Is the behavior behind the Shellshock vulnerability in Bash documented or at all intentional? - bash

A recent vulnerability, CVE-2014-6271, in how Bash interprets environment variables was disclosed. The exploit relies on Bash parsing some environment variable declarations as function definitions, but then continuing to execute code following the definition:
$ x='() { echo i do nothing; }; echo vulnerable' bash -c ':'
vulnerable
But I don't get it. There's nothing I've been able to find in the Bash manual about interpreting environment variables as functions at all (except for inheriting functions, which is different). Indeed, a proper named function definition is just treated as a value:
$ x='y() { :; }' bash -c 'echo $x'
y() { :; }
But a corrupt one prints nothing:
$ x='() { :; }' bash -c 'echo $x'
$ # Nothing but newline
The corrupt function is unnamed, and so I can't just call it. Is this vulnerability a pure implementation bug, or is there an intended feature here, that I just can't see?
Update
Per Barmar's comment, I hypothesized the name of the function was the parameter name:
$ n='() { echo wat; }' bash -c 'n'
wat
Which I could swear I tried before, but I guess I didn't try hard enough. It's repeatable now. Here's a little more testing:
$ env n='() { echo wat; }; echo vuln' bash -c 'n'
vuln
wat
$ env n='() { echo wat; }; echo $1' bash -c 'n 2' 3 -- 4
wat
…so apparently the args are not set at the time the exploit executes.
Anyway, the basic answer to my question is, yes, this is how Bash implements inherited functions.

This seems like an implementation bug.
Apparently, the way exported functions work in bash is that they use specially-formatted environment variables. If you export a function:
f() { ... }
it defines an environment variable like:
f='() { ... }'
What's probably happening is that when the new shell sees an environment variable whose value begins with (), it prepends the variable name and executes the resulting string. The bug is that this includes executing anything after the function definition as well.
The fix described is apparently to parse the result to see if it's a valid function definition. If not, it prints the warning about the invalid function definition attempt.
This article confirms my explanation of the cause of the bug. It also goes into a little more detail about how the fix resolves it: not only do they parse the values more carefully, but variables that are used to pass exported functions follow a special naming convention. This naming convention is different from that used for the environment variables created for CGI scripts, so an HTTP client should never be able to get its foot into this door.

The following:
x='() { echo I do nothing; }; echo vulnerable' bash -c 'typeset -f'
prints
vulnerable
x ()
{
echo I do nothing
}
declare -fx x
seems, than Bash, after having parsed the x=..., discovered it as a function, exported it, saw the declare -fx x and allowed the execution of the command after the declaration.
echo vulnerable
x='() { x; }; echo vulnerable' bash -c 'typeset -f'
prints:
vulnerable
x ()
{
echo I do nothing
}
and running the x
x='() { x; }; echo Vulnerable' bash -c 'x'
prints
Vulnerable
Segmentation fault: 11
segfaults - infinite recursive calls
It doesn't overrides already defined function
$ x() { echo Something; }
$ declare -fx x
$ x='() { x; }; echo Vulnerable' bash -c 'typeset -f'
prints:
x ()
{
echo Something
}
declare -fx x
e.g. the x remains the previously (correctly) defined function.
For the Bash 4.3.25(1)-release the vulnerability is closed, so
x='() { echo I do nothing; }; echo Vulnerable' bash -c ':'
prints
bash: warning: x: ignoring function definition attempt
bash: error importing function definition for `x'
but - what is strange (at least for me)
x='() { x; };' bash -c 'typeset -f'
STILL PRINTS
x ()
{
x
}
declare -fx x
and the
x='() { x; };' bash -c 'x'
segmentation faults too, so it STILL accept the strange function definition...

I think it's worth looking at the Bash code itself. The patch gives a bit of insight as to the problem. In particular,
*** ../bash-4.3-patched/variables.c 2014-05-15 08:26:50.000000000 -0400
--- variables.c 2014-09-14 14:23:35.000000000 -0400
***************
*** 359,369 ****
strcpy (temp_string + char_index + 1, string);
! if (posixly_correct == 0 || legal_identifier (name))
! parse_and_execute (temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);
!
! /* Ancient backwards compatibility. Old versions of bash exported
! functions like name()=() {...} */
! if (name[char_index - 1] == ')' && name[char_index - 2] == '(')
! name[char_index - 2] = '\0';
if (temp_var = find_function (name))
--- 364,372 ----
strcpy (temp_string + char_index + 1, string);
! /* Don't import function names that are invalid identifiers from the
! environment, though we still allow them to be defined as shell
! variables. */
! if (legal_identifier (name))
! parse_and_execute (temp_string, name, SEVAL_NONINT|SEVAL_NOHIST|SEVAL_FUNCDEF|SEVAL_ONECMD);
if (temp_var = find_function (name))
When Bash exports a function, it shows up as an environment variable, for example:
$ foo() { echo 'hello world'; }
$ export -f foo
$ cat /proc/self/environ | tr '\0' '\n' | grep -A1 foo
foo=() { echo 'hello world'
}
When a new Bash process finds a function defined this way in its environment, it evalutes the code in the variable using parse_and_execute(). For normal, non-malicious code, executing it simply defines the function in Bash and moves on. However, because it's passed to a generic execution function, Bash will correctly parse and execute additional code defined in that variable after the function definition.
You can see that in the new code, a flag called SEVAL_ONECMD has been added that tells Bash to only evaluate the first command (that is, the function definition) and SEVAL_FUNCDEF to only allow functio0n definitions.

In regard to your question about documentation, notice here in the commandline documentation for the env command, that a study of the syntax shows that env is working as documented.
There are, optionally, 4 possible options
An optional hyphen as a synonym for -i (for backward compatibility I assume)
Zero or more NAME=VALUE pairs. These are the variable assignment(s) which could include function definitions.
Note that no semicolon (;) is required between or following the assignments.
The last argument(s) can be a single command followed by its argument(s). It will run with whatever permissions have been granted to the login being used. Security is controlled by restricting permissions on the login user and setting permissions on user-accessible executables such that users other than the executable's owner can only read and execute the program, not alter it.
[ spot#LX03:~ ] env --help
Usage: env [OPTION]... [-] [NAME=VALUE]... [COMMAND [ARG]...]
Set each NAME to VALUE in the environment and run COMMAND.
-i, --ignore-environment start with an empty environment
-u, --unset=NAME remove variable from the environment
--help display this help and exit
--version output version information and exit
A mere - implies -i. If no COMMAND, print the resulting environment.
Report env bugs to bug-coreutils#gnu.org
GNU coreutils home page: <http://www.gnu.org/software/coreutils/>
General help using GNU software: <http://www.gnu.org/gethelp/>
Report env translation bugs to <http://translationproject.org/team/>

Related

How to make errexit behaviour work in bash functions

How do I get -e / errexit to work in bash functions, so that the first failed command* within a function causes the function to return with an error code (just as -e works at top-level).
* not part of boolean expression, if/elif/while/etc etc etc
I ran the following test-script, and I expect any function containing f in its name (i.e. a false line in its source) to return error-code, but they don't if there's another command after. Even when I put the function body in a subshell with set -e specified again, it just blindly steamrolls on through the function after a command fails instead of exiting the subshell/function with the nonzero status code.
Environments / interpreters tested:
I get the same result in all of these envs/shells, which is to be expected I guess unless one was buggy.
Arch:
bash test.sh (bash 5.1)
zsh test.sh (zsh 5.8)
sh test.sh (just a symlink to bash)
Alpine:
docker run -v /test.sh:/test.sh alpine:latest sh /test.sh (BusyBox 1.34)
Ubuntu:
docker run -v /test.sh:/test.sh ubuntu:21.04 sh /test.sh
docker run -v /test.sh:/test.sh ubuntu:21.04 bash /test.sh (bash 5.1)
docker run -v /test.sh:/test.sh ubuntu:21.04 dash /test.sh (bash 5.1)
Test script
set -e
t() {
true
}
f() {
false
}
tf() {
true
false
}
ft() {
false
true
}
et() {
set -e
true
}
ef() {
set -e
false
}
etf() {
set -e
true
false
}
eft() {
set -e
false
true
}
st() {( set -e
true
)}
sf() {( set -e
false
)}
stf() {( set -e
true
false
)}
sft() {( set -e
false
true
)}
for test in t f tf ft _ et ef etf eft _ st sf stf sft; do
if [ "$test" = '_' ]; then
echo ""
elif "$test"; then
echo "$test: pass"
else
echo "$test: fail"
fi
done
Output on my machine
t: pass
f: fail
tf: fail
ft: pass
et: pass
ef: fail
etf: fail
eft: pass
st: pass
sf: fail
stf: fail
sft: pass
Desired output
Without significantly changing source in functions themselves, i.e. not adding an if/then or || return to every line in the function.
t: pass
f: fail
tf: fail
ft: fail
et: pass
ef: fail
etf: fail
eft: fail
st: pass
sf: fail
stf: fail
sft: fail
Or at least pass/fail/fail/fail in one group, so I can use that approach for writing robust functions.
With accepted solution
With the accepted solution, the first four tests give the desired result. The other two groups don't, but are irrelevant since those were my own attempts to work around the issue. The root cause is that the "don't errexit the script when if/while-condition fails" behaviour propagates into any functions called in the condition, rather than just applying to the end-result.
How to make errexit behaviour work in bash functions
Call the function not inside if.
I expect any function containing f in its name (i.e. a false line in its source) to return error-code
Weeeeeell, your expectancy does not match reality. It is not how it is implemented. And flag errexit will exit your script, not return error-code.
Desired output
You can:
Download Bash or other shell sources or write your own and implement the behavior that you want to have.
consider extending the behavior with like shopt -s errexit_but_return_nonzero_in_if_contexts or something shorter
Run it in a separate shell.
elif bash -ec "$(declare -f "$test"); $test"; then
Write a custom loadable to "clear" CMD_IGNORE_RETURN flag when Bash enters contexts in which set -e should be ignored. I think for that static COMMAND *currently_executing_command; needs to be extern and then just currently_executing_command.flags &= ~CMD_IGNORE_RETURN;.
You can do a wrapper where you temporarily disable errexit and get return status, but you have to call it outside of if:
errreturn() {
declare -g ERRRETURN
local flags=$(set +o)
set +e
(
set -e
"$#"
)
ERRRETURN=$?
eval "$flags"
}
....
echo ""
else
errreturn "$test"
if (( ERRRETURN == 0 )); then
echo "$test: pass"
else
echo "$test: fail"
fi
fi

Jenkins pipeline undefined variable

I'm trying to build a Jenkins Pipeline for which a parameter is
optional:
parameters {
string(
name:'foo',
defaultValue:'',
description:'foo is foo'
)
}
My purpose is calling a shell script and providing foo as argument:
stages {
stage('something') {
sh "some-script.sh '${params.foo}'"
}
}
The shell script will do the Right Thing™ if the provided value is the empty
string.
Unfortunately I can't just get an empty string. If the user does not provide
a value for foo, Jenkins will set it to null, and I will get null
(as string) inside my command.
I found this related question but the only answer is not really helpful.
Any suggestion?
OP here realized a wrapper script can be helpful… I ironically called it junkins-cmd and I call it like this:
stages {
stage('something') {
sh "junkins-cmd some-script.sh '${params.foo}'"
}
}
Code:
#!/bin/bash
helpme() {
cat <<EOF
Usage: $0 <command> [parameters to command]
This command is a wrapper for jenkins pipeline. It tries to overcome jenkins
idiotic behaviour when calling programs without polluting the remaining part
of the toolkit.
The given command is executed with the fixed version of the given
parameters. Current fixes:
- 'null' is replaced with ''
EOF
} >&2
trap helpme EXIT
command="${1:?Missing command}"; shift
trap - EXIT
typeset -a params
for p in "$#"; do
# Jenkins pipeline uses 'null' when the parameter is undefined.
[[ "$p" = 'null' ]] && p=''
params+=("$p")
done
exec $command "${params[#]}"
Beware: prams+=("$p") seems not to be portable among shells: hence this ugly script is running #!/bin/bash.

Detect empty command

Consider this PS1
PS1='\n${_:+$? }$ '
Here is the result of a few commands
$ [ 2 = 2 ]
0 $ [ 2 = 3 ]
1 $
1 $
The first line shows no status as expected, and the next two lines show the
correct exit code. However on line 3 only Enter was pressed, so I would like the
status to go away, like line 1. How can I do this?
Here's a funny, very simple possibility: it uses the \# escape sequence of PS1 together with parameter expansions (and the way Bash expands its prompt).
The escape sequence \# expands to the command number of the command to be executed. This is incremented each time a command has actually been executed. Try it:
$ PS1='\# $ '
2 $ echo hello
hello
3 $ # this is a comment
3 $
3 $ echo hello
hello
4 $
Now, each time a prompt is to be displayed, Bash first expands the escape sequences found in PS1, then (provided the shell option promptvars is set, which is the default), this string is expanded via parameter expansion, command substitution, arithmetic expansion, and quote removal.
The trick is then to have an array that will have the k-th field set (to the empty string) whenever the (k-1)-th command is executed. Then, using appropriate parameter expansions, we'll be able to detect when these fields are set and to display the return code of the previous command if the field isn't set. If you want to call this array __cmdnbary, just do:
PS1='\n${__cmdnbary[\#]-$? }${__cmdnbary[\#]=}\$ '
Look:
$ PS1='\n${__cmdnbary[\#]-$? }${__cmdnbary[\#]=}\$ '
0 $ [ 2 = 3 ]
1 $
$ # it seems that it works
$ echo "it works"
it works
0 $
To qualify for the shortest answer challenge:
PS1='\n${a[\#]-$? }${a[\#]=}$ '
that's 31 characters.
Don't use this, of course, as a is a too trivial name; also, \$ might be better than $.
Seems you don't like that the initial prompt is 0 $; you can very easily modify this by initializing the array __cmdnbary appropriately: you'll put this somewhere in your configuration file:
__cmdnbary=( '' '' ) # Initialize the field 1!
PS1='\n${__cmdnbary[\#]-$? }${__cmdnbary[\#]=}\$ '
Got some time to play around this weekend. Looking at my earlier answer (not-good) and other answers I think this may be probably the smallest answer.
Place these lines at the end of your ~/.bash_profile:
PS1='$_ret$ '
trapDbg() {
local c="$BASH_COMMAND"
[[ "$c" != "pc" ]] && export _cmd="$c"
}
pc() {
local r=$?
trap "" DEBUG
[[ -n "$_cmd" ]] && _ret="$r " || _ret=""
export _ret
export _cmd=
trap 'trapDbg' DEBUG
}
export PROMPT_COMMAND=pc
trap 'trapDbg' DEBUG
Then open a new terminal and note this desired behavior on BASH prompt:
$ uname
Darwin
0 $
$
$
$ date
Sun Dec 14 05:59:03 EST 2014
0 $
$
$ [ 1 = 2 ]
1 $
$
$ ls 123
ls: cannot access 123: No such file or directory
2 $
$
Explanation:
This is based on trap 'handler' DEBUG and PROMPT_COMMAND hooks.
PS1 is using a variable _ret i.e. PS1='$_ret$ '.
trap command runs only when a command is executed but PROMPT_COMMAND is run even when an empty enter is pressed.
trap command sets a variable _cmd to the actually executed command using BASH internal var BASH_COMMAND.
PROMPT_COMMAND hook sets _ret to "$? " if _cmd is non-empty otherwise sets _ret to "". Finally it resets _cmd var to empty state.
The variable HISTCMD is updated every time a new command is executed. Unfortunately, the value is masked during the execution of PROMPT_COMMAND (I suppose for reasons related to not having history messed up with things which happen in the prompt command). The workaround I came up with is kind of messy, but it seems to work in my limited testing.
# This only works if the prompt has a prefix
# which is displayed before the status code field.
# Fortunately, in this case, there is one.
# Maybe use a no-op prefix in the worst case (!)
PS1_base=$'\n'
# Functions for PROMPT_COMMAND
PS1_update_HISTCMD () {
# If HISTCONTROL contains "ignoredups" or "ignoreboth", this breaks.
# We should not change it programmatically
# (think principle of least astonishment etc)
# but we can always gripe.
case :$HISTCONTROL: in
*:ignoredups:* | *:ignoreboth:* )
echo "PS1_update_HISTCMD(): HISTCONTROL contains 'ignoredups' or 'ignoreboth'" >&2
echo "PS1_update_HISTCMD(): Warning: Please remove this setting." >&2 ;;
esac
# PS1_HISTCMD needs to contain the old value of PS1_HISTCMD2 (a copy of HISTCMD)
PS1_HISTCMD=${PS1_HISTCMD2:-$PS1_HISTCMD}
# PS1_HISTCMD2 needs to be unset for the next prompt to trigger properly
unset PS1_HISTCMD2
}
PROMPT_COMMAND=PS1_update_HISTCMD
# Finally, the actual prompt:
PS1='${PS1_base#foo${PS1_HISTCMD2:=${HISTCMD%$PS1_HISTCMD}}}${_:+${PS1_HISTCMD2:+$? }}$ '
The logic in the prompt is roughly as follows:
${PS1_base#foo...}
This displays the prefix. The stuff in #... is useful only for its side effects. We want to do some variable manipulation without having the values of the variables display, so we hide them in a string substitution. (This will display odd and possibly spectacular things if the value of PS1_base ever happens to begin with foo followed by the current command history index.)
${PS1_HISTCMD2:=...}
This assigns a value to PS1_HISTCMD2 (if it is unset, which we have made sure it is). The substitution would nominally also expand to the new value, but we have hidden it in a ${var#subst} as explained above.
${HISTCMD%$PS1_HISTCMD}
We assign either the value of HISTCMD (when a new entry in the command history is being made, i.e. we are executing a new command) or an empty string (when the command is empty) to PS1_HISTCMD2. This works by trimming off the value HISTCMD any match on PS1_HISTCMD (using the ${var%subst} suffix replacement syntax).
${_:+...}
This is from the question. It will expand to ... something if the value of $_ is set and nonempty (which it is when a command is being executed, but not e.g. if we are performing a variable assignment). The "something" should be the status code (and a space, for legibility) if PS1_HISTCMD2 is nonempty.
${PS1_HISTCMD2:+$? }
There.
'$ '
This is just the actual prompt suffix, as in the original question.
So the key parts are the variables PS1_HISTCMD which remembers the previous value of HISTCMD, and the variable PS1_HISTCMD2 which captures the value of HISTCMD so it can be accessed from within PROMPT_COMMAND, but needs to be unset in the PROMPT_COMMAND so that the ${PS1_HISTCMD2:=...} assignment will fire again the next time the prompt is displayed.
I fiddled for a bit with trying to hide the output from ${PS1_HISTCMD2:=...} but then realized that there is in fact something we want to display anyhow, so just piggyback on that. You can't have a completely empty PS1_base because the shell apparently notices, and does not even attempt to perform a substitution when there is no value; but perhaps you can come up with a dummy value (a no-op escape sequence, perhaps?) if you have nothing else you want to display. Or maybe this could be refactored to run with a suffix instead; but that is probably going to be trickier still.
In response to Anubhava's "smallest answer" challenge, here is the code without comments or error checking.
PS1_base=$'\n'
PS1_update_HISTCMD () { PS1_HISTCMD=${PS1_HISTCMD2:-$PS1_HISTCMD}; unset PS1_HISTCMD2; }
PROMPT_COMMAND=PS1_update_HISTCMD
PS1='${PS1_base#foo${PS1_HISTCMD2:=${HISTCMD%$PS1_HISTCMD}}}${_:+${PS1_HISTCMD2:+$? }}$ '
This is probably not the best way to do this, but it seems to be working
function pc {
foo=$_
fc -l > /tmp/new
if cmp -s /tmp/{new,old} || test -z "$foo"
then
PS1='\n$ '
else
PS1='\n$? $ '
fi
cp /tmp/{new,old}
}
PROMPT_COMMAND=pc
Result
$ [ 2 = 2 ]
0 $ [ 2 = 3 ]
1 $
$
I need to use great script bash-preexec.sh.
Although I don't like external dependencies, this was the only thing to help me avoid to have 1 in $? after just pressing enter without running any command.
This goes to your ~/.bashrc:
__prompt_command() {
local exit="$?"
PS1='\u#\h: \w \$ '
[ -n "$LASTCMD" -a "$exit" != "0" ] && PS1='['${red}$exit$clear"] $PS1"
}
PROMPT_COMMAND=__prompt_command
[-f ~/.bash-preexec.sh ] && . ~/.bash-preexec.sh
preexec() { LASTCMD="$1"; }
UPDATE: later I was able to find a solution without dependency on .bash-preexec.sh.

In Bash, it is okay for a variable and a function to have the same name?

I have the following code in my ~/.bashrc:
date=$(which date)
date() {
if [[ $1 == -R || $1 == --rfc-822 ]]; then
# Output RFC-822 compliant date string.
# e.g. Wed, 16 Dec 2009 15:18:11 +0100
$date | sed "s/[^ ][^ ]*$/$($date +%z)/"
else
$date "$#"
fi
}
This works fine, as far as I can tell. Is there a reason to avoid having a variable and a function with the same name?
It's alright apart from being confusing. Besides, they are not the same:
$ date=/bin/ls
$ type date
date is hashed (/bin/date)
$ type $date
/bin/ls is /bin/ls
$ moo=foo
$ type $moo
-bash: type: foo: not found
$ function date() { true; }
$ type date
date is a function
date ()
{
true*emphasized text*
}
$ which true
/bin/true
$ type true
true is a shell builtin
Whenever you type a command, bash looks in three different places to find that command. The priority is as follows:
shell builtins (help)
shell aliases (help alias)
shell functions (help function)
hashed binaries files from $PATH ('leftmost' folders scanned first)
Variables are prefixed with a dollar sign, which makes them different from all of the above. To compare to your example: $date and date are not the same thing. So It's not really possible to have the same name for a variable and a function because they have different "namespaces".
You may find this somewhat confusing, but many scripts define "method variables" at the top of the file. e.g.
SED=/bin/sed
AWK=/usr/bin/awk
GREP/usr/local/gnu/bin/grep
The common thing to do is type the variable names in capitals. This is useful for two purposes (apart from being less confusing):
There is no $PATH
Checking that all "dependencies" are runnable
You can't really check like this:
if [ "`which binary`" ]; then echo it\'s ok to continue.. ;fi
Because which will give you an error if binary has not yet been hashed (found in a path folder).
Since you always have to use $ to dereference a variable in Bash, you're free to use any name you like.
Beware of overriding a global, though.
See also:
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_02.html
An alternative to using a variable: use bash's command keyword (see the manual or run help command from a prompt):
date() {
case $1 in
-R|--rfc-2822) command date ... ;;
*) command date "$#" ;;
esac
}

Increment a global variable in Bash

Here's a shell script:
globvar=0
function myfunc {
let globvar=globvar+1
echo "myfunc: $globvar"
}
myfunc
echo "something" | myfunc
echo "Global: $globvar"
When called, it prints out the following:
$ sh zzz.sh
myfunc: 1
myfunc: 2
Global: 1
$ bash zzz.sh
myfunc: 1
myfunc: 2
Global: 1
$ zsh zzz.sh
myfunc: 1
myfunc: 2
Global: 2
The question is: why this happens and what behavior is correct?
P.S. I have a strange feeling that function behind the pipe is called in a forked shell... So, can there be a simple workaround?
P.P.S. This function is a simple test wrapper. It runs test application and analyzes its output. Then it increments $PASSED or $FAILED variables. Finally, you get a number of passed/failed tests in global variables. The usage is like:
test-util << EOF | myfunc
input for test #1
EOF
test-util << EOF | myfunc
input for test #2
EOF
echo "Passed: $PASSED, failed: $FAILED"
Korn shell gives the same results as zsh, by the way.
Please see BashFAQ/024. Pipes create subshells in Bash and variables are lost when subshells exit.
Based on your example, I would restructure it something like this:
globvar=0
function myfunc {
echo $(($1 + 1))
}
myfunc "$globvar"
globalvar=$(echo "something" | myfunc "$globalvar")
Piping something into myfunc in sh or bash causes a new shell to spawn. You can confirm this by adding a long sleep in myfunc. While it's sleeping call ps and you'll see a subprocess. When the function returns, that sub shell exits without changing the value in the parent process.
If you really need that value to be changed, you'll need to return a value from the function and check $PIPESTATUS after, I guess, like this:
globvar=0
function myfunc {
let globvar=globvar+1
echo "myfunc: $globvar"
return $globvar
}
myfunc
echo "something" | myfunc
globvar=${PIPESTATUS[1]}
echo "Global: $globvar"
The problem is 'which end of a pipeline using built-ins is executed by the original process?'
In zsh, it looks like the last command in the pipeline is executed by the main shell script when the command is a function or built-in.
In Bash (and sh is likely to be a link to Bash if you're on Linux), then either both commands are run in a sub-shell or the first command is run by the main process and the others are run by sub-shells.
Clearly, when the function is run in a sub-shell, it does not affect the variable in the parent shell (only the global in the sub-shell).
Consider adding an extra test:
echo Something | { myfunc; echo $globvar; }
echo $globvar

Resources