I have a fairly smooth polygon, say an ellipse with bulges and dents converted to polygon straight lines. I wish to fill this polygon with as few rectangles as possible, but as many as to maintain accuracy in small corners in the polygon. The rectangles may be any size, and of any amount.
The reason for this is doing a hit test on a web page on the polygon. The only practical way is to fill it with divs and do hit tests on all the divs.
Of course there will be a minimum square size for any rectangle, lest we more than just approximate the polygon and recreate it with pixel size rectangles.
In the general case, if you want to exactly represent a digital shape with rectangles, you will need at least as many rectangles as there are pixels on the outline forming corners. If you think of a digital straight edge at 45°, that means one rectangle per pixel. This is a serious limitation. (And don't even think of non-digital shapes.)
This said, you accept to approximate the shape with a certain error, and I suggest that you first shrink the shape by a constant factor, up to you: you will overlay a grid on the shape an decide whether every tile belongs to the shape or not. Doing this, you turn your shape in a binary image with "big pixels", and the challenge is now to decompose this image in rectangles (exactly this time).
I suggest a simple greedy strategy such that you try to find a large rectangle that fits entirely, and then repeat with the parts that remain.
If you apply a morphological erosion operation with a larger and larger rectangular structuring element, you will find the largest rectangle the fits in the shape image. In theory, you should try all combinations of width and height and keep the largest area or perimeter; this is a large amount of work. I would recommend to try with growing squares first, and when you found the largest square to continue in the direction that allows it.
After you have found a large rectangle, erase it from the shape image and start again, until you completely erase it.
Related
I'm trying to take a source image, and recreate it on a transparent canvas using only overlapping mono-colored squares. The goal is to use as few squares as possible.
In other words, I'm taking a blank transparent image, and drawing squares of various colors until I recreate the source image, with the goal being to use as few squares as possible.
For example:
Here is a source image. It has two colors: red and green. I want to use only squares, that may overlap, to recreate the source image.
The ideal solution would be a large red square, and then two green squares drawn on top - that is what I want my algorithm to find, with any source image - the position, size, color and order of each square.
My target image that I intend to process is this:
(8x enlargement)
It has 1411 non-transparent pixels (worst case), and with a brute force solution that does not use overlapping squares, I've recreated the image using 1246 squares.
My current solution is a brute force method along the lines of:
Create a list of all colors used in the source image. Each item is a "layer". A layer has a color and a 2D array representing pixels. The order is important, but I don't know what order the layers need to be in, so its arbitrary initially.
For each layer in the list, initialize the 2D array. Each element corresponds to a pixel in the source image. Pixels that are the same color as the layer's chosen color is marked as '1'. Pixels that are in a layer ABOVE the current layer are marked as "don't care". All other pixels are marked as '0'.
Use some algorithm to process each layer, using the smallest number of squares to reach every pixel marked '1', without touching any pixels marked '0'.
Rearrange the order of layers and go back to Step 2. Do this for every possible combination of layers, then check to see which ordering uses the least number of squares in total.
Someone has perhaps a better explanation in a response; but brute force testing every permutation is not viable, because my target image has 31 colors (resulting in 31! permutations).
As for why I'm doing this? I'm trying to create an image in a game (Starbound), where I can only use squares. The lazy solution is to use a square for each pixel, but that's just too many squares.
Just a suggestion for a possible solution. I haven't tried it.
It's a greedy approach.
For every pixel, compute the largest uniform square that contains it.
Then choose the largest of all squares and mark all pixels it covers as "covered".
Then among all unmarked pixels, choose the largest covering square, and so on until no unmarked pixel remains.
Ties do no matter, just take any largest square and mark its pixels.
UPDATE: overlaps offer opportunities for reduction in the number of squares.
Consider all possible permutations of the filling order of the shapes. The shapes drawn first, on the bottom layers, can be (partly) hidden by some others. Process the shapes starting from the top layer. When you process a shape to associate every pixel with the largest uniform square that contains it, treat all covered pixels as don't care.
In the given example, fill the green squares first; then when filling the red square, the green pixels can be considered red or not, depending on convenience.
If you cannot try all permutations, then try them at random. Heuristic approaches such as genetic algorithms or simulated annealing could help. Nothing straightforward here.
It would be hard to guarantee an optimal solution. The brute force search would be huge. This calls for a heuristic.
Start at the edges. Walking the outside edge, find the most frequent color. Draw squares
to fill the background.
Iterate, working inwards drawing smaller and smaller squares which cover the most
pixels which are the wrong color. Ending with single-pixel squares.
Working inwards means to reduce the size of the bounding box, outside
of which all pixels are the correct color. At each step, the upper limit on the size of a square would be fitting in the bounding box. Choose the squares which give the best score.
Score is based on old vs new color being wrong or right, so there are 4 possible values for each pixel. One example function for per-pixel score would be:
wrong -> wrong: 0
wrong -> right: 1
right -> right: 1
right -> wrong: -2
I think that if you always reduce the number of wrong squares on the edge of the bounding box and never increase the size of the square, then the algorithm must halt with a solution without needing to backtrack. A backtracking solution could probably do better.
An "erosion-based" heuristic.
Consider all outline pixels, i.e. having at least a neighbor outside the shape.
Among these pixels, choose a color (the most frequent one ?).
For all outline pixels of this color, compute the largest square that does not exceed the shape.
Fill these squares, from larger to smaller, until the complete outline is covered.
Remove the correctly filled pixels and restart the procedure on the eroded shape.
In the case of the red square, all outline pixels will be covered by the red square itself, and the first filling will "consume" the whole area.
Then, removing the pixels covered in red, the two green square will remain.
All green outline pixels will now be covered by the two green squares, and the two first fillings will "consume" all green area.
I'm not sure if there's an algorithm that can solve this.
A given number of rectangles are placed side by side horizontally from left to right to form a shape. You are given the width and height of each.
How would you determine the minimum number of rectangles needed to cover the whole shape?
i.e How would you redraw this shape using as few rectangles as possible?
I've can only think about trying to squeeze as many big rectangles as i can but that seems inefficient.
Any ideas?
Edit:
You are given a number n , and then n sizes:
2
1 3
2 5
The above would have two rectangles of sizes 1x3 and 2x5 next to each other.
I'm wondering how many rectangles would i least need to recreate that shape given rectangles cannot overlap.
Since your rectangles are well aligned, it makes the problem easier. You can simply create rectangles from the bottom up. Each time you do that, it creates new shapes to check. The good thing is, all your new shapes will also be base-aligned, and you can just repeat as necessary.
First, you want to find the minimum height rectangle. Make a rectangle that height, with the width as total width for the shape. Cut that much off the bottom of the shape.
You'll be left with multiple shapes. For each one, do the same thing.
Finding the minimum height rectangle should be O(n). Since you do that for each group, worst case is all different heights. Totals out to O(n2).
For example:
In the image, the minimum for each shape is highlighted green. The resulting rectangle is blue, to the right. The total number of rectangles needed is the total number of blue ones in the image, 7.
Note that I'm explaining this as if these were physical rectangles. In code, you can completely do away with the width, since it doesn't matter in the least unless you want to output the rectangles rather than just counting how many it takes.
You can also reduce the "make a rectangle and cut it from the shape" to simply subtracting the height from each rectangle that makes up that shape/subshape. Each contiguous section of shapes with +ve height after doing so will make up a new subshape.
If you look for an overview on algorithms for the general problem, Rectangular Decomposition of Binary Images (article by Tomas Suk, Cyril Höschl, and Jan Flusser) might be helpful. It compares different approaches: row methods, quadtree, largest inscribed block, transformation- and graph-based methods.
A juicy figure (from page 11) as an appetizer:
Figure 5: (a) The binary convolution kernel used in the experiment. (b) Its 10 blocks of GBD decomposition.
I'm trying to workout how to efficiently calculate the layout of a dynamic/random view.
The view will contain a number of circles. Each circle has a predetermined size. These sizes are all between a given maximum and minimum size.
I'm trying to find an efficient way of laying out the circles within a rect with a couple of conditions.
The circles mustn't overlap with the edge of the rect and the circles must have a minimum "spacing" between them.
The first method I came up with is to randomly generate coordinate pairs and place the biggest circle. Then randomly generate more coordinate pairs until a suitable one is generated for the next circle. And the next, and the next, and so on until all are drawn.
The problems with this are that it could potentially take a long time to complete. Each subsequent circle will take longer to place as there are fewer places that it can go.
Another problem is that it could be impossible to layout the view.
I'm sure there must be more efficient ways of doing this but I'm not sure where to begin.
The Formula must deal between the smallest possible square they need or from a other point of view, with an arrangement with the smallest possible density between the edgepoints. But your problem could be solved by sorting the circles by size and then start with the largest and arrange them step by step to the smallest because the larger are more bulky and the smaller fit easier in small corners by there nature.
Build triangles of circles, where 3 circles have a discribing space they use together. This triangle has 3 corners right? :) so messure/calc the angle of that corners and the corner with the nearest 90degree angle should be placed in a square corner, better to say the three circles should be places mirrored so that the circle with the fittest 90degree corner behind is the one who goes in the corner. If a 4th circle fits into the rest of this triangle, wonderful, if not you place exact this circle in it which is taken minimum outerspace of that triangle. because its not said that the next smaller circle is the one who fit's perfect, which also means you have a stack of not placed circles until one is found who fits better. after you find one you go upwards your circle-stack again and try to fit the next of it in one of the corners or you try to build the next triangle. and here you see how complex this is, damn! http://en.wikipedia.org/wiki/Malfatti_circles
But anyway, the more one of this triangles corners is 90° the less space it would take with this 3 circles in it.
An other concept could be to think about larger circles like space who leftover a triangle in one of its corners in relation to the rectangle. This triangle has a maximum space availible for a smaller circle. If there is no perfectly fitting circle your taken square-space grows up. So as far as i think about to handle this problem with imagined triangles to compare with fitting circles in it or taking triangle ranges from the square is the solutions base.
I am tyring to cover a simple concave polygon with a minimum rectangles. My rectangles can be any length, but they have maximum widths, and the polygon will never have an acute angle.
I thought about trying to decompose my concave polygon into triangles that produce a set of minimumally overlapping rectangles minimally bounding each triangle and then merging those rectangles into larger ones. However, I don't think this will work for small notches in the edges of the polygon. The triangles created by the reflex vertices on those notches will create the wrong rectangles. I am looking for rectangles that will span/ignore notches.
I don't really know anything about computational geometry, so I'm not really sure on how to begin asking the question.
I found other posts that were similar, but not what I need:
split polygon into minimum amount of rectangles and triangles
Covering an arbitrary polygon with minimum number of squares
Find $k$ rectangles so that they cover the maximum number of points
Algorithm for finding the fewest rectangles to cover a set of rectangles
Some examples: Black is the input. Red is the acceptable output.
Another exmaple: The second output is prefered. However, generating both outputs and using another factor to determine preference is probably necessary and not the responsibility of this algorithm.
Polygons that mimic curves are extremely rare. In this scenario much of the area of the rectangles is wasted. However, this is acceptable because each rectangle obeys the max width constraint.
Also, I found this article to be close to what I need:
Covering with rectangular pieces by Paul Iacob, Daniela Marinescu, and Cristina Luca
Maybe a better question is "How can I identify rectangular-like portions of a concave polygon?"
Here is an image showing the desired implementation:
The green is the actual material usage. The red rectangles are the layouts. The blue is the MBR of the entire polygon. I am thinking I should try to get little MBRs and fill them in. The 2-3 green rectangles in the upper left corner that terminate into the middle of the polygon are expensive. That is what I want to minimize. The green rectangles have a min and max width and height, but I can use as many rows and columns necessary to cover a region. Again, I must minimize the number of rectangles that do not span across the input. I can also modify the shape of the green rectangle to fit in small places that is also very expensive. In other words, getting as many rectangles as possible to span as much as possible is ideal.
Maybe I should simply be trying to identify rectangular regions like this:
Or, perhaps a better approach would be using largest-inscribed rectangles instead of MBRs. I could continually cut my polygon down using rectangles until I am left with regions were the largest-inscribed rectangle is not sharing an edge with the original polygon. The remaining regions would have to be handled with a heuristic approach.
I've been working with the engineering and manufacturing departments at my company to bring more clarificaiton to this problem. I am still waiting to confirm, but I am now thinking an algorithm that would return sets of largest inscribed rectangles would work. While it does not completely cover the shape, it would give preference to the orthognal regions while leaving the non-orthogonal regions to some heuristics. The only trick is to maxamize those orthogonal regions.
I am interested in using shapes like these:
Usually a tangram is made of 7 shapes(5 triangles, 1 square and 1 parallelogram).
What I want to do is fill a shape only with tangram shapes, so at this point,
the size and repetition of shapes shouldn't matter.
Here's something I manually tried:
I am a bit lost on how to approach this.
Assuming I have a path (an ordered list/array of points of the outline),
I imagine I should try to do some sort of triangulation.
Is there such a thing as Deulanay triangulation with triangles constrained to 45 degrees
right angled triangles ?
A more 'brute' approach would be to add a bunch of triangles(45 degrees) and use SAT
for collision detection to 'fix' overlaps, and hopefully gaps will be avoided.
Since the square and parallelogram can be made of triangles(45 degrees) too, I imagine there
would be a nice clean geometric solution, right ?
How do I pack triangles(45 degrees) inside an arbitrary shape ?
Any ideas are welcome.
A few random thoughts (maybe they help you find a better solution) if you're using only the original sizes of the shapes:
as you point out, all shapes in the tangram can be made composed of e.g. the yellow or pink triangle (d-g-c), so try also thinking of a bottom-up approach such as first trying to place as many yellow triangles into your shape and then combine them into larger shapes if possible. In the worst case, you'll end up with a set of these smallest triangles.
any kind triangulation of non-polygons (such as the half-moon in your example) probably does not work very well...
It looks like you require that the shapes can only have a few discrete orientations. To find the best fit of these triangles into the given shape, I'd propose the following approximate solution: draw a grid of triangles (i.e. a square grid with diagonal lines) across the shape and take those triangles which are fully contained. This most likely will not give you the optimal coverage but then you could repeatedly shift the grid by a tenth of the grid size in horizontal and vertical direction and see whether you'll find something which covers a larger fraction of the original shape (or you could go in steps of 1/2 then 1/4 etc. of the original grid size in the spirit of a binary search).
If you allow any arbitrary scaling of the shapes you could approximate any (reasonably smooth ?) shape to arbitrary precision by adding smaller and smaller shapes. E.g. if you have a raster image, you can e.g. choose the size of the yellow triangle such that two of them make a pixel on the image and then you can represent any such raster image.