Related
The pre/post increment/decrement operator (++ and --) are pretty standard programing language syntax (for procedural and object-oriented languages, at least).
Why doesn't Ruby support them? I understand you could accomplish the same thing with += and -=, but it just seems oddly arbitrary to exclude something like that, especially since it's so concise and conventional.
Example:
i = 0 #=> 0
i += 1 #=> 1
i #=> 1
i++ #=> expect 2, but as far as I can tell,
#=> irb ignores the second + and waits for a second number to add to i
I understand Fixnum is immutable, but if += can just instanciate a new Fixnum and set it, why not do the same for ++?
Is consistency in assignments containing the = character the only reason for this, or am I missing something?
Here is how Matz(Yukihiro Matsumoto) explains it in an old thread:
Hi,
In message "[ruby-talk:02706] X++?"
on 00/05/10, Aleksi Niemelä <aleksi.niemela#cinnober.com> writes:
|I got an idea from http://www.pragprog.com:8080/rubyfaq/rubyfaq-5.html#ss5.3
|and thought to try. I didn't manage to make "auto(in|de)crement" working so
|could somebody help here? Does this contain some errors or is the idea
|wrong?
(1) ++ and -- are NOT reserved operator in Ruby.
(2) C's increment/decrement operators are in fact hidden assignment.
They affect variables, not objects. You cannot accomplish
assignment via method. Ruby uses +=/-= operator instead.
(3) self cannot be a target of assignment. In addition, altering
the value of integer 1 might cause severe confusion throughout
the program.
matz.
One reason is that up to now every assignment operator (i.e. an operator which changes a variable) has a = in it. If you add ++ and --, that's no longer the case.
Another reason is that the behavior of ++ and -- often confuse people. Case in point: The return value of i++ in your example would actually be 1, not 2 (the new value of i would be 2, however).
It's not conventional in OO languages. In fact, there is no ++ in Smalltalk, the language that coined the term "object-oriented programming" (and the language Ruby is most strongly influenced by). What you mean is that it's conventional in C and languages closely imitating C. Ruby does have a somewhat C-like syntax, but it isn't slavish in adhering to C traditions.
As for why it isn't in Ruby: Matz didn't want it. That's really the ultimate reason.
The reason no such thing exists in Smalltalk is because it's part of the language's overriding philosophy that assigning a variable is fundamentally a different kind of thing than sending a message to an object — it's on a different level. This thinking probably influenced Matz in designing Ruby.
It wouldn't be impossible to include it in Ruby — you could easily write a preprocessor that transforms all ++ into +=1. but evidently Matz didn't like the idea of an operator that did a "hidden assignment." It also seems a little strange to have an operator with a hidden integer operand inside of it. No other operator in the language works that way.
I think there's another reason: ++ in Ruby wouldn't be remotely useful as in C and its direct successors.
The reason being, the for keyword: while it's essential in C, it's mostly superfluous in Ruby. Most of the iteration in Ruby is done through Enumerable methods, such as each and map when iterating through some data structure, and Fixnum#times method, when you need to loop an exact number of times.
Actually, as far as I have seen, most of the time +=1 is used by people freshly migrated to Ruby from C-style languages.
In short, it's really questionable if methods ++ and -- would be used at all.
You can define a .+ self-increment operator:
class Variable
def initialize value = nil
#value = value
end
attr_accessor :value
def method_missing *args, &blk
#value.send(*args, &blk)
end
def to_s
#value.to_s
end
# pre-increment ".+" when x not present
def +(x = nil)
x ? #value + x : #value += 1
end
def -(x = nil)
x ? #value - x : #value -= 1
end
end
i = Variable.new 5
puts i #=> 5
# normal use of +
puts i + 4 #=> 9
puts i #=> 5
# incrementing
puts i.+ #=> 6
puts i #=> 6
More information on "class Variable" is available in "Class Variable to increment Fixnum objects".
I think Matz' reasoning for not liking them is that it actually replaces the variable with a new one.
ex:
a = SomeClass.new
def a.go
'hello'
end
# at this point, you can call a.go
# but if you did an a++
# that really means a = a + 1
# so you can no longer call a.go
# as you have lost your original
Now if somebody could convince him that it should just call #succ! or what not, that would make more sense, and avoid the problem. You can suggest it on ruby core.
And in the words of David Black from his book "The Well-Grounded Rubyist":
Some objects in Ruby are stored in variables as immediate values. These include
integers, symbols (which look like :this), and the special objects true, false, and
nil. When you assign one of these values to a variable (x = 1), the variable holds
the value itself, rather than a reference to it.
In practical terms, this doesn’t matter (and it will often be left as implied, rather than
spelled out repeatedly, in discussions of references and related topics in this book).
Ruby handles the dereferencing of object references automatically; you don’t have to
do any extra work to send a message to an object that contains, say, a reference to
a string, as opposed to an object that contains an immediate integer value.
But the immediate-value representation rule has a couple of interesting ramifications,
especially when it comes to integers. For one thing, any object that’s represented
as an immediate value is always exactly the same object, no matter how many
variables it’s assigned to. There’s only one object 100, only one object false, and
so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of
pre- and post-increment operators—which is to say, you can’t do this in Ruby:
x = 1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++,
which means you’d be changing the number 1 to the number 2—and that makes
no sense.
Some objects in Ruby are stored in variables as immediate values. These include integers, symbols (which look like :this), and the special objects true, false, and nil. When you assign one of these values to a variable (x = 1), the variable holds the value itself, rather than a reference to it.
Any object that’s represented as an immediate value is always exactly the same object, no matter how many variables it’s assigned to. There’s only one object 100, only one object false, and so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of pre-and post-increment operators—which is to say, you can’t do this in Ruby:
x=1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++, which means you’d be changing the number 1 to the number 2—and that makes no sense.
Couldn't this be achieved by adding a new method to the fixnum or Integer class?
$ ruby -e 'numb=1;puts numb.next'
returns 2
"Destructive" methods seem to be appended with ! to warn possible users, so adding a new method called next! would pretty much do what was requested ie.
$ ruby -e 'numb=1; numb.next!; puts numb'
returns 2 (since numb has been incremented)
Of course, the next! method would have to check that the object was an integer variable and not a real number, but this should be available.
I'm starting to learn Ruby. I read that arguments where passed by reference to a method,
however I don't understand the difference between these two methods.
def print(text)
puts text
end
and
def print(*text)
puts text
end
Using a * means that we are passing a pointer like in C?
The *text is what's called the splat operator in Ruby. It basically means if you pass multiple arguments to the second print they will get slurped into the single text variable.
See The Splat Operator in Ruby
The * before a parameter name in a Ruby parameter list is used for variable length arguments, so they are similar to the ... in C/C++ for varargs.
def vlaFunc(*args)
puts args
end
vlaFunc(1,2,3)
# output is [1,2,3]
There are no pointers in Ruby, * in this context is generally referred to as the "splat" operator:
http://4loc.wordpress.com/2009/01/16/the-splat-operator-in-ruby/
http://theplana.wordpress.com/2007/03/03/ruby-idioms-the-splat-operator/
In this case the method can take an arbitrary number of arguments, which will be available in the array text.
First you have two nice methods started there. But I would say try to avoid using puts inside them. You don't need it anyway. A method will always yield the last statement evaluated. something = text would get the job done. And I don't need to answer now about the differences.
Your first two replies are very good there. But you may want to try something like this
j = *[] #=> nil in 1.8 but [] in 1.9
It's been the new kid on the block for a time now. Guess what it does?
Sometimes I see methods in Ruby that have "?" and "!" at the end of them, e.g:
name = "sample_string"
name.reverse
name.reverse!
name.is_binary_data?
I was wondering what their purpose is? Are they just syntax sugarcoating?
It's "just sugarcoating" for readability, but they do have common meanings:
Methods ending in ! perform some permanent or potentially dangerous change; for example:
Enumerable#sort returns a sorted version of the object while Enumerable#sort! sorts it in place.
In Rails, ActiveRecord::Base#save returns false if saving failed, while ActiveRecord::Base#save! raises an exception.
Kernel::exit causes a script to exit, while Kernel::exit! does so immediately, bypassing any exit handlers.
Methods ending in ? return a boolean, which makes the code flow even more intuitively like a sentence — if number.zero? reads like "if the number is zero", but if number.zero just looks weird.
In your example, name.reverse evaluates to a reversed string, but only after the name.reverse! line does the name variable actually contain the reversed name. name.is_binary_data? looks like "is name binary data?".
Question mark indicates that the method returns boolean. Already answered here:
What does the question mark operator mean in Ruby?
The bang indicates that the method acts on the object itself. Already answered here:
Why are exclamation marks used in Ruby methods?
In Ruby the ? means that the method is going to return a boolean and the ! modifies the object it was called on. They are there to improve readability when looking at the code.
In contrast to the – I suppose – majority of programming languages ...
Ruby, methods are allowed to end with question marks or exclamation marks.
By convention, methods that answer questions (i.e. Array#empty? returns true if the receiver is empty) end in question marks.
Potentially “dangerous” methods (ie methods that modify self or the arguments, exit! etc.) by convention end with exclamation marks.
From: http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/, Section Funny method names
Beware, this isn't always the case. Take for example, Ruby Array#concat http://docs.ruby-lang.org/en/2.0.0/Array.html#method-i-concat.
Where you can get burnt badly is something like MyActiveRecordModel.column_names.concat([url]). Later calls related to MyActiveRecordModel will try to look for a column of 'url' for MyActiveRecordModel and throw.
Instead you must clone it before doing the concat. Fortunately my test suite caught this one, but.. heads up!
The pre/post increment/decrement operator (++ and --) are pretty standard programing language syntax (for procedural and object-oriented languages, at least).
Why doesn't Ruby support them? I understand you could accomplish the same thing with += and -=, but it just seems oddly arbitrary to exclude something like that, especially since it's so concise and conventional.
Example:
i = 0 #=> 0
i += 1 #=> 1
i #=> 1
i++ #=> expect 2, but as far as I can tell,
#=> irb ignores the second + and waits for a second number to add to i
I understand Fixnum is immutable, but if += can just instanciate a new Fixnum and set it, why not do the same for ++?
Is consistency in assignments containing the = character the only reason for this, or am I missing something?
Here is how Matz(Yukihiro Matsumoto) explains it in an old thread:
Hi,
In message "[ruby-talk:02706] X++?"
on 00/05/10, Aleksi Niemelä <aleksi.niemela#cinnober.com> writes:
|I got an idea from http://www.pragprog.com:8080/rubyfaq/rubyfaq-5.html#ss5.3
|and thought to try. I didn't manage to make "auto(in|de)crement" working so
|could somebody help here? Does this contain some errors or is the idea
|wrong?
(1) ++ and -- are NOT reserved operator in Ruby.
(2) C's increment/decrement operators are in fact hidden assignment.
They affect variables, not objects. You cannot accomplish
assignment via method. Ruby uses +=/-= operator instead.
(3) self cannot be a target of assignment. In addition, altering
the value of integer 1 might cause severe confusion throughout
the program.
matz.
One reason is that up to now every assignment operator (i.e. an operator which changes a variable) has a = in it. If you add ++ and --, that's no longer the case.
Another reason is that the behavior of ++ and -- often confuse people. Case in point: The return value of i++ in your example would actually be 1, not 2 (the new value of i would be 2, however).
It's not conventional in OO languages. In fact, there is no ++ in Smalltalk, the language that coined the term "object-oriented programming" (and the language Ruby is most strongly influenced by). What you mean is that it's conventional in C and languages closely imitating C. Ruby does have a somewhat C-like syntax, but it isn't slavish in adhering to C traditions.
As for why it isn't in Ruby: Matz didn't want it. That's really the ultimate reason.
The reason no such thing exists in Smalltalk is because it's part of the language's overriding philosophy that assigning a variable is fundamentally a different kind of thing than sending a message to an object — it's on a different level. This thinking probably influenced Matz in designing Ruby.
It wouldn't be impossible to include it in Ruby — you could easily write a preprocessor that transforms all ++ into +=1. but evidently Matz didn't like the idea of an operator that did a "hidden assignment." It also seems a little strange to have an operator with a hidden integer operand inside of it. No other operator in the language works that way.
I think there's another reason: ++ in Ruby wouldn't be remotely useful as in C and its direct successors.
The reason being, the for keyword: while it's essential in C, it's mostly superfluous in Ruby. Most of the iteration in Ruby is done through Enumerable methods, such as each and map when iterating through some data structure, and Fixnum#times method, when you need to loop an exact number of times.
Actually, as far as I have seen, most of the time +=1 is used by people freshly migrated to Ruby from C-style languages.
In short, it's really questionable if methods ++ and -- would be used at all.
You can define a .+ self-increment operator:
class Variable
def initialize value = nil
#value = value
end
attr_accessor :value
def method_missing *args, &blk
#value.send(*args, &blk)
end
def to_s
#value.to_s
end
# pre-increment ".+" when x not present
def +(x = nil)
x ? #value + x : #value += 1
end
def -(x = nil)
x ? #value - x : #value -= 1
end
end
i = Variable.new 5
puts i #=> 5
# normal use of +
puts i + 4 #=> 9
puts i #=> 5
# incrementing
puts i.+ #=> 6
puts i #=> 6
More information on "class Variable" is available in "Class Variable to increment Fixnum objects".
I think Matz' reasoning for not liking them is that it actually replaces the variable with a new one.
ex:
a = SomeClass.new
def a.go
'hello'
end
# at this point, you can call a.go
# but if you did an a++
# that really means a = a + 1
# so you can no longer call a.go
# as you have lost your original
Now if somebody could convince him that it should just call #succ! or what not, that would make more sense, and avoid the problem. You can suggest it on ruby core.
And in the words of David Black from his book "The Well-Grounded Rubyist":
Some objects in Ruby are stored in variables as immediate values. These include
integers, symbols (which look like :this), and the special objects true, false, and
nil. When you assign one of these values to a variable (x = 1), the variable holds
the value itself, rather than a reference to it.
In practical terms, this doesn’t matter (and it will often be left as implied, rather than
spelled out repeatedly, in discussions of references and related topics in this book).
Ruby handles the dereferencing of object references automatically; you don’t have to
do any extra work to send a message to an object that contains, say, a reference to
a string, as opposed to an object that contains an immediate integer value.
But the immediate-value representation rule has a couple of interesting ramifications,
especially when it comes to integers. For one thing, any object that’s represented
as an immediate value is always exactly the same object, no matter how many
variables it’s assigned to. There’s only one object 100, only one object false, and
so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of
pre- and post-increment operators—which is to say, you can’t do this in Ruby:
x = 1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++,
which means you’d be changing the number 1 to the number 2—and that makes
no sense.
Some objects in Ruby are stored in variables as immediate values. These include integers, symbols (which look like :this), and the special objects true, false, and nil. When you assign one of these values to a variable (x = 1), the variable holds the value itself, rather than a reference to it.
Any object that’s represented as an immediate value is always exactly the same object, no matter how many variables it’s assigned to. There’s only one object 100, only one object false, and so on.
The immediate, unique nature of integer-bound variables is behind Ruby’s lack of pre-and post-increment operators—which is to say, you can’t do this in Ruby:
x=1
x++ # No such operator
The reason is that due to the immediate presence of 1 in x, x++ would be like 1++, which means you’d be changing the number 1 to the number 2—and that makes no sense.
Couldn't this be achieved by adding a new method to the fixnum or Integer class?
$ ruby -e 'numb=1;puts numb.next'
returns 2
"Destructive" methods seem to be appended with ! to warn possible users, so adding a new method called next! would pretty much do what was requested ie.
$ ruby -e 'numb=1; numb.next!; puts numb'
returns 2 (since numb has been incremented)
Of course, the next! method would have to check that the object was an integer variable and not a real number, but this should be available.
In Ruby some methods have a question mark (?) that ask a question like include? that ask if the object in question is included, this then returns a true/false.
But why do some methods have exclamation marks (!) where others don't?
What does it mean?
In general, methods that end in ! indicate that the method will modify the object it's called on. Ruby calls these as "dangerous methods" because they change state that someone else might have a reference to. Here's a simple example for strings:
foo = "A STRING" # a string called foo
foo.downcase! # modifies foo itself
puts foo # prints modified foo
This will output:
a string
In the standard libraries, there are a lot of places you'll see pairs of similarly named methods, one with the ! and one without. The ones without are called "safe methods", and they return a copy of the original with changes applied to the copy, with the callee unchanged. Here's the same example without the !:
foo = "A STRING" # a string called foo
bar = foo.downcase # doesn't modify foo; returns a modified string
puts foo # prints unchanged foo
puts bar # prints newly created bar
This outputs:
A STRING
a string
Keep in mind this is just a convention, but a lot of Ruby classes follow it. It also helps you keep track of what's getting modified in your code.
The exclamation point means many things, and sometimes you can't tell a lot from it other than "this is dangerous, be careful".
As others have said, in standard methods it's often used to indicate a method that causes an object to mutate itself, but not always. Note that many standard methods change their receiver and don't have an exclamation point (pop, shift, clear), and some methods with exclamation points don't change their receiver (exit!). See this article for example.
Other libraries may use it differently. In Rails an exclamation point often means that the method will throw an exception on failure rather than failing silently.
It's a naming convention but many people use it in subtly different ways. In your own code a good rule of thumbs is to use it whenever a method is doing something "dangerous", especially when two methods with the same name exist and one of them is more "dangerous" than the other. "Dangerous" can mean nearly anything though.
This naming convention is lifted from Scheme.
1.3.5 Naming conventions
By convention, the names of procedures
that always return a boolean value
usually end in ``?''. Such procedures
are called predicates.
By convention, the names of procedures
that store values into previously
allocated locations (see section 3.4)
usually end in ``!''. Such procedures
are called mutation procedures. By
convention, the value returned by a
mutation procedure is unspecified.
! typically means that the method acts upon the object instead of returning a result. From the book Programming Ruby:
Methods that are "dangerous," or modify the receiver, might be named with a trailing "!".
It is most accurate to say that methods with a Bang! are the more dangerous or surprising version. There are many methods that mutate without a Bang such as .destroy and in general methods only have bangs where a safer alternative exists in the core lib.
For instance, on Array we have .compact and .compact!, both methods mutate the array, but .compact! returns nil instead of self if there are no nil's in the array, which is more surprising than just returning self.
The only non-mutating method I've found with a bang is Kernel's .exit! which is more surprising than .exit because you cannot catch SystemExit while the process is closing.
Rails and ActiveRecord continues this trend in that it uses bang for more 'surprising' effects like .create! which raises errors on failure.
From themomorohoax.com:
A bang can used in the below ways, in order of my personal preference.
An active record method raises an error if the method does not do
what it says it will.
An active record method saves the record or a method saves an
object (e.g. strip!)
A method does something “extra”, like posts to someplace, or does
some action.
The point is: only use a bang when you’ve really thought about whether
it’s necessary, to save other developers the annoyance of having to
check why you are using a bang.
The bang provides two cues to other developers.
that it’s not necessary to save the object after calling the
method.
when you call the method, the db is going to be changed.
Simple explanation:
foo = "BEST DAY EVER" #assign a string to variable foo.
=> foo.downcase #call method downcase, this is without any exclamation.
"best day ever" #returns the result in downcase, but no change in value of foo.
=> foo #call the variable foo now.
"BEST DAY EVER" #variable is unchanged.
=> foo.downcase! #call destructive version.
=> foo #call the variable foo now.
"best day ever" #variable has been mutated in place.
But if you ever called a method downcase! in the explanation above, foo would change to downcase permanently. downcase! would not return a new string object but replace the string in place, totally changing the foo to downcase.
I suggest you don't use downcase! unless it is totally necessary.
!
I like to think of this as an explosive change that destroys all that has gone before it. Bang or exclamation mark means that you are making a permanent saved change in your code.
If you use for example Ruby's method for global substitutiongsub!the substitution you make is permanent.
Another way you can imagine it, is opening a text file and doing find and replace, followed by saving. ! does the same in your code.
Another useful reminder if you come from the bash world is sed -i has this similar effect of making permanent saved change.
Bottom line: ! methods just change the value of the object they are called upon, whereas a method without ! returns a manipulated value without writing over the object the method was called upon.
Only use ! if you do not plan on needing the original value stored at the variable you called the method on.
I prefer to do something like:
foo = "word"
bar = foo.capitalize
puts bar
OR
foo = "word"
puts foo.capitalize
Instead of
foo = "word"
foo.capitalize!
puts foo
Just in case I would like to access the original value again.
Called "Destructive Methods" They tend to change the original copy of the object you are referring to.
numbers=[1,0,10,5,8]
numbers.collect{|n| puts n*2} # would multiply each number by two
numbers #returns the same original copy
numbers.collect!{|n| puts n*2} # would multiply each number by two and destructs the original copy from the array
numbers # returns [nil,nil,nil,nil,nil]
My answer explains the significance of Ruby methods with exclamation marks/shebangs in the context of Ruby on Rails (RoR) model validations.
Essentially, whenever developers define Model validations (explained here), their ultimate goal is to decline a database record change & raise/throw the relevant exception(s) in case invalid data has been submitted to update the record in question.
RoR ActiveRecord gem defines various model manipulation methods (Ruby on Rails guides.). Among the methods, the valid? method is the only one that triggers validation without database action/modification. The rest of the methods attempt to change the database.
These methods trigger callbacks whenever they run. Some of the methods in the list feature a sister method with a shebang. What is the difference between the two? It has to do with the form of callback returned whenever a record validation fails.
Methods without the exclamation/shebang merely return a boolean false in the event of record validation failure while the methods with a shebang raise/throw an exception which can then be handled appropriately in code.
Just as a heads-up, since I experienced this myself.
In Ruby, ! mutates the object and returns it. Otherwise it will return nil.
So, if you are doing some kind of operations on an array for example, and call the method .compact! and there is nothig to compact, it will return nil.
Example:
arr = [1, 2, 3, nil]
arr.compact!
=> [1, 2, 3]
Run again arr.compact!
=> nil
It is better to explicitly return again the array arr if you need to use it down the line, otherwise you will get the nil value.
Example:
arr = [1, 2, 3]
arr.compact! => nil
arr # to get the value of the array