Related
Given the number of rows and columns of a 2d matrix
Initially all elements of matrix are 0
Given the number of 1's that should be present in each row
Given the number of 1's that should be present in each column
Determine if it is possible to form such matrix.
Example:
Input: r=3 c=2 (no. of rows and columns)
2 1 0 (number of 1's that should be present in each row respectively)
1 2 (number of 1's that should be present in each column respectively)
Output: Possible
Explanation:
1 1
0 1
0 0
I tried solving this problem for like 12 hours by checking if summation of Ri = summation of Ci
But I wondered if wouldn't be possible for cases like
3 3
1 3 0
0 2 2
r and c can be upto 10^5
Any ideas how should I move further?
Edit: Constraints added and output should only be "possible" or "impossible". The possible matrix need not be displayed.
Can anyone help me now?
Hint: one possible solution utilizes Maximum Flow Problem by creating a special graph and running the standard maximum flow algorithm on it.
If you're not familiar with the above problem, you may start reading about it e.g. here https://en.wikipedia.org/wiki/Maximum_flow_problem
If you're interested in the full solution please comment and I'll update the answer. But it requires understading the above algorithm.
Solution as requested:
Create a graph of r+c+2 nodes.
Node 0 is the source, node r+c+1 is the sink. Nodes 1..r represent the rows, while r+1..r+c the columns.
Create following edges:
from source to nodes i=1..r of capacity r_i
from nodes i=r+1..r+c to sink of capacity c_i
between all the nodes i=1..r and j=r+1..r+c of capacity 1
Run maximum flow algorithm, the saturated edges between row nodes and column nodes define where you should put 1.
Or if it's not possible then the maximum flow value is less than number of expected ones in the matrix.
I will illustrate the algorithm with an example.
Assume we have m rows and n columns. Let rows[i] be the number of 1s in row i, for 0 <= i < m,
and cols[j] be the number of 1s in column j, for 0 <= j < n.
For example, for m = 3, and n = 4, we could have: rows = {4 2 3}, cols = {1 3 2 3}, and
the solution array would be:
1 3 2 3
+--------
4 | 1 1 1 1
2 | 0 1 0 1
3 | 0 1 1 1
Because we only want to know whether a solution exists, the values in rows and cols may be permuted in any order. The solution of each permutation is just a permutation of the rows and columns of the above solution.
So, given rows and cols, sort cols in decreasing order, and rows in increasing order. For our example, we have cols = {3 3 2 1} and rows = {2 3 4}, and the equivalent problem.
3 3 2 1
+--------
2 | 1 1 0 0
3 | 1 1 1 0
4 | 1 1 1 1
We transform cols into a form that is better suited for the algorithm. What cols tells us is that we have two series of 1s of length 3, one series of 1s of length 2, and one series of 1s of length 1, that are to be distributed among the rows of the array. We rewrite cols to capture just that, that is COLS = {2/3 1/2 1/1}, 2 series of length 3, 1 series of length 2, and 1 series of length 1.
Because we have 2 series of length 3, a solution exists only if we can put two 1s in the first row. This is possible because rows[0] = 2. We do not actually put any 1 in the first row, but record the fact that 1s have been placed there by decrementing the length of the series of length 3. So COLS becomes:
COLS = {2/2 1/2 1/1}
and we combine our two counts for series of length 2, yielding:
COLS = {3/2 1/1}
We now have the reduced problem:
3 | 1 1 1 0
4 | 1 1 1 1
Again we need to place 1s from our series of length 2 to have a solution. Fortunately, rows[1] = 3 and we can do this. We decrement the length of 3/2 and get:
COLS = {3/1 1/1} = {4/1}
We have the reduced problem:
4 | 1 1 1 1
Which is solved by 4 series of length 1, just what we have left. If at any step, the series in COLS cannot be used to satisfy a row count, then no solution is possible.
The general processing for each row may be stated as follows. For each row r, starting from the first element in COLS, decrement the lengths of as many elements count[k]/length[k] of COLS as needed, so that the sum of the count[k]'s equals rows[r]. Eliminate series of length 0 in COLS and combine series of same length.
Note that because elements of COLS are in decreasing order of lengths, the length of the last element decremented is always less than or equal to the next element in COLS (if there is a next element).
EXAMPLE 2 : Solution exists.
rows = {1 3 3}, cols = {2 2 2 1} => COLS = {3/2 1/1}
1 series of length 2 is decremented to satisfy rows[0] = 1, and the 2 other series of length 2 remains at length 2.
rows[0] = 1
COLS = {2/2 1/1 1/1} = {2/2 2/1}
The 2 series of length 2 are decremented, and 1 of the series of length 1.
The series whose length has become 0 is deleted, and the series of length 1 are combined.
rows[1] = 3
COLS = {2/1 1/0 1/1} = {2/1 1/1} = {3/1}
A solution exists for rows[2] can be satisfied.
rows[2] = 3
COLS = {3/0} = {}
EXAMPLE 3: Solution does not exists.
rows = {0 2 3}, cols = {3 2 0 0} => COLS = {1/3 1/2}
rows[0] = 0
COLS = {1/3 1/2}
rows[1] = 2
COLS = {1/2 1/1}
rows[2] = 3 => impossible to satisfy; no solution.
SPACE COMPLEXITY
It is easy to see that it is O(m + n).
TIME COMPLEXITY
We iterate over each row only once. For each row i, we need to iterate over at most
rows[i] <= n elements of COLS. Time complexity is O(m x n).
After finding this algorithm, I found the following theorem:
The Havel-Hakimi theorem (Havel 1955, Hakimi 1962) states that there exists a matrix Xn,m of 0’s and 1’s with row totals a0=(a1, a2,… , an) and column totals b0=(b1, b2,… , bm) such that bi ≥ bi+1 for every 0 < i < m if and only if another matrix Xn−1,m of 0’s and 1’s with row totals a1=(a2, a3,… , an) and column totals b1=(b1−1, b2−1,… ,ba1−1, ba1+1,… , bm) also exists.
from the post Finding if binary matrix exists given the row and column sums.
This is basically what my algorithm does, while trying to optimize the decrementing part, i.e., all the -1's in the above theorem. Now that I see the above theorem, I know my algorithm is correct. Nevertheless, I checked the correctness of my algorithm by comparing it with a brute-force algorithm for arrays of up to 50 cells.
Here is the C# implementation.
public class Pair
{
public int Count;
public int Length;
}
public class PairsList
{
public LinkedList<Pair> Pairs;
public int TotalCount;
}
class Program
{
static void Main(string[] args)
{
int[] rows = new int[] { 0, 0, 1, 1, 2, 2 };
int[] cols = new int[] { 2, 2, 0 };
bool success = Solve(cols, rows);
}
static bool Solve(int[] cols, int[] rows)
{
PairsList pairs = new PairsList() { Pairs = new LinkedList<Pair>(), TotalCount = 0 };
FillAllPairs(pairs, cols);
for (int r = 0; r < rows.Length; r++)
{
if (rows[r] > 0)
{
if (pairs.TotalCount < rows[r])
return false;
if (pairs.Pairs.First != null && pairs.Pairs.First.Value.Length > rows.Length - r)
return false;
DecrementPairs(pairs, rows[r]);
}
}
return pairs.Pairs.Count == 0 || pairs.Pairs.Count == 1 && pairs.Pairs.First.Value.Length == 0;
}
static void DecrementPairs(PairsList pairs, int count)
{
LinkedListNode<Pair> pair = pairs.Pairs.First;
while (count > 0 && pair != null)
{
LinkedListNode<Pair> next = pair.Next;
if (pair.Value.Count == count)
{
pair.Value.Length--;
if (pair.Value.Length == 0)
{
pairs.Pairs.Remove(pair);
pairs.TotalCount -= count;
}
else if (pair.Next != null && pair.Next.Value.Length == pair.Value.Length)
{
pair.Value.Count += pair.Next.Value.Count;
pairs.Pairs.Remove(pair.Next);
next = pair;
}
count = 0;
}
else if (pair.Value.Count < count)
{
count -= pair.Value.Count;
pair.Value.Length--;
if (pair.Value.Length == 0)
{
pairs.Pairs.Remove(pair);
pairs.TotalCount -= pair.Value.Count;
}
else if(pair.Next != null && pair.Next.Value.Length == pair.Value.Length)
{
pair.Value.Count += pair.Next.Value.Count;
pairs.Pairs.Remove(pair.Next);
next = pair;
}
}
else // pair.Value.Count > count
{
Pair p = new Pair() { Count = count, Length = pair.Value.Length - 1 };
pair.Value.Count -= count;
if (p.Length > 0)
{
if (pair.Next != null && pair.Next.Value.Length == p.Length)
pair.Next.Value.Count += p.Count;
else
pairs.Pairs.AddAfter(pair, p);
}
else
pairs.TotalCount -= count;
count = 0;
}
pair = next;
}
}
static int FillAllPairs(PairsList pairs, int[] cols)
{
List<Pair> newPairs = new List<Pair>();
int c = 0;
while (c < cols.Length && cols[c] > 0)
{
int k = c++;
if (cols[k] > 0)
pairs.TotalCount++;
while (c < cols.Length && cols[c] == cols[k])
{
if (cols[k] > 0) pairs.TotalCount++;
c++;
}
newPairs.Add(new Pair() { Count = c - k, Length = cols[k] });
}
LinkedListNode<Pair> pair = pairs.Pairs.First;
foreach (Pair p in newPairs)
{
while (pair != null && p.Length < pair.Value.Length)
pair = pair.Next;
if (pair == null)
{
pairs.Pairs.AddLast(p);
}
else if (p.Length == pair.Value.Length)
{
pair.Value.Count += p.Count;
pair = pair.Next;
}
else // p.Length > pair.Value.Length
{
pairs.Pairs.AddBefore(pair, p);
}
}
return c;
}
}
(Note: to avoid confusion between when I'm talking about the actual numbers in the problem vs. when I'm talking about the zeros in the ones in the matrix, I'm going to instead fill the matrix with spaces and X's. This obviously doesn't change the problem.)
Some observations:
If you're filling in a row, and there's (for example) one column needing 10 more X's and another column needing 5 more X's, then you're sometimes better off putting the X in the "10" column and saving the "5" column for later (because you might later run into 5 rows that each need 2 X's), but you're never better off putting the X in the "5" column and saving the "10" column for later (because even if you later run into 10 rows that all need an X, they won't mind if they don't all go in the same column). So we can use a somewhat "greedy" algorithm: always put an X in the column still needing the most X's. (Of course, we'll need to make sure that we don't greedily put an X in the same column multiple times for the same row!)
Since you don't need to actually output a possible matrix, the rows are all interchangeable and the columns are all interchangeable; all that matter is how many rows still need 1 X, how many still need 2 X's, etc., and likewise for columns.
With that in mind, here's one fairly simple approach:
(Optimization.) Add up the counts for all the rows, add up the counts for all the columns, and return "impossible" if the sums don't match.
Create an array of length r+1 and populate it with how many columns need 1 X, how many need 2 X's, etc. (You can ignore any columns needing 0 X's.)
(Optimization.) To help access the array efficiently, build a stack/linked-list/etc. of the indices of nonzero array elements, in decreasing order (e.g., starting at index r if it's nonzero, then index r−1 if it's nonzero, etc.), so that you can easily find the elements representing columns to put X's in.
(Optimization.) To help determine when there'll be a row can't be satisfied, also make note of the total number of columns needing any X's, and make note of the largest number of X's needed by any row. If the former is less than the latter, return "impossible".
(Optimization.) Sort the rows by the number of X's they need.
Iterate over the rows, starting with the one needing the fewest X's and ending with the one needing the most X's, and for each one:
Update the array accordingly. For example, if a row needs 12 X's, and the array looks like [..., 3, 8, 5], then you'll update the array to look like [..., 3+7 = 10, 8+5−7 = 6, 5−5 = 0]. If it's not possible to update the array because you run out of columns to put X's in, return "impossible". (Note: this part should never actually return "impossible", because we're keeping count of the number of columns left and the max number of columns we'll need, so we should have already returned "impossible" if this was going to happen. I mention this check only for clarity.)
Update the stack/linked-list of indices of nonzero array elements.
Update the total number of columns needing any X's. If it's now less than the greatest number of X's needed by any row, return "impossible".
(Optimization.) If the first nonzero array element has an index greater than the number of rows left, return "impossible".
If we complete our iteration without having returned "impossible", return "possible".
(Note: the reason I say to start with the row needing the fewest X's, and work your way to the row with the most X's, is that a row needing more X's may involve examining updating more elements of the array and of the stack, so the rows needing fewer X's are cheaper. This isn't just a matter of postponing the work: the rows needing fewer X's can help "consolidate" the array, so that there will be fewer distinct column-counts, making the later rows cheaper than they would otherwise be. In a very-bad-case scenario, such as the case of a square matrix where every single row needs a distinct positive number of X's and every single column needs a distinct positive number of X's, the fewest-to-most order means you can handle each row in O(1) time, for linear time overall, whereas the most-to-fewest order would mean that each row would take time proportional to the number of X's it needs, for quadratic time overall.)
Overall, this takes no worse than O(r+c+n) time (where n is the number of X's); I think that the optimizations I've listed are enough to ensure that it's closer to O(r+c) time, but it's hard to be 100% sure. I recommend trying it to see if it's fast enough for your purposes.
You can use brute force (iterating through all 2^(r * c) possibilities) to solve it, but that will take a long time. If r * c is under 64, you can accelerate it to a certain extent using bit-wise operations on 64-bit integers; however, even then, iterating through all 64-bit possibilities would take, at 1 try per ms, over 500M years.
A wiser choice is to add bits one by one, and only continue placing bits if no constraints are broken. This will eliminate the vast majority of possibilities, greatly speeding up the process. Look up backtracking for the general idea. It is not unlike solving sudokus through guesswork: once it becomes obvious that your guess was wrong, you erase it and try guessing a different digit.
As with sudokus, there are certain strategies that can be written into code and will result in speedups when they apply. For example, if the sum of 1s in rows is different from the sum of 1s in columns, then there are no solutions.
If over 50% of the bits will be on, you can instead work on the complementary problem (transform all ones to zeroes and vice-versa, while updating row and column counts). Both problems are equivalent, because any answer for one is also valid for the complementary.
This problem can be solved in O(n log n) using Gale-Ryser Theorem. (where n is the maximum of lengths of the two degree sequences).
First, make both sequences of equal length by adding 0's to the smaller sequence, and let this length be n.
Let the sequences be A and B. Sort A in non-decreasing order, and sort B in non-increasing order. Create another prefix sum array P for B such that ith element of P is equal to sum of first i elements of B.
Now, iterate over k's from 1 to n, and check for
The second sum can be calculated in O(log n) using binary search for index of last number in B smaller than k, and then using precalculated P.
Inspiring from the solution given by RobertBaron I have tried to build a new algorithm.
rows = [int(x)for x in input().split()]
cols = [int (ss) for ss in input().split()]
rows.sort()
cols.sort(reverse=True)
for i in range(len(rows)):
for j in range(len(cols)):
if(rows[i]!= 0 and cols[j]!=0):
rows[i] = rows[i] - 1;
cols[j] =cols[j]-1;
print("rows: ",rows)
print("cols: ",cols)
#if there is any non zero value, print NO else print yes
flag = True
for i in range(len(rows)):
if(rows[i]!=0):
flag = False
break
for j in range(len(cols)):
if(cols[j]!=0):
flag = False
if(flag):
print("YES")
else:
print("NO")
here, i have sorted the rows in ascending order and cols in descending order. later decrementing particular row and column if 1 need to be placed!
it is working for all the test cases posted here! rest GOD knows
I'm attempting to find an algorithm (not a matlab command) to enumerate all possible NxM matrices with the constraints of having only positive integers in each cell (or 0) and fixed sums for each row and column (these are the parameters of the algorithm).
Exemple :
Enumerate all 2x3 matrices with row totals 2, 1 and column totals 0, 1, 2:
| 0 0 2 | = 2
| 0 1 0 | = 1
0 1 2
| 0 1 1 | = 2
| 0 0 1 | = 1
0 1 2
This is a rather simple example, but as N and M increase, as well as the sums, there can be a lot of possibilities.
Edit 1
I might have a valid arrangement to start the algorithm:
matrix = new Matrix(N, M) // NxM matrix filled with 0s
FOR i FROM 0 TO matrix.rows().count()
FOR j FROM 0 TO matrix.columns().count()
a = target_row_sum[i] - matrix.rows[i].sum()
b = target_column_sum[j] - matrix.columns[j].sum()
matrix[i, j] = min(a, b)
END FOR
END FOR
target_row_sum[i] being the expected sum on row i.
In the example above it gives the 2nd arrangement.
Edit 2:
(based on j_random_hacker's last statement)
Let M be any matrix verifying the given conditions (row and column sums fixed, positive or null cell values).
Let (a, b, c, d) be 4 cell values in M where (a, b) and (c, d) are on the same row, and (a, c) and (b, d) are on the same column.
Let Xa be the row number of the cell containing a and Ya be its column number.
Example:
| 1 a b |
| 1 2 3 |
| 1 c d |
-> Xa = 0, Ya = 1
-> Xb = 0, Yb = 2
-> Xc = 2, Yc = 1
-> Xd = 2, Yd = 2
Here is an algorithm to get all the combinations verifying the initial conditions and making only a, b, c and d varying:
// A matrix array containing a single element, M
// It will be filled with all possible combinations
matrices = [M]
I = min(a, d)
J = min(b, c)
FOR i FROM 1 TO I
tmp_matrix = M
tmp_matrix[Xa, Ya] = a - i
tmp_matrix[Xb, Yb] = b + i
tmp_matrix[Xc, Yc] = c - i
tmp_matrix[Xd, Yd] = d + i
matrices.add(tmp_matrix)
END FOR
FOR j FROM 1 TO J
tmp_matrix = M
tmp_matrix[Xa, Ya] = a + j
tmp_matrix[Xb, Yb] = b - j
tmp_matrix[Xc, Yc] = c + j
tmp_matrix[Xd, Yd] = d - j
matrices.add(tmp_matrix)
END FOR
It should then be possible to find every possible combination of matrix values:
Apply the algorithm on the first matrix for every possible group of 4 cells ;
Recursively apply the algorithm on each sub-matrix obtained by the previous iteration, for every possible group of 4 cells except any group already used in a parent execution ;
The recursive depth should be (N*(N-1)/2)*(M*(M-1)/2), each execution resulting in ((N*(N-1)/2)*(M*(M-1)/2) - depth)*(I+J+1) sub-matrices. But this creates a LOT of duplicate matrices, so this could probably be optimized.
Are you needing this to calculate Fisher's exact test? Because that requires what you're doing, and based on that page, it seems there will in general be a vast number of solutions, so you probably can't do better than a brute force recursive enumeration if you want every solution. OTOH it seems Monte Carlo approximations are successfully used by some software instead of full-blown enumerations.
I asked a similar question, which might be helpful. Although that question deals with preserving frequencies of letters in each row and column rather than sums, some results can be translated across. E.g. if you find any submatrix (pair of not-necessarily-adjacent rows and pair of not-necessarily-adjacent columns) with numbers
xy
yx
Then you can rearrange these to
yx
xy
without changing any row or column sums. However:
mhum's answer proves that there will in general be valid matrices that cannot be reached by any sequence of such 2x2 swaps. This can be seen by taking his 3x3 matrices and mapping A -> 1, B -> 2, C -> 4 and noticing that, because no element appears more than once in a row or column, frequency preservation in the original matrix is equivalent to sum preservation in the new matrix. However...
someone's answer links to a mathematical proof that it actually will work for matrices whose entries are just 0 or 1.
More generally, if you have any submatrix
ab
cd
where the (not necessarily unique) minimum is d, then you can replace this with any of the d+1 matrices
ef
gh
where h = d-i, g = c+i, f = b+i and e = a-i, for any integer 0 <= i <= d.
For a NXM matrix you have NXM unknowns and N+M equations. Put random numbers to the top-left (N-1)X(M-1) sub-matrix, except for the (N-1, M-1) element. Now, you can find the closed form for the rest of N+M elements trivially.
More details: There are total of T = N*M elements
There are R = (N-1)+(M-1)-1 randomly filled out elements.
Remaining number of unknowns: T-S = N*M - (N-1)*(M-1) +1 = N+M
Given a set of distinct unsorted integers s1, s2, .., sn how do you arrange integers such that s1 < s2 > s3 < s4...
I know this can be solved by looking at the array from left to right and if the condition is not satisfied swapping those two elements gives the right answer. Can someone explain me why this algorithm works.
Given any three successive numbers in the array, there are four possible relationships:
a < b < c
a < b > c
a > b < c
a > b > c
In the first case we know that a < c. Since the first condition is met, we can swap b and c to meet the second condition, and the first condition is still met.
In the second case, both conditions are already met.
In the third case, we have to swap a and b to give b < a ? c. But we already know that b < c, so if a < c then swapping to meet that second condition doesn't invalidate the first condition.
In the last case we know that a > c, so swapping a and b to meet the first condition maintains the validity of the second condition.
Now, you add a fourth number to the sequence. You have:
a < b > c ? d
If c < d then there's no need to change anything. But if we have to swap c and d, the prior condition is still met. Because if b > c and c > d, then we know that b > d. So swapping c and d gives us b > d < c.
You can use similar reasoning when you add the fifth number. You have a < b > c < d ? e. If d > e, then there's no need to change anything. If d < e, then by definition c < e as well, so swapping maintains the prior condition.
Pseudo code that implements the algorithm:
for i = 0 to n-2
if i is even
if (a[i] > a[i+1])
swap(a[i], a[i+1])
end if
else
if (a[i] < a[i+1])
swap(a[i], a[i+1])
end
Here is the code to the suggested solution in java.
public static int [] alternatingList(int [] list) {
int first, second,third;
for (int i = 0;i < list.length-2;i+=2) {
first = list[i];
second = list[i+1];
third = list[i+2];
if (first > second && first > third) {
list[i+1] = first;
list[i] = second;
}
else if (third> first && third > second) {
list[i+1] = third;
list[i+2] = second;
}
}
return list;
}
In this code since all the numbers are distinct there will always be a bigger number to put into the "peaks". Swapping the numbers will not change the consistency of the last part you did because the number you swap out will always be smaller than the one you put into the new peak.
Keep in mind this code doesn't handle some edge cases like even length lists and lists smaller than three, I wrote it pretty fast :), I only wrote the code to illustrate the concept of the solution
In addition this solution is better than the one in the proposed dupe because it makes one pass. The solution in the dupe uses the hoare's selection algorithm which is n but requires multiple decreasing in size passes on the list, also it needs to make another n pass on the list after using Hoare's (or the median of medians).
More mathematical proof:
For every three consecutive numbers a,b,c there are three options
a > b && a > c
b > c && b > a
c > a && c > b
In the first case you switch a into the middle because it's the largest, second case do nothing (largest is already in the middle) and 3rd case 'c` goes to the middle.
now you have a < b > c d e where for now d and e are unknown. Now the new a,b,c are c,d,e and you do the same operation this is guaranteed not to mess up the order since c will only be changed if it is larger than d and e thus the number moved into c's spot will be smaller than b and not break the ordering, this can continue infinitely clearly with the order never breaking.
I've been learning Ruby, so I thought I'd try my hand at some of the project Euler puzzles. Embarrassingly, I only made it to problem 4...
Problem 4 goes as follows:
A palindromic number reads the same
both ways. The largest palindrome made
from the product of two 2-digit
numbers is 9009 = 91 × 99.
Find the largest palindrome made from
the product of two 3-digit numbers.
So I figured I would loop down from 999 to 100 in a nested for loop and do a test for the palindrome and then break out of the loops when I found the first one (which should be the largest one):
final=nil
range = 100...1000
for a in range.to_a.reverse do
for b in range.to_a.reverse do
c=a*b
final=c if c.to_s == c.to_s.reverse
break if !final.nil?
end
break if !final.nil?
end
puts final
This does output a palindrome 580085, but apparently this isn't the highest product of two three-digit numbers within the range. Strangely, the same code succeeds to return 9009, like in the example, if I change the range to 10...100.
Can someone tell me where I am going
wrong?
Also, is there a nicer way to
break out of the internal loop?
Thanks
You are testing 999* (999...100), then 998 * (999...100)
Hence you will be testing 999 * 500 before you test 997 * 996.
So, how you we find that right number?
First note the multiplication is reflective, a * b == b * a, so b need not go from 999...0 every time, just a ...0.
When you find a palindrone, add the two factors together and save the sum (save the two factors also)
Inside the loop, if (a+b) is ever less than the saved sum, abandon the inner loop and move to the next a. When a falls below sum/2, no future value you could find would be higher than the one you've already found, so you're done.
The problem is that you might find a palindrome for an a of 999 and a b of 200, but you break too soon, so you never see that there is one for 998*997 (just example numbers).
You need to either look for all palindromes or once you find the first one, set that b as your minimum bound and continue looking through the a loop.
Regarding the second question, my advice is to approach the problem in more functional, than procedural manner. So, rather than looping, you may try to "describe" your problem functionally, and let Ruby does the work:
From all the pairs of 3-digit numbers,
select only those whose product is a palindrome,
and find the one with the largest product
Although this approach may not yield the most efficient of the solutions, it may teach you couple of Ruby idioms.
Consider the digits of P – let them be x, y and z. P must be at least 6 digits long since the palindrome 111111 = 143×777 – the product of two 3-digit integers. Since P is palindromic:
P=100000x + 10000y + 1000z + 100z + 10y + x
P=100001x + 10010y + 1100z
P=11(9091x + 910y + 100z)
Since 11 is prime, at least one of the integers a or b must have a factor of 11. So if a is not divisible by 11 then we know b must be. Using this information we can determine what values of b we check depending on a.
C# Implementation :
using System;
namespace HighestPalindrome
{
class Program
{
static void Main(string[] args)
{
int i, j;
int m = 1;
bool flag = false;
while (true)
{
if (flag) j = m + 1;
else j = m;
for (i = m; i > 0; i--)
{
Console.WriteLine("{0} * {1} = {2}", 1000 - i, 1000 - j, (1000 - i) * (1000 - j));
j++;
//--- Palindrome Check ------------------------------
int number, temp, remainder, sum = 0;
number = temp = (1000 - i) * (1000 - j);
while (number > 0)
{
remainder = number % 10;
number /= 10;
sum = sum * 10 + remainder;
}
if (sum == temp)
{
Console.WriteLine("Highest Palindrome Number is - {0} * {1} = {2}", 1000 - i, 1000 - j, temp);
Console.ReadKey();
return;
}
//---------------------------------------------------
}
if (flag)
m++;
flag = !flag;
}
}
}
}
The mistake is you assume that if you find palindrom with greatest a value it will give the greatest product it isn't true. Solution is to keep max_product value and update it against solution you find.
I can answer your first question: You need to find the highest product, not the product containing the highest factor. In other words a * b could be greater than c * d even if c > a > b.
You're breaking on the first palindrome you come to, not necessarily the biggest.
Say you have A,B,C,D,E. You test E * A before you test D * C.
The main thing is to go through all the possible values. Don't try to break when you find the first answer just start with a best answer of zero then try all combinations and keep updating best. The secondary thing is to try to reduce the set of "all combinations".
One thing you can do is limit your inner loop to values less than or equal to a (since ab == ba). This puts the larger value of your equation always in a and substantially reduces the number of values you have to test.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
The next thing you can do is break out of the inner loop whenever the product is less than the current best value.
c = a*b
next if c < best
Next, if you're going to go through them all anyway there's no benefit to going through them in reverse. By starting at the top of the range it takes a while before you find a palindromic number and as a result it takes a while to reduce your search set. If you start at the bottom you begin to increase the lower bound quickly.
for a in range.to_a do
for b in (100..a).to_a do
My tests show that either way you try some 405K pairs however. So how about thinking of the problem a different way. What is the largest possible product of two 3 digit numbers? 999 * 999 = 998001 and the smallest is 100*100 = 10000. How about we take the idea you had of breaking on the first answer but apply it to a different range, that being 998001 to 10000 (or 999*999 to 100*100).
for c in (10000...998001).to_a.reverse do
We get to a palindrome after only 202 tests... the problem is it isn't a product of two 3-digit numbers. So now we have to check whether the palindrome we've found is a product of 2 3-digit numbers. As soon as we find a value in the range that is a palindrome and a product of two 3-digit numbers we're done. My tests show we find the highest palindrome that meets the requirement after less than 93K tests. But since we have the overhead of checking that all palindromes to that point were products of two 3-digit numbers it may not be more efficient than the previous solution.
So lets go back to the original improvement.
for a in range.to_a.reverse do
for b in (100..a).to_a.reverse do
We're looping rows then columns and trying to be efficient by detecting a point where we can go to the next row because any additional trys on the current row could not possibly be better than our current best. What if, instead of going down the rows, we go across the diagonals?
Since the products get smaller diagonal by diagonal you can stop as soon as you find a palindome number. This is a really efficient solution but with a more complex implementation. It turns out this method finds the highest palindrome after slightly more than 2200 trys.
ar=[]
limit = 100..999
for a in limit.to_a.reverse do
for b in (100..a).to_a.reverse do
c=a*b
if c.to_s == c.to_s.reverse
palndrm=c
ar << palndrm
end
end
end
print ar
print"\n"
puts ar.max
puts ar.min
an implementation:
max = 100.upto(999).inject([-1,0,0]) do |m, a|
a.upto(999) do |b|
prod = a * b
m = [prod, a, b] if prod.to_s == prod.to_s.reverse and prod > m[0]
end
m
end
puts "%d = %d * %d" % max
prints 906609 = 913 * 993
Here's what I came up with in Ruby:
def largest_palindrome_product(digits)
largest, upper, lower = 0, 10**digits - 1, 10**(digits - 1)
for i in upper.downto(lower) do
for j in i.downto(lower) do
product = i * j
largest = product if product > largest && palindrome?(product)
end
end
largest
end
And here's the function to check if the number is a palindrome:
def palindrome?(input)
chars = input.to_s.chars
for i in 0..(chars.size - 1) do
return false if chars[i] != chars[chars.size - i - 1]
end
true
end
I guess there's probably a more efficient solution out there, though.
For this problem, as we are looking for the highest palindrom, i assumed it would start with a 9. Thus ending with a 9 (palindrom).
if you pay attention, to get a number finishing by 9, you can only get it with numbers finishing by 9 and 1, 3 and 3, 7 and 7.
Then it is useless to check the other values (for instance 999*998 as it will not end with a 9).
Starting from 999 and 991, you can then substract 10 to 991, trying 999 and 981 etc...
You do the same with 993 and 993 ... 993 * 983
same with 997 * 997 then 997 * 987 etc
You don't need to go further than 900 or 10^4 - 10^3 as you can be sure the highest will be before.
int PB4_firstTry(int size)
{
int nb1 = (int)pow(10.0,size+1.0) - 1, nb2 = (int)pow(10.0,size+1.0) - 1;
int pal91 = getFirstPalindrome(size,9,1);
int pal33 = getFirstPalindrome(size,3,3);
int pal77 = getFirstPalindrome(size,7,7);
int bigger1 = (pal91 > pal33) ? pal91 : pal33;
return (bigger1 > pal77) ? bigger1 : pal77;
}
int getFirstPalindrome(int size,int ending1,int ending2)
{
int st1 = (int)pow(10.0,size+1.0) - 10 + ending1;
int comp = st1 - pow(10.0,size);
int st2 = (int)pow(10.0,size+1.0) - 10 + ending2;
int answer = -1;
while (st1 > comp)
{
for (int i = st2; i > comp && st1*i > answer; i-=10)
{
if (PB4_isPalindrome(st1*i))
answer = st1*i;
}
st1 -= 10;
}
return answer;
}
bool PB4_isPalindrome(int number)
{
std::string str = intToString(number);
for (int i = 0; i < (int)(str.length() / 2); i++)
{
if (str[i] != str[str.length() - 1 - i])
return false;
}
return true;
}
std::string intToString(int number)
{
std::ostringstream convert;
convert << number;
return convert.str();
}
Of course, this works for 4 size digits factors etc.
I have two arrays containing the same elements, but in different orders, and I want to know the extent to which their orders differ.
The method I tried, didn't work. it was as follows:
For each list I built a matrix which recorded for each pair of elements whether they were above or below each other in the list. I then calculated a pearson correlation coefficient of these two matrices. This worked extremely badly. Here's a trivial example:
list 1:
1
2
3
4
list 2:
1
3
2
4
The method I described above produced matrices like this (where 1 means the row number is higher than the column, and 0 vice-versa):
list 1:
1 2 3 4
1 1 1 1
2 1 1
3 1
4
list 2:
1 2 3 4
1 1 1 1
2 0 1
3 1
4
Since the only difference is the order of elements 2 and 3, these should be deemed to be very similar. The Pearson Correlation Coefficient for those two matrices is 0, suggesting they are not correlated at all. I guess the problem is that what I'm looking for is not really a correlation coefficient, but some other kind of similarity measure. Edit distance, perhaps?
Can anyone suggest anything better?
Mean square of differences of indices of each element.
List 1: A B C D E
List 2: A D C B E
Indices of each element of List 1 in List 2 (zero based)
A B C D E
0 3 2 1 4
Indices of each element of List 1 in List 1 (zero based)
A B C D E
0 1 2 3 4
Differences:
A B C D E
0 -2 0 2 0
Square of differences:
A B C D E
4 4
Average differentness = 8 / 5.
Just an idea, but is there any mileage in adapting a standard sort algorithm to count the number of swap operations needed to transform list1 into list2?
I think that defining the compare function may be difficult though (perhaps even just as difficult as the original problem!), and this may be inefficient.
edit: thinking about this a bit more, the compare function would essentially be defined by the target list itself. So for example if list 2 is:
1 4 6 5 3
...then the compare function should result in 1 < 4 < 6 < 5 < 3 (and return equality where entries are equal).
Then the swap function just needs to be extended to count the swap operations.
A bit late for the party here, but just for the record, I think Ben almost had it... if you'd looked further into correlation coefficients, I think you'd have found that Spearman's rank correlation coefficient might have been the way to go.
Interestingly, jamesh seems to have derived a similar measure, but not normalized.
See this recent SO answer.
You might consider how many changes it takes to transform one string into another (which I guess it was you were getting at when you mentioned edit distance).
See: http://en.wikipedia.org/wiki/Levenshtein_distance
Although I don't think l-distance takes into account rotation. If you allow rotation as an operation then:
1, 2, 3, 4
and
2, 3, 4, 1
Are pretty similar.
There is a branch-and-bound algorithm that should work for any set of operators you like. It may not be real fast. The pseudocode goes something like this:
bool bounded_recursive_compare_routine(int* a, int* b, int level, int bound){
if (level > bound) return false;
// if at end of a and b, return true
// apply rule 0, like no-change
if (*a == *b){
bounded_recursive_compare_routine(a+1, b+1, level+0, bound);
// if it returns true, return true;
}
// if can apply rule 1, like rotation, to b, try that and recur
bounded_recursive_compare_routine(a+1, b+1, level+cost_of_rotation, bound);
// if it returns true, return true;
...
return false;
}
int get_minimum_cost(int* a, int* b){
int bound;
for (bound=0; ; bound++){
if (bounded_recursive_compare_routine(a, b, 0, bound)) break;
}
return bound;
}
The time it takes is roughly exponential in the answer, because it is dominated by the last bound that works.
Added: This can be extended to find the nearest-matching string stored in a trie. I did that years ago in a spelling-correction algorithm.
I'm not sure exactly what formula it uses under the hood, but difflib.SequenceMatcher.ratio() does exactly this:
ratio(self) method of difflib.SequenceMatcher instance:
Return a measure of the sequences' similarity (float in [0,1]).
Code example:
from difflib import SequenceMatcher
sm = SequenceMatcher(None, '1234', '1324')
print sm.ratio()
>>> 0.75
Another approach that is based on a little bit of mathematics is to count the number of inversions to convert one of the arrays into the other one. An inversion is the exchange of two neighboring array elements. In ruby it is done like this:
# extend class array by new method
class Array
def dist(other)
raise 'can calculate distance only to array with same length' if length != other.length
# initialize count of inversions to 0
count = 0
# loop over all pairs of indices i, j with i<j
length.times do |i|
(i+1).upto(length) do |j|
# increase count if i-th and j-th element have different order
count += 1 if (self[i] <=> self[j]) != (other[i] <=> other[j])
end
end
return count
end
end
l1 = [1, 2, 3, 4]
l2 = [1, 3, 2, 4]
# try an example (prints 1)
puts l1.dist(l2)
The distance between two arrays of length n can be between 0 (they are the same) and n*(n+1)/2 (reversing the first array one gets the second). If you prefer to have distances always between 0 and 1 to be able to compare distances of pairs of arrays of different length, just divide by n*(n+1)/2.
A disadvantage of this algorithms is it running time of n^2. It also assumes that the arrays don't have double entries, but it could be adapted.
A remark about the code line "count += 1 if ...": the count is increased only if either the i-th element of the first list is smaller than its j-th element and the i-th element of the second list is bigger than its j-th element or vice versa (meaning that the i-th element of the first list is bigger than its j-th element and the i-th element of the second list is smaller than its j-th element). In short: (l1[i] < l1[j] and l2[i] > l2[j]) or (l1[i] > l1[j] and l2[i] < l2[j])
If one has two orders one should look at two important ranking correlation coefficients:
Spearman's rank correlation coefficient: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
This is almost the same as Jamesh answer but scaled in the range -1 to 1.
It is defined as:
1 - ( 6 * sum_of_squared_distances ) / ( n_samples * (n_samples**2 - 1 )
Kendalls tau: https://nl.wikipedia.org/wiki/Kendalls_tau
When using python one could use:
from scipy import stats
order1 = [ 1, 2, 3, 4]
order2 = [ 1, 3, 2, 4]
print stats.spearmanr(order1, order2)[0]
>> 0.8000
print stats.kendalltau(order1, order2)[0]
>> 0.6667
if anyone is using R language, I've implemented a function that computes the "spearman rank correlation coefficient" using the method described above by #bubake here:
get_spearman_coef <- function(objectA, objectB) {
#getting the spearman rho rank test
spearman_data <- data.frame(listA = objectA, listB = objectB)
spearman_data$rankA <- 1:nrow(spearman_data)
rankB <- c()
for (index_valueA in 1:nrow(spearman_data)) {
for (index_valueB in 1:nrow(spearman_data)) {
if (spearman_data$listA[index_valueA] == spearman_data$listB[index_valueB]) {
rankB <- append(rankB, index_valueB)
}
}
}
spearman_data$rankB <- rankB
spearman_data$distance <-(spearman_data$rankA - spearman_data$rankB)**2
spearman <- 1 - ( (6 * sum(spearman_data$distance)) / (nrow(spearman_data) * ( nrow(spearman_data)**2 -1) ) )
print(paste("spearman's rank correlation coefficient"))
return( spearman)
}
results :
get_spearman_coef(c("a","b","c","d","e"), c("a","b","c","d","e"))
spearman's rank correlation coefficient: 1
get_spearman_coef(c("a","b","c","d","e"), c("b","a","d","c","e"))
spearman's rank correlation coefficient: 0.9