,1,3,5,6,7,9,10,11]).prime.pitches)
end
def test_set_class
testPcs = PCSet.new([2,5,6])
testPrime = testPcs.prime
assert_equal([
[2,5,6], [3,6,7], [4,7,8], [5,8,9], [6,9,10], [7,10,11],
[8,11,0],[9,0,1], [10,1,2],[11,2,3],[0,3,4], [1,4,5],
[6,7,10],[7,8,11],[8,9,0], [9,10,1],[10,11,2],[11,0,3],
[0,1,4], [1,2,5], [2,3,6], [3,4,7], [4,5,8], [5,6,9]
].sort, PCSet.new([2,5,6]).set_class.map{|x| x.pitches})
assert_equal(testPcs.set_class.map{|x| x.pitches}, testPrime.set_class.map{|x| x.pitches})
end
def test_interval_vector
assert_equal([2,1,2,1,0,0], PCSet.new([0,1,3,4]).interval_vector)
assert_equal([2,5,4,3,6,1], PCSet.new([0,1,3,5,6,8,10]).interval_vector)
assert_equal([0,6,0,6,0,3], PCSet.new([0,2,4,6,8,10]).interval_vector)
end
def test_complement
assert_equal([6,7,8,9,10,11], PCSet.new([0,1,2,3,4,5]).complement.pitches)
assert_equal([3,4,5], PCSet.new([0,1,2], 6).complement.pitches)
end
#
# Test values from (Morris 1991), pages 105-111
# Citation:
# Morris. Class Notes for Atonal Music Theory
# Lebanon, NH. Frog Peak Music, 1991.
#
def test_invariance_vector
assert_equal([1,0,0,0,5,6,5,5],PCSet.new([0,2,5]).invariance_vector)
assert_equal([2,2,2,2,6,6,6,6],PCSet.new([0,1,6,7]).invariance_vector)
assert_equal([6,6,6,6,6,6,6,6],PCSet.new([0,2,4,6,8,10]).invariance_vector)
assert_equal([1,0,0,0,0,0,0,0],PCSet.new([0,1,2,3,4,5,8]).invariance_vector)
assert_equal([1,0,0,1,0,0,0,0],PCSet.new([0,1,2,3,5,6,8]).invariance_vector)
assert_equal([12,12,12,12,0,0,0,0],PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).invariance_vector)
end
#
# Test values from (Huron 1994). Huron rounds, thus the 0.01 margin of error.
# Citation:
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
#
def test_huron
h1 = PCSet.new([0,1,2,3,4,5,6,7,8,9,10,11]).huron
assert_in_delta(-0.2, h1[0], 0.01)
assert_in_delta(0.21, h1[1], 0.01)
h2 = PCSet.new([0,2,4,5,7,9,11]).huron
assert_in_delta(4.76, h2[0], 0.01)
assert_in_delta(0.62, h2[1], 0.01)
end
def test_coherence
end
end
And in the file pcset.rb the folloing code:
#
# => PCSet Class for Ruby
# => Beau Sievers
# => Hanover, Fall 2008.
#
#
# TODO: Make this a module to avoid namespace collisions.
# Lilypond and MusicXML output
#
include Math
def choose(n, k)
return [[]] if n.nil? || n.empty? && k == 0
return [] if n.nil? || n.empty? && k > 0
return [[]] if n.size > 0 && k == 0
c2 = n.clone
c2.pop
new_element = n.clone.pop
choose(c2, k) + append_all(choose(c2, k-1), new_element)
end
def append_all(lists, element)
lists.map { |l| l << element }
end
def array_to_binary(array)
array.inject(0) {|sum, n| sum + 2**n}
end
# the following method is horrifically inelegant
# but avoids monkey-patching.
# TODO: do this right, incl. error checking
def pearsons(x, y)
if !x.is_a?(Array) || !y.is_a?(Array) then raise StandardError, "x and y must be arrays", caller end
if x.size != y.size then raise StandardError, "x and y must be same size", caller end
sum_x = x.inject(0) {|sum, n| sum + n}
sum_y = y.inject(0) {|sum, n| sum + n}
sum_square_x = x.inject(0) {|sum, n| sum + n * n}
sum_square_y = y.inject(0) {|sum, n| sum + n * n}
xy = []
x.zip(y) {|a, b| xy.push(a * b)}
sum_xy = xy.inject(0) {|sum, n| sum + n}
num = sum_xy - ((sum_x * sum_y)/x.size)
den = Math.sqrt((sum_square_x - ((sum_x*sum_x)/x.size)) * (sum_square_y - ((sum_y*sum_y)/x.size)))
(num/den)
end
class PCSet
include Comparable
attr_reader :pitches, :base, :input
def initialize(pcarray, base = 12)
if pcarray.instance_of?(Array) && pcarray.all?{|pc| pc.instance_of?(Fixnum)}
#base, #input = base, pcarray
#pitches = pcarray.map{ |x| x % #base }.uniq
else
raise ArgumentError, "Improperly formatted PC array", caller
end
end
def PCSet.new_from_string(pcstring, base = 12)
if base > 36 then raise StandardError, "Use PCSet.new to create pcsets with a base larger than 36", caller end
pcarray = []
pcstring.downcase.split(//).each do |c|
if c <= 'z' and c >= '0' then pcarray.push(c.to_i(36)) end
end
PCSet.new pcarray, base
end
def <=>(pcs)
#pitches <=> pcs.pitches
end
def [](index)
#pitches[index]
end
# Intersection
def &(other)
PCSet.new #pitches & other.pitches
end
# Union
def |(other)
PCSet.new #pitches | other.pitches
end
def inspect
#pitches.inspect
end
def length
#pitches.length
end
def invert(axis = 0)
PCSet.new #pitches.map {|x| (axis-x) % #base}
end
def invert!(axis = 0)
#pitches.map! {|x| (axis-x) % #base}
end
def transpose(interval)
PCSet.new #pitches.map {|x| (x + interval) % #base}
end
def transpose!(interval)
#pitches.map! {|x| (x + interval) % #base}
end
def multiply(m = 5)
PCSet.new #pitches.map {|x| (x * m) % #base}
end
def multiply!(m = 5)
#pitches.map! {|x| (x * m) % #base}
end
def zero
transpose(-1 * #pitches[0])
end
def zero!
transpose!(-1 * #pitches[0])
end
def transpositions
(0..(#base-1)).to_a.map{|x| #pitches.map {|y| (y + x) % #base}}.sort.map {|x| PCSet.new x}
end
def transpositions_and_inversions(axis = 0)
transpositions + invert(axis).transpositions
end
#
# Normal form after Straus. Morris and AthenaCL do this differently.
#
def normal_form
tempar = #pitches.sort
arar = [] # [[1,4,7,8,10],[4,7,8,10,1], etc.] get each cyclic variation
tempar.each {arar.push PCSet.new(tempar.unshift(tempar.pop))}
most_left_compact(arar)
end
def normal_form!
#pitches = normal_form.pitches
end
def is_normal_form?
self.pitches == self.normal_form.pitches
end
def set_class
transpositions_and_inversions.map{|pcs| pcs.normal_form}.sort
end
def prime
most_left_compact([normal_form.zero, invert.normal_form.zero])
end
def prime!
self.pitches = self.prime.pitches
end
def is_prime?
self.pitches == self.prime.pitches
end
def complement
new_pitches = []
#base.times do |p|
if !#pitches.include? p then
new_pitches.push p
end
end
PCSet.new new_pitches
end
def full_interval_vector
pairs = choose(#pitches, 2) # choose every pc pair
intervals = pairs.map {|x| (x[1] - x[0]) % #base} # calculate every interval
i_vector = Array.new(#base-1).fill(0)
intervals.each {|x| i_vector[x-1] += 1} # count the intervals
i_vector
end
def interval_vector
i_vector = full_interval_vector
(0..((#base-1)/2)-1).each {|x| i_vector[x] += i_vector.pop}
i_vector
end
#
# Morris's invariance vector
#
def invariance_vector(m = 5)
t = transpositions.map!{|pcs| self & pcs}
ti = invert.transpositions.map!{|pcs| self & pcs}
tm = multiply(m).transpositions.map!{|pcs| self & pcs}
tmi = invert.multiply(m).transpositions.map!{|pcs| self & pcs}
tc = complement.transpositions.map!{|pcs| self & pcs}
tic = complement.invert.transpositions.map!{|pcs| self & pcs}
tmc = complement.multiply(m).transpositions.map!{|pcs| self & pcs}
tmic = complement.invert.multiply(m).transpositions.map!{|pcs| self & pcs}
[t, ti, tm, tmi, tc, tic, tmc, tmic].map{|x| x.reject{|pcs| pcs.pitches != #pitches}.length}
end
# Huron's aggregate dyadic consonance measure.
# Huron. Interval-Class Content in Equally Tempered Pitch-Class Sets:
# Common Scales Exhibit Optimum Tonal Consonance.
# Music Perception (1994) vol. 11 (3) pp. 289-305
def huron
if #base != 12 then raise StandardError, "PCSet.huron only makes sense for mod 12 pcsets", caller end
# m2/M7 M2/m7 m3/M6 M3/m6 P4/P5 A4/d5
huron_table = [-1.428, -0.582, 0.594, 0.386, 1.240, -0.453]
interval_consonance = []
interval_vector.zip(huron_table) {|x, y| interval_consonance.push(x * y) }
aggregate_dyadic_consonance = interval_consonance.inject {|sum, n| sum + n}
[aggregate_dyadic_consonance, pearsons(interval_vector, huron_table)]
end
#
# Balzano's vector of relations. Citation for all Balzano methods:
#
# Balzano. "The Pitch Set as a Level of Description for Studying Musical
# Pitch Perception" in Music, Mind, and Brain ed. Clynes. Plenum Press. 1982.
#
def vector_of_relations
(0..length-1).to_a.map do |i|
(0..length-1).to_a.map do |j|
(#pitches[(i + j) % length] - #pitches[i]) % #base
end
end
end
#
# Checks if the set satisfies Balzano's uniqueness.
#
def is_unique?
vector_of_relations.uniq.size == vector_of_relations.size
end
#
# Checks if the set satisfies Balzano's scalestep-semitone coherence.
# For all s[i] and s[i1]:
# j < k => v[i][j] < v[i1][k]
# Where j and k are scalestep-counting indices.
# And unless v[i][j] == 6 (a tritone), in which case the strict inequality is relaxed.
#
def is_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
if v[i][j] == 6
truth_array.push(v[i][j] <= v[i1][k])
else
truth_array.push(v[i][j] < v[i1][k])
end
if v[i1][j] == 6
truth_array.push(v[i1][j] <= v[i][k])
else
truth_array.push(v[i1][j] < v[i][k])
end
end
end
!truth_array.include?(false)
end
#
# Strict Balzano coherence, no inequality relaxation for tritones.
#
def is_strictly_coherent?
v = vector_of_relations
truth_array = []
all_pair_indices = choose((0..length-1).to_a, 2)
all_pair_indices.each do |i, i1|
all_pair_indices.each do |j, k|
truth_array.push(v[i][j] < v[i1][k])
truth_array.push(v[i1][j] < v[i][k])
end
end
!truth_array.include?(false)
end
def notes(middle_c = 0)
noteArray = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B']
if #base != 12 then raise StandardError, "PCSet.notes only makes sense for mod 12 pcsets", caller end
out_string = String.new
transpose(-middle_c).pitches.each do |p|
out_string += noteArray[p] + ", "
end
out_string.chop.chop
end
def info
print "modulo: #{#base}\n"
print "raw input: #{#input.inspect}\n"
print "pitch set: #{#pitches.inspect}\n"
print "notes: #{notes}\n"
print "normal: #{normal_form.inspect}\n"
print "prime: #{prime.inspect}\n"
print "interval vector: #{interval_vector.inspect}\n"
print "invariance vector: #{invariance_vector.inspect}\n"
print "huron ADC: #{huron[0]} pearsons: #{huron[1]}\n"
print "balzano coherence: "
if is_strictly_coherent?
print "strictly coherent\n"
elsif is_coherent?
print "coherent\n"
else
print "false\n"
end
end
# def lilypond
#
# end
#
# def musicXML
#
# end
###############################################################################
private
#
# Convert every pitch array to a binary representation, e.g.:
# [0,2,4,8,10] -> 010100010101
# 2^n: BA9876543210
# The smallest binary number is the most left-compact.
#
def most_left_compact(pcset_array)
if !pcset_array.all? {|pcs| pcs.length == pcset_array[0].length}
raise ArgumentError, "PCSet.most_left_compact: All PCSets must be of same cardinality", caller
end
zeroed_pitch_arrays = pcset_array.map {|pcs| pcs.zero.pitches}
binaries = zeroed_pitch_arrays.map {|array| array_to_binary(array)}
winners = []
binaries.each_with_index do |num, i|
if num == binaries.min then winners.push(pcset_array[i]) end
end
winners.sort[0]
end
end
I'm calling them as follows:
> my_pcset = PCSet.new([0,2,4,6,8,10])
> my_pcset2 = PCSet.new([1,5,9])
It shoud return:
> my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
> my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
But is returning nothing.
The code is available on github
Thanks
Try this in terminal: irb -r ./path_to_directory/pcset.rb and then initialize the objects.
I think the documentation for the repo is bad as it does not explain how you should be running this.
The result of
my_pcset = PCSet.new([0,2,4,6,8,10])
should set my_pcset to an instance of a PCSet not an array, so these lines from the README file are confusing at best.
3. How to use it
Make new PCSets:
my_pcset = PCSet.new([0,2,4,6,8,10])
=> [0, 2, 4, 6, 8, 10]
my_pcset2 = PCSet.new([1,5,9])
=> [1, 5, 9]
Looking at the code, I see inspect has been delegated to #pitches
def inspect
#pitches.inspect
end
I think if you inspect my_pcset you will get the expected result.
my_pcset = PCSet.new([0,2,4,6,8,10])
p my_pcset # will print [0, 2, 4, 6, 8, 10]
or `my_pcset.inspect` will return what you are expecting.
Related
How to optimize code - it works, but I know I'm missing much learning
The exercise I'm working on asks "Write a method, coprime?(num_1, num_2), that accepts two numbers as args. The method should return true if the only common divisor between the two numbers is 1." I've written a method to complete the task, first by finding all the factors then sorting them and looking for duplicates. But I'm looking for suggestions on areas I should consider to optimize it. The code works, but it is just not clean. def factors(num) return (1..num).select { |n| num % n == 0} end def coprime?(num_1, num_2) num_1_factors = factors(num_1) num_2_factors = factors(num_2) all_factors = num_1_factors + num_2_factors new = all_factors.sort dups = 0 new.each_index do |i| dups += 1 if new[i] == new[i+1] end if dups > 1 false else true end end p coprime?(25, 12) # => true p coprime?(7, 11) # => true p coprime?(30, 9) # => false p coprime?(6, 24) # => false
You could use Euclid's algorithm to find the GCD, then check whether it's 1. def gcd a, b while a % b != 0 a, b = b, a % b end return b end def coprime? a, b gcd(a, b) == 1 end p coprime?(25, 12) # => true p coprime?(7, 11) # => true p coprime?(30, 9) # => false p coprime?(6, 24) # => false```
You can just use Integer#gcd: def coprime?(num_1, num_2) num_1.gcd(num_2) == 1 end
You don't need to compare all the factors, just the prime ones. Ruby does come with a Prime class require 'prime' def prime_numbers(num_1, num_2) Prime.each([num_1, num_2].max / 2).map(&:itself) end def factors(num, prime_numbers) prime_numbers.select {|n| num % n == 0} end def coprime?(num_1, num_2) prime_numbers = prime_numbers(num_1, num_2) # & returns the intersection of 2 arrays (https://stackoverflow.com/a/5678143) (factors(num_1, prime_numbers) & factors(num_2, prime_numbers)).length == 0 end
Ruby Program to solve Circular Primes below number x
I'm working on project Euler #35. I am getting the wrong number returned and I can't find where I have done wrong! def is_prime?(num) (2..Math.sqrt(num)).each { |i| return false if num % i == 0} true end def is_circular?(num) len = num.to_s.length return true if len == 1 (len - 1).times do new_n = cycle(num) break unless is_prime?(new_n) end end def cycle(num) ary = num.to_s.split("") return ary.rotate!.join.to_i end def how_many circulars = [] (2..1000000).each do |num| if is_prime?(num) && is_circular?(num) circulars << num end end p circulars.count end how_many #=> 14426 The returned number is '14426'. I am only returning the circular primes, supposedly the correct answer is '55'
I have edited your code with few fixes in Ruby way. Your mistake was including corect set of [a, b, c] three times to count, instead of counting them as a one circular prime number. Your answer was correct, while 55 is the number of unique sets. require 'prime' class Euler35 def is_circular?(num) circulars_for(num).all?{ |el| ::Prime.instance.prime?(el) } end def circulars_for(a) a.to_s.split("").length.times.map{|el| a.to_s.split("").rotate(el).join.to_i } end def how_many circulars = [] ::Prime.each(1_000_000) do |num| continue if circulars.include?(num) if is_circular?(num) circulars << circulars_for(num) end end circulars.count end end puts Euler35.new.how_many # => 55
very simple ruby programing, getting into infinite loop
I'm asked to write the ruby program that generate the output based the given command, The full description I'm really new in ruby (maybe few hours that I have started ruby) When I run the program I get into infinite loop, I don't understand why. Thank you. What I have done so far: # MyVector Class class MyVector def initialize (a) if !(a.instance_of? Array) raise "ARGUMENT OF INITIALIZER MUST BE AN ARRAY" else #array = a end end def array #array end def to_s #array.to_s end def length #array.length end def [](i) #array[i] end def each2(a) raise Error, "INTEGER IS NOT LIKE VECTOR" if a.kind_of?(Integer) Vector.Raise Error if length != a.length return to_enum(:each2, a) unless block_given? length.times do |i| yield #array[i], a[i] end self end def * (a) Vector.Raise Error if length != a.length p = 0 each2(a) {|a1, a2|p += a1 * a2} p end end # MyMatrix Class class MyMatrix def initialize a #array=Array.new(a.length) i=0 while(i<a.length) #array[i]=MyVector.new(a[i]) end end def to_s #array.to_s end def transpose size=vectors[0].length arr= Array.new(size) i=0 while i<size a=Array.new(vector.length) j=0 while j<a.length a[j]=vectors[j].arr[i] j+=1 end arr[i]=a i+=1 end arr[i]=a i+=1 end def *m if !(m instance_of? MyMatrix) raise Error a=Array.new(#array.length) i=0 while (i<#array.length) a[i]=#array[i]*m i=i+1 end end end end Input: Test code v = MyVector.new([1,2,3]) puts "v = " + v.to_s v1 = MyVector.new([2,3,4]) puts "v1 = " + v1.to_s puts "v * v1 = " + (v * v1).to_s m = MyMatrix.new([[1,2], [1, 2], [1, 2]]) puts "m = " + m.to_s + "\n" puts "v * m = " + (v * m).to_s m1 = MyMatrix.new([[1, 2, 3], [2, 3, 4]]) puts "m1 = " + m1.to_s + "\n" puts "m * m1 = " + (m * m1).to_s puts "m1 * m = " + (m1 * m).to_s Desired Output: v = 1 2 3 v1 = 2 3 4 v * v1 = 20 m = 1 2 1 2 1 2 v * m = 6 12 m1 = 1 2 3 2 3 4 m * m1 = 5 8 11 5 8 11 5 8 11 m1 * m = 6 12 9 18
To answer the infinite loop issue, it looks like you forgot to add a i += 1 in the #initialize method of Matrix class. However, you will encounter more errors further in the code since, for example, you're checking length of the Matrix object which is undefined, and iterating over the Matrix object in each2 defined inside of the Vector class which needs the object to be an Enumerable (Array/Hash etc). These will throw an error as the Matrix class is not an Enumerator. These are some good resources to help you learn how the powerful Enumerator module works. Once you get familiar with the syntax and structure, be sure to use the Pry tool. It will be your best friend for debugging Ruby code.
very simple ruby programing, getting error and don't understand it
I'm asked to write the ruby program that generate the output based the given command, The full description I'm really new in ruby (maybe few hours that I have started ruby) I'm getting this error, please check my code for other possible errors: Thank you. n `block in each2': undefined method `[]' for #<MyVector:0x00000002c4ad90 #array=[2, 3, 4]> (NoMethodError) What I have done so far: # MyVector Class class MyVector def initialize (a) if !(a.instance_of? Array) raise "ARGUMENT OF INITIALIZER MUST BE AN ARRAY" else #array = a end end def array #array end def to_s #array.to_s end def length #array.length end def each2(a) raise Error, "INTEGER IS NOT LIKE VECTOR" if a.kind_of?(Integer) Vector.Raise Error if length != a.length return to_enum(:each2, a) unless block_given? length.times do |i| yield #array[i], a[i] end self end def * (a) Vector.Raise Error if length != a.length p = 0 each2(a) {|a1, a2|p += a1 * a2} p end end # MyMatrix Class class MyMatrix def initialize a #array=Array.new(a.length) i=0 while(i<a.length) #array[i]=MyVector.new(a[i]) end end def to_s #array.to_s end def transpose size=vectors[0].length arr= Array.new(size) i=0 while i<size a=Array.new(vector.length) j=0 while j<a.length a[j]=vectors[j].arr[i] j+=1 end arr[i]=a i+=1 end arr[i]=a i+=1 end def *m if !(m instance_of? MyMatrix) raise Error a=Array.new(#array.length) i=0 while (i<#array.length) a[i]=#array[i]*m i=i+1 end end end end Input: Test code v = MyVector.new([1,2,3]) puts "v = " + v.to_s v1 = MyVector.new([2,3,4]) puts "v1 = " + v1.to_s puts "v * v1 = " + (v * v1).to_s m = MyMatrix.new([[1,2], [1, 2], [1, 2]]) puts "m = " + m.to_s + "\n" puts "v * m = " + (v * m).to_s m1 = MyMatrix.new([[1, 2, 3], [2, 3, 4]]) puts "m1 = " + m1.to_s + "\n" puts "m * m1 = " + (m * m1).to_s puts "m1 * m = " + (m1 * m).to_s Desired Output: v = 1 2 3 v1 = 2 3 4 v * v1 = 20 m = 1 2 1 2 1 2 v * m = 6 12 m1 = 1 2 3 2 3 4 m * m1 = 5 8 11 5 8 11 5 8 11 m1 * m = 6 12 9 18
length.times do |i| yield #array[i], a[i] end In the above block, a is an instance of MyVector. You need to define the [] operator on it, probably something like: def [](i) #array[i] end
Does ruby support recursive enumerators?
I'm writing a method to merge two streams of numbers, and I've two alternative implementations: def merge1(l1, l2) Enumerator.new do |yielder| h = case l1.peek <=> l2.peek when -1 then l1.next when +1 then l2.next else l1.next; l2.next end yielder << h yielder << merge1(l1, l2).next end.lazy end def merge2(l1, l2) Enumerator.new do |yielder| loop do h = case l1.peek <=> l2.peek when -1 then l1.next when +1 then l2.next else l1.next; l2.next end yielder << h end end.lazy end puts merge2((1..Float::INFINITY).lazy.map {|x| x * 2}, (1..Float::INFINITY).lazy.map {|x| x * 3}).first(10) But merge1 only prints "2 3" while merge2 produces the correct result.
You need to yield each item that sub-enumerator generate: def merge1(l1, l2) Enumerator.new do |yielder| h = case l1.peek <=> l2.peek when -1 then l1.next when +1 then l2.next else l1.next; l2.next end yielder << h merge1(l1, l2).each do |h| # <---- yielder << h # <---- end # <---- end.lazy end
Rewriting the method to use yield might improve comprehension; you can then use Object#enum_for, thereby separating concerns: Merge two lists. Enumerate through that merged list. While I would discourage recursion in this case (see alternative loop approach below), here's how that would work: def merge1(l1, l2, &block) h = case l1.peek <=> l2.peek when -1 then l1.next when +1 then l2.next else l1.next l2.next end yield h merge1(l1, l2, &block) end enum_for(:merge1, (1..Float::INFINITY).lazy.map { |x| x * 2 }, (1..Float::INFINITY).lazy.map { |x| x * 3 } ).lazy.first(10) In this case, using a straight-forward loop would be a better approach than recursion because loop automatically handles StopIteration exceptions in case one passes non-infinite lists, and because you can easily use Enumerator::new...a good reminder to use the right tool for the job: def merge(l1, l2) Enumerator.new do |yielder| loop do h = case l1.peek <=> l2.peek when -1 then l1.next when +1 then l2.next else l1.next l2.next end yielder << h end end end merge((1..5).lazy.map { |x| x * 2 }, (1..5).lazy.map { |x| x * 3 } ).lazy.first(10).to_a # => [2, 3, 4, 6, 8, 9, 10] # No need to handle `StopIteration` exceptions; # still supports infinite ranges.