Related
I have an array and I want to create a hash whose keys are the elements of the array and whose values are (an array of) the indices of the array. I want to get something like:
array = [1,3,4,5]
... # => {1=>0, 3=>1, 4=>2, 5=>3}
array = [1,3,4,5,6,6,6]
... # => {1=>0, 3=>1, 4=>2, 5=>3, 6=>[4,5,6]}
This code:
hash = Hash.new 0
array.each_with_index do |x, y|
hash[x] = y
end
works fine only if I don't have duplicate elements. When I have duplicate elements, it does not.
Any idea on how I can get something like this?
You can change the logic to special-case the situation when the key already exists, turning it into an array and pushing the new index:
arr = %i{a a b a c}
result = arr.each.with_object({}).with_index do |(elem, memo), idx|
memo[elem] = memo.key?(elem) ? [*memo[elem], idx] : idx
end
puts result
# => {:a=>[0, 1, 3], :b=>2, :c=>4}
It's worth mentioning, though, that whatever you're trying to do here could possibly be accomplished in a different way ... we have no context. In general, it's a good idea to keep key-val data types uniform, e.g. the fact that values here can be numbers or arrays is a bit of a code smell.
Also note that it doesn't make sense to use Hash.new(0) here unless you're intentionally setting a default value (which there's no reason to do). Use {} instead
I'm adding my two cents:
array = [1,3,4,5,6,6,6,8,8,8,9,7,7,7]
hash = {}
array.map.with_index {|val, idx| [val, idx]}.group_by(&:first).map do |k, v|
hash[k] = v[0][1] if v.size == 1
hash[k] = v.map(&:last) if v.size > 1
end
p hash #=> {1=>0, 3=>1, 4=>2, 5=>3, 6=>[4, 5, 6], 8=>[7, 8, 9], 9=>10, 7=>[11, 12, 13]}
It fails with duplicated element not adjacent, of course.
This is the expanded version, step by step, to show how it works.
The basic idea is to build a temporary array with pairs of value and index, then work on it.
array = [1,3,4,5,6,6,6]
tmp_array = []
array.each_with_index do |val, idx|
tmp_array << [val, idx]
end
p tmp_array #=> [[1, 0], [3, 1], [4, 2], [5, 3], [6, 4], [6, 5], [6, 6]]
tmp_hash = tmp_array.group_by { |e| e[0] }
p tmp_hash #=> {1=>[[1, 0]], 3=>[[3, 1]], 4=>[[4, 2]], 5=>[[5, 3]], 6=>[[6, 4], [6, 5], [6, 6]]}
hash = {}
tmp_hash.map do |k, v|
hash[k] = v[0][0] if v.size == 1
hash[k] = v.map {|e| e[1]} if v.size > 1
end
p hash #=> {1=>1, 3=>3, 4=>4, 5=>5, 6=>[4, 5, 6]}
It can be written as one line as:
hash = {}
array.map.with_index.group_by(&:first).map { |k, v| v.size == 1 ? hash[k] = v[0][1] : hash[k] = v.map(&:last) }
p hash
If you are prepared to accept
{ 1=>[0], 3=>[1], 4=>[2], 5=>[3], 6=>[4,5,6] }
as the return value you may write the following.
array.each_with_index.group_by(&:first).transform_values { |v| v.map(&:last) }
#=> {1=>[0], 3=>[1], 4=>[2], 5=>[3], 6=>[4, 5, 6]}
The first step in this calculation is the following.
array.each_with_index.group_by(&:first)
#=> {1=>[[1, 0]], 3=>[[3, 1]], 4=>[[4, 2]], 5=>[[5, 3]], 6=>[[6, 4], [6, 5], [6, 6]]}
This may help readers to follow the subsequent calculations.
I think you will find this return value generally more convenient to use than the one given in the question.
Here are a couple of examples where it's clearly preferable for all values to be arrays. Let:
h_orig = { 1=>0, 3=>1, 4=>2, 5=>3, 6=>[4,5,6] }
h_mod { 1=>[0], 3=>[1], 4=>[2], 5=>[3], 6=>[4,5,6] }
Create a hash h whose keys are unique elements of array and whose values are the numbers of times the key appears in the array
h_mod.transform_values(&:count)
#=> {1=>1, 3=>1, 4=>1, 5=>1, 6=>3}
h_orig.transform_values { |v| v.is_a?(Array) ? v.count : 1 }
Create a hash h whose keys are unique elements of array and whose values equal the index of the first instance of the element in the array.
h_mod.transform_values(&:min)
#=> {1=>0, 3=>1, 4=>2, 5=>3, 6=>4}
h_orig.transform_values { |v| v.is_a?(Array) ? v.min : v }
In these examples, given h_orig, we could alternatively convert values that are indices to arrays containing a single index.
h_orig.transform_values { |v| [*v].count }
h_orig.transform_values { |v| [*v].min }
This is hardly proof that it is generally more convenient for all values to be arrays, but that has been my experience and the experience of many others.
h = { "a" => 1, "b" => 2 }
Is there a way to reduce a hash and have the key, value and index as block parameters?
As a starting point I can iterate over a hash getting key, value and index:
h.each_with_index { |(k,v), i| puts [k,v,i].inspect }
# => ["a", 1, 0]
# => ["b", 2, 1]
However when I add reduce I seem to loose the ability to have the key and value as separate values and instead they are provided as a two element array:
h.each_with_index.reduce([]) { |memo, (kv,i)| puts [kv,i].inspect }
# => [["a", 1], 0]
# => [["b", 2], 1]
This is okay, I can in the block do kv[0] and kv[1], but I'd like something like this:
h.each_with_index.reduce([]) { |memo, (k,v), i| puts [k,v,i].inspect }
I'd like to do this without monkey-patching.
Maybe something like this?:
h.each_with_index.reduce([]) { |memo, ((k,v), i)| puts [k,v,i].inspect }
#=> ["a", 1, 0]
#=> ["b", 2, 1]
#=> nil
All you need is scoping: ((k,v), i).
Keeping in mind with reduce, we always have to return the object at the end of block. Which is kind of an extra overhead unless last operation isn't on the memo object which returns the object itself.Otherwise it won't return the desired result.
Same thing can be achieved with each_with_index chained with with_object like so:
h.each_with_index.with_object([]) { |((k,v), i), memo| memo << [k,v,i].inspect }
#=> ["a", 1, 0]
#=> ["b", 2, 1]
#=> []
See the array at last line of output? That's our memo object, which isn't same as reduce that we used above.
When in doubt what the block arguments are, create an instance of an Enumerator and call #next on it:
▶ h = {a: 1, b: 2}
#⇒ {:a=>1, :b=>2}
▶ enum = h.each.with_index.with_object([])
#⇒ #<Enumerator: ...>
▶ enum.next
#⇒ [[[:a, 1], 0], []]
The returned value consists of:
array of key and value, joined into:
array with an index, joined into:
array with an accumulator (for reduce it’d go in front, if reduce returned an enumerator when called without a block—credits to #Stefan for nitpicking.)
Hence, the proper parentheses for decomposing it would be:
# ⇓ ⇓ ⇓ ⇓
# [ [ [:a, 1], 0 ], [] ]
{ | ( (k, v), idx ), memo| ...
Enumerable#each_with_index yields two values into the block: the item and its index. When it is invoked for a Hash, the item is an array that contains two elements: the key and the associated value.
When you declare the block arguments |(k,v), i| you, in fact, deconstruct the first block argument (the item) into its two components: the key and the value. Without a block h.each_with_index produces an Enumerator that yields both arguments of the previously used block wrapped into an array.
This array is the second argument of Enumerator#reduce.
You can tell this by running:
irb> h.each_with_index.reduce([]) { |memo, j| p j }
[["a", 1], 0]
[["b", 2], 1]
Now, the answer to your question is easy: just deconstruct j and you get:
irb> h.each_with_index.reduce([]) { |memo, ((k,v), i)| puts [k,v,i].inspect }
["a", 1, 0]
["b", 2, 1]
Of course, you should memo << [k,v,i] or put the values in memo using other other rules and return memo to get your final desired result.
I have the following array:
["--",1,2,3,4]
How can I remove elements from the array by element type, ie. remove all non-integer values from the array?
I'd do :-
ary = ["--",1,2,3,4]
ary = ary.grep(Integer)
ary # => [1, 2, 3, 4]
Note :- If you don't want to mutate the original array use new_ary instead of ary. Like
new_ary = ary.grep(Integer)
You can use delete_if to remove items from the list, however this modifies the list.
a = ["--", 1, 2, 3, 4]
a.delete_if { |n| !n.kind_of?(Fixnum) }
p a
You can select items out of the list maintaining the original list by using select
a = ["--", 1, 2, 3, 4]
b = a.select { |n| n.kind_of?(Fixnum) }
p b
p a
This solution addresses the title, rather than the example, and permits the selection of elements by class, as well as the rejection of elements by class.
Code
good_classes and bad_classes are arrays of classes.
def filter_select(arr, *good_classes)
arr.select { |e| good_classes.include? e.class }
end
def filter_reject(arr, *bad_classes)
arr.reject { |e| bad_classes.include? e.class }
end
Examples
arr = [1, :a, {b: 3}, "cat", [4,5], true, 3..4, false]
filter_select(arr, Fixnum, Hash, TrueClass, Range)
#=> [1, {:b=>3}, true, 3..4]
filter_reject(arr, Fixnum, Hash, String, Array)
#=> [:a, true, 3..4, false]
I'd do
new_array = ary.reject {|x| x.is_a?(String)}
I've been struggling learning how to deal with arrays made up of arrays.
Say I had this array:
my_array = [['ORANGE',1],['APPLE',2],['PEACH',3]
How would I go about finding the my_array index that contains 'apple' and deleting that index (removing the sub-array ['APPLE',2] because 'apple' was conatined in the array at that index) ?
Thanks - I really appreciate the help from here.
You can use Array.select to filter out items:
>> a = [['ORANGE',1],['APPLE',2],['PEACH',3]]
=> [["ORANGE", 1], ["APPLE", 2], ["PEACH", 3]]
>> a.select{ |a, b| a != "APPLE" }
=> [["ORANGE", 1], ["PEACH", 3]]
select will return those items from the, for which the given block (here a != "APPLE") returns true.
my_array.reject { |x| x[0] == 'APPLE' }
I tested this, it works:
my_array.delete_if { |x| x[0] == 'APPLE' }
How do you count duplicates in a ruby array?
For example, if my array had three a's, how could I count that
Another version of a hash with a key for each element in your array and value for the count of each element
a = [ 1, 2, 3, 3, 4, 3]
h = Hash.new(0)
a.each { | v | h.store(v, h[v]+1) }
# h = { 3=>3, 2=>1, 1=>1, 4=>1 }
Given:
arr = [ 1, 2, 3, 2, 4, 5, 3]
My favourite way of counting elements is:
counts = arr.group_by{|i| i}.map{|k,v| [k, v.count] }
# => [[1, 1], [2, 2], [3, 2], [4, 1], [5, 1]]
If you need a hash instead of an array:
Hash[*counts.flatten]
# => {1=>1, 2=>2, 3=>2, 4=>1, 5=>1}
This will yield the duplicate elements as a hash with the number of occurences for each duplicate item. Let the code speak:
#!/usr/bin/env ruby
class Array
# monkey-patched version
def dup_hash
inject(Hash.new(0)) { |h,e| h[e] += 1; h }.select {
|k,v| v > 1 }.inject({}) { |r, e| r[e.first] = e.last; r }
end
end
# unmonkeey'd
def dup_hash(ary)
ary.inject(Hash.new(0)) { |h,e| h[e] += 1; h }.select {
|_k,v| v > 1 }.inject({}) { |r, e| r[e.first] = e.last; r }
end
p dup_hash([1, 2, "a", "a", 4, "a", 2, 1])
# {"a"=>3, 1=>2, 2=>2}
p [1, 2, "Thanks", "You're welcome", "Thanks",
"You're welcome", "Thanks", "You're welcome"].dup_hash
# {"You're welcome"=>3, "Thanks"=>3}
Simple.
arr = [2,3,4,3,2,67,2]
repeats = arr.length - arr.uniq.length
puts repeats
arr = %w( a b c d c b a )
# => ["a", "b", "c", "d", "c", "b", "a"]
arr.count('a')
# => 2
Another way to count array duplicates is:
arr= [2,2,3,3,2,4,2]
arr.group_by{|x| x}.map{|k,v| [k,v.count] }
result is
[[2, 4], [3, 2], [4, 1]]
requires 1.8.7+ for group_by
ary = %w{a b c d a e f g a h i b}
ary.group_by{|elem| elem}.select{|key,val| val.length > 1}.map{|key,val| key}
# => ["a", "b"]
with 1.9+ this can be slightly simplified because Hash#select will return a hash.
ary.group_by{|elem| elem}.select{|key,val| val.length > 1}.keys
# => ["a", "b"]
To count instances of a single element use inject
array.inject(0){|count,elem| elem == value ? count+1 : count}
arr = [1, 2, "a", "a", 4, "a", 2, 1]
arr.group_by(&:itself).transform_values(&:size)
#=> {1=>2, 2=>2, "a"=>3, 4=>1}
Ruby >= 2.7 solution here:
A new method .tally has been added.
Tallies the collection, i.e., counts the occurrences of each element. Returns a hash with the elements of the collection as keys and the corresponding counts as values.
So now, you will be able to do:
["a", "b", "c", "b"].tally #=> {"a"=>1, "b"=>2, "c"=>1}
What about a grep?
arr = [1, 2, "Thanks", "You're welcome", "Thanks", "You're welcome", "Thanks", "You're welcome"]
arr.grep('Thanks').size # => 3
Its Easy:
words = ["aa","bb","cc","bb","bb","cc"]
One line simple solution is:
words.each_with_object(Hash.new(0)) { |word,counts| counts[word] += 1 }
It works for me.
Thanks!!
I don't think there's a built-in method. If all you need is the total count of duplicates, you could take a.length - a.uniq.length. If you're looking for the count of a single particular element, try
a.select {|e| e == my_element}.length.
Improving #Kim's answer:
arr = [1, 2, "a", "a", 4, "a", 2, 1]
Hash.new(0).tap { |h| arr.each { |v| h[v] += 1 } }
# => {1=>2, 2=>2, "a"=>3, 4=>1}
Ruby code to get the repeated elements in the array:
numbers = [1,2,3,1,2,0,8,9,0,1,2,3]
similar = numbers.each_with_object([]) do |n, dups|
dups << n if seen.include?(n)
seen << n
end
print "similar --> ", similar
Another way to do it is to use each_with_object:
a = [ 1, 2, 3, 3, 4, 3]
hash = a.each_with_object({}) {|v, h|
h[v] ||= 0
h[v] += 1
}
# hash = { 3=>3, 2=>1, 1=>1, 4=>1 }
This way, calling a non-existing key such as hash[5] will return nil instead of 0 with Kim's solution.
I've used reduce/inject for this in the past, like the following
array = [1,5,4,3,1,5,6,8,8,8,9]
array.reduce (Hash.new(0)) {|counts, el| counts[el]+=1; counts}
produces
=> {1=>2, 5=>2, 4=>1, 3=>1, 6=>1, 8=>3, 9=>1}