Given positive numbers N, K, D (1<= N <= 10^5, 1<=K<=N, 1<=D<=9). How many numbers with N digits are there, that have K consecutive digits D? Write the answer mod (10^9 + 7).
For example: N = 4, K = 3, D = 6, there are 18 numbers:
1666, 2666, 3666, 4666, 5666, 6660,
6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 7666, 8666 and 9666.
Can we calculate the answer in O(N*K) (maybe dynamic programming)?
I've tried using combination.
If
N = 4, K = 3, D = 6. The number I have to find is abcd.
+) if (a = b = c = D), I choose digit for d. There are 10 ways (6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669)
+) if (b = c = d = D), I choose digit for a (a > 0). There are 9 ways (1666, 2666, 3666, 4666, 5666, 6666, 7666, 8666, 9666)
But in two cases, the number 6666 is counted twice. N and K is very large, how can I count all of them?
If one is looking for a mathematical solution (vs. necessarily an algorithmic one) it's good to look at it in terms of the base cases and some formulas. They might turn out to be something you can do some kind of refactoring and get a tidy formula for. So just for the heck of it...here's a take on it that doesn't deal with the special treatment of zeros. Because that throws some wrenches in.
Let's look at a couple of base cases, and call our answer F(N,K) (not considering D, as it isn't relevant to account for; but taking it as a parameter anyway.):
when N = 0
You'll never find any length sequences of digits when there's no digit.
F(0, K) = 0 for any K.
when N = 1
Fairly obvious. If you're looking for K sequential digits in a single digit, the options are limited. Looking for more than one? No dice.
F(1, K) = 0 for any K > 1
Looking for exactly one? Okay, there's one.
F(1, 1) = 1
Sequences of zero sequential digits allowed? Then all ten digits are fine.
F(1, 0) = 10
for N > 1
when K = 0
Basically, all N-digit numbers will qualify. So the number of possibilities meeting the bar is 10^N. (e.g. when N is 3 then 000, 001, 002, ... 999 for any D)
F(N, 0) = 10^N for any N > 1
when K = 1
Possibilities meeting the condition is any number with at least one D in it. How many N-digit numbers are there which contain at least one digit D? Well, it's going to be 10^N minus all the numbers that have no instances of the digit D. 10^N - 9^N
F(N, 1) = 10^N - 9^N for any N > 1
when N < K
No way to get K sequential digits if N is less than K
F(N, K) = 0 when N < K
when N = K
Only one possible way to get K sequential digits in N digits.
F(N, K) = 1 when N = K
when N > K
Okay, we already know that N > 1 and K > 1. So this is going to be the workhorse where we hope to use subexpressions for things we've already solved.
Let's start by considering popping off the digit at the head, leaving N-1 digits on the tail. If that N-1 series could achieve a series of K digits all by itself, then adding another digit will not change anything about that. That gives us a term 10 * F(N-1, K)
But if our head digit is a D, that is special. Our cases will be:
It might be the missing key for a series that started with K-1 instances of D, creating a full range of K.
It might complete a range of K-1 instances of D, but on a case that already had a K series of adjacent D (that we thus accounted for in the above term)
It might not help at all.
So let's consider two separate categories of tail series: those that start with K-1 instances of D and those that do not. Let's say we have N=7 shown as D:DDDXYZ and with K=4. We subtract one from N and from K to get 6 and 3, and if we subtract them we get how many trailing any-digits (XYZ here) are allowed to vary. Our term for the union of (1) and (2) to add in is 10^((N-1)-(K-1)).
Now it's time for some subtraction for our double-counts. We haven't double counted any cases that didn't start with K-1 instances of D, so we keep our attention on that (DDDXYZ). If the value in the X slot is a D then it was definitely double counted. We can subtract out the term for that as 10^(((N - 1) - 1) - (K - 1)); in this case giving us all the pairings of YZ digits you can get with X as D. (100).
The last thing to get rid of are the cases where X is not a D, but in whatever that leftover after the X position there was still a K length series of D. Again we reuse our function, and subtract a term 9 * F(N - K, K, D).
Paste it all together and simplify a couple of terms you get:
F(N, K) = 10 * F(N-1,K,D) + 10^(N-K) - 10^(10,N-K-1) - 9 * F(N-K-1,K,D)
Now we have a nice functional definition suitable for Haskelling or whatever. But I'm still awkward with that, and it's easy enough to test in C++. So here it is (assuming availability of a long integer power function):
long F(int N, int K, int D) {
if (N == 0) return 0;
if (K > N) return 0;
if (K == N) return 1;
if (N == 1) {
if (K == 0) return 10;
if (K == 1) return 1;
return 0;
}
if (K == 0)
return power(10, N);
if (K == 1)
return power(10, N) - power(9, N);
return (
10 * F(N - 1, K, D)
+ power(10, N - K)
- power(10, N - K - 1)
- 9 * F(N - K - 1, K, D)
);
}
To double-check this against an exhaustive generator, here's a little C++ test program that builds the list of vectors that it scans using std::search_n. It checks the slow way against the fast way for N and K. I ran it from 0 to 9 for each:
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
// http://stackoverflow.com/a/1505791/211160
long power(int x, int p) {
if (p == 0) return 1;
if (p == 1) return x;
long tmp = power(x, p/2);
if (p%2 == 0) return tmp * tmp;
else return x * tmp * tmp;
}
long F(int N, int K, int D) {
if (N == 0) return 0;
if (K > N) return 0;
if (K == N) return 1;
if (N == 1) {
if (K == 0) return 10;
if (K == 1) return 1;
return 0;
}
if (K == 0)
return power(10, N);
if (K == 1)
return power(10, N) - power(9, N);
return (
10 * F(N - 1, K, D)
+ power(10, N - K)
- power(10, N - K - 1)
- 9 * F(N - K - 1, K, D)
);
}
long FSlowCore(int N, int K, int D, vector<int> & digits) {
if (N == 0) {
if (search_n(digits.begin(), digits.end(), K, D) != end(digits)) {
return 1;
} else
return 0;
}
long total = 0;
digits.push_back(0);
for (int curDigit = 0; curDigit <= 9; curDigit++) {
total += FSlowCore(N - 1, K, D, digits);
digits.back()++;
}
digits.pop_back();
return total;
}
long FSlow(int N, int K, int D) {
vector<int> digits;
return FSlowCore(N, K, D, digits);
}
bool TestF(int N, int K, int D) {
long slow = FSlow(N, K, D);
long fast = F(N, K, D);
cout << "when N = " << N
<< " and K = " << K
<< " and D = " << D << ":\n";
cout << "Fast way gives " << fast << "\n";
cout << "Slow way gives " << slow << "\n";
cout << "\n";
return slow == fast;
}
int main() {
for (int N = 0; N < 10; N++) {
for (int K = 0; K < 10; K++) {
if (!TestF(N, K, 6)) {
exit(1);
}
}
}
}
Of course, since it counts leading zeros it will be different from the answers you got. See the test output here in this gist.
Modifying to account for the special-case zero handling is left as an exercise for the reader (as is modular arithmetic). Eliminating the zeros make it messier. Either way, this may be an avenue of attack for reducing the number of math operations even further with some transformations...perhaps.
Miquel is almost correct, but he missed a lot of cases. So, with N = 8, K = 5, and D = 6, we will need to look for those numbers that has the form:
66666xxx
y66666xx
xy66666x
xxy66666
with additional condition that y cannot be D.
So we can have our formula for this example:
66666xxx = 10^3
y66666xx = 8*10^2 // As 0 can also not be the first number
xy66666x = 9*9*10
xxy66666 = 9*10*9
So, the result is 3420.
For case N = 4, K = 3 and D = 6, we have
666x = 10
y666 = 8//Again, 0 is not counted!
So, we have 18 cases!
Note: We need to be careful that the first number cannot be 0! And we need to handle the case when D is zero too!
Update Java working code, Time complexity O(N-K)
static long cal(int n, int k, int d) {
long Mod = 1000000007;
long result = 0;
for (int i = 0; i <= n - k; i++) {//For all starting positions
if (i != 0 || d != 0) {
int left = n - k;
int upper_half = i;//Amount of digit that preceding DDD
int lower_half = n - k - i;//Amount of digit following DDD
long tmp = 1;
if (upper_half == 1) {
if (d == 0) {
tmp = 9;
} else {
tmp = 8;
}
}else if(upper_half >= 2){
//The pattern is x..yDDD...
tmp = (long) (9 * 9 * Math.pow(10, upper_half - 2));
}
tmp *= Math.pow(10, lower_half);
//System.out.println(tmp + " " + upper_half + " " + lower_half);
result += tmp;
result %= Mod;
}
}
return result;
}
Sample Tests:
N = 8, K = 5, D = 6
Output
3420
N = 4, K = 3, D = 6
Output
18
N = 4, K = 3, D = 0
Output
9
Related
This is the link to this algorithm topic: https://codeforces.com/problemset/problem/615/D
my code time limit exceeded on test40, I thought for a long time but no good way, is there a good optimization method, may be ?
mycode:
typedef long long ll;
ll mod = 1e9 + 7;
ll fast_mod(ll a, ll n, ll Mod)
{
ll ans=1;
a%=Mod;
while(n)
{
if(n&1) ans=(ans*a)%Mod;
a=(a*a)%Mod;
n>>=1;
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0); // IO
ll m;
cin >> m;
ll num = 1ll;
map<ll, ll> count;
for(int i = 0; i < m; i++)
{
ll p;
cin >> p;
count[p]++;
}
ll res = 1ll;
vector<ll> a;
vector<ll> b;
for(auto it = count.begin(); it != count.end(); it++)
{
a.push_back(it -> first);
b.push_back(it -> second);
}
for(int i = 0; i < a.size(); i++)
{
ll x = a[i]; // a kind of prime
ll y = b[i]; // the count of the prime
ll tmp = fast_mod(x, y * (y + 1) / 2, mod); // x^1 * x^2 * x^3 *...*x^y
for(int j = 0; j < b.size(); j++) // calculate ( tmp)^((b[0] + 1)*(b[1] + 1)*...*(b[b.size() - 1] + 1)), here b.size() is the number of different primes
tmp = fast_mod(tmp, i != j ? (b[j] + 1) : 1, mod) % mod;
res = (res * tmp % mod);
}
cout << res << endl;
return 0;
}
Find the number of each different prime number, suppose x is one of the different prime number, then calculate x^1x^2...x^y, y is the count of x, the result as tmp.Then the product of count of
other prime plus one as the exponent: (b[0] + 1)(b[1] +1)...(b[b.size() - 1] + 1), tmp as base.
The for loop divide the calculation into several steps.
Last, res * (tmp^ ((b[0] + 1)(b[1] +1)...*(b[b.size() - 1] + 1)))
An other formula for the product of the divisors of N is N ** (D/ 2), where D is the number of divisors and may be found from your map count by taking the product of entry->second + 1 for every entry.
This does raise the question of what to do when D is odd, which it would be if N is a perfect square. In that case it is easy to compute sqrt(N) (the exponents would all be even, so you can halve them all and take the product of the primes to half of their original exponents), and then raise sqrt(N) to the power of D. Essentially this changes N ** (D / 2) into (N ** (1 / 2)) ** D.
For example if N = 2 * 3 * 2 = 12 (one of the examples), then D will be (2 + 1) * (1 + 1) = 6 and the product of divisors will be 12 ** (6 / 2) = 1728.
Computing N (or its square root) should done modulo mod. Computing D should be done modulo mod - 1 (the totient of mod, mod is a prime so its totient is just one less). mod - 1 is even, so we could not have computed the modular multiplicative inverse of 2 to "divide" D by 2 that way. When N is a square then AFAIK we're really stuck with computing its square root (that's not so bad, but multiplying by a half would have been easier).
I want to count the number of ways we can partition the number n, into k distinct parts where each part is not larger than m.
For k := 2 i have following algorithm:
public int calcIntegerPartition(int n, int k, int m) {
int cnt=0;
for(int i=1; i <= m;i++){
for(int j=i+1; j <= m; j++){
if(i+j == n){
cnt++;
break;
}
}
}
return cnt;
}
But how can i count integer partitions with k > 2? Usually I have n > 100000, k := 40, m < 10000.
Thank you in advance.
Let's start by choosing the k largest legal numbers: m, m-1, m-2, ..., m-(k-1). This adds up to k*m - k(k-1)/2. If m < k, there are no solutions because the smallest partition would be <= 0. Let's assume m >= k.
Let's say p = (km - k(k-1)/2) - n.
If p < 0, there are no solutions because the largest number we can make is less than n. Let's assume p >= 0. Note that if p = 0 there is exactly one solution, so let's assume p > 0.
Now, imagine we start by choosing the k largest distinct legal integers, and we then correct this to get a solution. Our correction involves moving values to the left (on the number line) 1 slot, into empty slots, exactly p times. How many ways can we do this?
The smallest value to start with is m-(k-1), and it can move as far down as 1, so up to m-k times. After this, each successive value can move up to its predecessor's move.
Now the problem is, how many nonincreasing integer sequences with a max value of m-k sum to p? This is the partition problem. I.e., how many ways can we partition p (into at most k partitions). This is no closed-form solution to this.
Someone has already written up a nice answer of this problem here (which will need slight modification to meet your restrictions):
Is there an efficient algorithm for integer partitioning with restricted number of parts?
As #Dave alludes to, there is already a really nice answer to the simple restricted integer case (found here (same link as #Dave): Is there an efficient algorithm for integer partitioning with restricted number of parts?).
Below is a variant in C++ which takes into account the maximum value of each restricted part. First, here is the workhorse:
#include <vector>
#include <algorithm>
#include <iostream>
int width;
int blockSize;
static std::vector<double> memoize;
double pStdCap(int n, int m, int myMax) {
if (myMax * m < n || n < m) return 0;
if (myMax * m == n || n <= m + 1) return 1;
if (m < 2) return m;
const int block = myMax * blockSize + (n - m) * width + m - 2;
if (memoize[block]) return memoize[block];
int niter = n / m;
if (m == 2) {
if (myMax * 2 >= n) {
myMax = std::min(myMax, n - 1);
return niter - (n - 1 - myMax);
} else {
return 0;
}
}
double count = 0;
for (; niter--; n -= m, --myMax) {
count += (memoize[myMax * blockSize + (n - m) * width + m - 3] = pStdCap(n - 1, m - 1, myMax));
}
return count;
}
As you can see pStdCap is very similar to the linked solution. The one noticeable difference are the 2 additional checks at the top:
if (myMax * m < n || n < m) return 0;
if (myMax * m == n || n <= m + 1) return 1;
And here is the function that sets up the recursion:
double CountPartLenCap(int n, int m, int myMax) {
if (myMax * m < n || n < m) return 0;
if (myMax * m == n || n <= m + 1) return 1;
if (m < 2) return m;
if (m == 2) {
if (myMax * 2 >= n) {
myMax = std::min(myMax, n - 1);
return n / m - (n - 1 - myMax);
} else {
return 0;
}
}
width = m;
blockSize = m * (n - m + 1);
memoize = std::vector<double>((myMax + 1) * blockSize, 0.0);
return pStdCap(n, m, myMax);
}
Explanation of the parameters:
n is the integer that you are partitioning
m is the length of each partition
myMax is the maximum value that can appear in a given partition. (the OP refers to this as the threshold)
Here is a live demonstration https://ideone.com/c3WohV
And here is a non memoized version of pStdCap which is a bit easier to understand. This is originally found in this answer to Is there an efficient way to generate N random integers in a range that have a given sum or average?
int pNonMemoStdCap(int n, int m, int myMax) {
if (myMax * m < n) return 0;
if (myMax * m == n) return 1;
if (m < 2) return m;
if (n < m) return 0;
if (n <= m + 1) return 1;
int niter = n / m;
int count = 0;
for (; niter--; n -= m, --myMax) {
count += pNonMemoStdCap(n - 1, m - 1, myMax);
}
return count;
}
If you actually intend to calculate the number of partitions for numbers as large as 10000, you are going to need a big int library as CountPartLenCap(10000, 40, 300) > 3.2e37 (Based off the OP's requirement).
Farey sequence of order n is the sequence of completely reduced fractions, between 0 and 1 which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. Detailed explanation here.
Problem
The problem is, given n and k, where n = order of seq and k = element index, can we find the particular element from the sequence. For examples answer for (n=5, k =6) is 1/2.
Lead
There are many less than optimal solution available, but am looking for a near-optimal one. One such algorithm is discussed here, for which I am unable to understand the logic hence unable to apply the examples.
Question
Can some please explain the solution with more detail, preferably with an example.
Thank you.
I've read the method provided in your link, and the accepted C++ solution to it. Let me post them, for reference:
Editorial Explanation
Several less-than-optimal solutions exist. Using a priority queue, one
can iterate through the fractions (generating them one by one) in O(K
log N) time. Using a fancier math relation, this can be reduced to
O(K). However, neither of these solution obtains many points, because
the number of fractions (and thus K) is quadratic in N.
The “good” solution is based on meta-binary search. To construct this
solution, we need the following subroutine: given a fraction A/B
(which is not necessarily irreducible), find how many fractions from
the Farey sequence are less than this fraction. Suppose we had this
subroutine; then the algorithm works as follows:
Determine a number X such that the answer is between X/N and (X+1)/N; such a number can be determined by binary searching the range
1...N, thus calling the subroutine O(log N) times.
Make a list of all fractions A/B in the range X/N...(X+1)/N. For any given B, there is at most one A in this range, and it can be
determined trivially in O(1).
Determine the appropriate order statistic in this list (doing this in O(N log N) by sorting is good enough).
It remains to show how we can construct the desired subroutine. We
will show how it can be implemented in O(N log N), thus giving a O(N
log^2 N) algorithm overall. Let us denote by C[j] the number of
irreducible fractions i/j which are less than X/N. The algorithm is
based on the following observation: C[j] = floor(X*B/N) – Sum(C[D],
where D divides j). A direct implementation, which tests whether any D
is a divisor, yields a quadratic algorithm. A better approach,
inspired by Eratosthene’s sieve, is the following: at step j, we know
C[j], and we subtract it from all multiples of j. The running time of
the subroutine becomes O(N log N).
Relevant Code
#include <cassert>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <vector>
using namespace std;
const int kMaxN = 2e5;
typedef int int32;
typedef long long int64_x;
// #define int __int128_t
// #define int64 __int128_t
typedef long long int64;
int64 count_less(int a, int n) {
vector<int> counter(n + 1, 0);
for (int i = 2; i <= n; i += 1) {
counter[i] = min(1LL * (i - 1), 1LL * i * a / n);
}
int64 result = 0;
for (int i = 2; i <= n; i += 1) {
for (int j = 2 * i; j <= n; j += i) {
counter[j] -= counter[i];
}
result += counter[i];
}
return result;
}
int32 main() {
// ifstream cin("farey.in");
// ofstream cout("farey.out");
int64_x n, k; cin >> n >> k;
assert(1 <= n);
assert(n <= kMaxN);
assert(1 <= k);
assert(k <= count_less(n, n));
int up = 0;
for (int p = 29; p >= 0; p -= 1) {
if ((1 << p) + up > n)
continue;
if (count_less((1 << p) + up, n) < k) {
up += (1 << p);
}
}
k -= count_less(up, n);
vector<pair<int, int>> elements;
for (int i = 1; i <= n; i += 1) {
int b = i;
// find a such that up/n < a / b and a / b <= (up+1) / n
int a = 1LL * (up + 1) * b / n;
if (1LL * up * b < 1LL * a * n) {
} else {
continue;
}
if (1LL * a * n <= 1LL * (up + 1) * b) {
} else {
continue;
}
if (__gcd(a, b) != 1) {
continue;
}
elements.push_back({a, b});
}
sort(elements.begin(), elements.end(),
[](const pair<int, int>& lhs, const pair<int, int>& rhs) -> bool {
return 1LL * lhs.first * rhs.second < 1LL * rhs.first * lhs.second;
});
cout << (int64_x)elements[k - 1].first << ' ' << (int64_x)elements[k - 1].second << '\n';
return 0;
}
Basic Methodology
The above editorial explanation results in the following simplified version. Let me start with an example.
Let's say, we want to find 7th element of Farey Sequence with N = 5.
We start with writing a subroutine, as said in the explanation, that gives us the "k" value (how many Farey Sequence reduced fractions there exist before a given fraction - the given number may or may not be reduced)
So, take your F5 sequence:
k = 0, 0/1
k = 1, 1/5
k = 2, 1/4
k = 3, 1/3
k = 4, 2/5
k = 5, 1/2
k = 6, 3/5
k = 7, 2/3
k = 8, 3/4
k = 9, 4/5
k = 10, 1/1
If we can find a function that finds the count of the previous reduced fractions in Farey Sequence, we can do the following:
int64 k_count_2 = count_less(2, 5); // result = 4
int64 k_count_3 = count_less(3, 5); // result = 6
int64 k_count_4 = count_less(4, 5); // result = 9
This function is written in the accepted solution. It uses the exact methodology explained in the last paragraph of the editorial.
As you can see, the count_less() function generates the same k values as in our hand written list.
We know the values of the reduced fractions for k = 4, 6, 9 using that function. What about k = 7? As explained in the editorial, we will list all the reduced fractions in range X/N and (X+1)/N, here X = 3 and N = 5.
Using the function in the accepted solution (its near bottom), we list and sort the reduced fractions.
After that we will rearrange our k values, as in to fit in our new array as such:
k = -, 0/1
k = -, 1/5
k = -, 1/4
k = -, 1/3
k = -, 2/5
k = -, 1/2
k = -, 3/5 <-|
k = 0, 2/3 | We list and sort the possible reduced fractions
k = 1, 3/4 | in between these numbers
k = -, 4/5 <-|
k = -, 1/1
(That's why there is this piece of code: k -= count_less(up, n);, it basically remaps the k values)
(And we also subtract one more during indexing, i.e.: cout << (int64_x)elements[k - 1].first << ' ' << (int64_x)elements[k - 1].second << '\n';. This is just to basically call the right position in the generated array.)
So, for our new re-mapped k values, for N = 5 and k = 7 (original k), our result is 2/3.
(We select the value k = 0, in our new map)
If you compile and run the accepted solution, it will give you this:
Input: 5 7 (Enter)
Output: 2 3
I believe this is the basic point of the editorial and accepted solution.
Following is a question from hackerearth.
here's the link to the problem
problem!
I coded its solution in java and c but got time limit exceeded for some test cases on submission. No participant was able to solve this for all test cases. What is the most efficient solution for this?
QUESTION:
Bob likes DSD Numbers. DSD Number is a number which is divisible by its
Digit Sum in Decimal Representation.
digitSum(n) : Sum of digits of n (in Decimal Representation)
eg: n = 1234 then digitSum(n) = 1 + 2 + 3 + 4 = 10
DSD Number is number n such that n % digitSum(n) equal to 0
Bob asked Alice to tell the number of DSD Numbers in range [L,R]
inclusive.
Constraints:
1 <= test cases <= 50
1<=L<=R<=10^9
Sample Input
4
2 5
1 10
20 45
1 100
Sample Output
4
10
9
33
Code in Java:
class DSD {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out=new PrintWriter(System.out);
int t=Integer.parseInt(br.readLine());
while(t-->0){
StringTokenizer st=new StringTokenizer(br.readLine());
int L=Integer.parseInt(st.nextToken());
int R=Integer.parseInt(st.nextToken());
int count=0,sum=0,i=L,j=0;
while(i>0){
sum+=i%10;
i=i/10;
}
if(L%sum==0)
count++;
for(i=L+1;i<=R;i++){
if(i%10!=0){
sum+=1;
}
else
{
j=i;
while(j%10==0){
sum-=9;
j/=10;
}
sum+=1;
}
if(i%sum==0)
count++;
}
out.println(count);
}
out.close();
}
}
We can solve this problem by using dynamic programming.
Observation:
There will be maximum 10 digits for each number, so the maximum sum of digit for each number will be less than 100.
So, assuming that we know the sum of digit for one number, by processing digit by digit, we have four things to check:
Whether the current number is larger than the lower bound.
Whether the current number is smaller than the upper bound.
What is the mod of current number with its sum.
What is the current sum of all digits.
We come up with this function int count(int digit, boolean larger, boolean smaller, int left, int mod), and then, the dp state: dp[digit][larger][smaller][left][mod].
For each test case, time complexity is number of possible sum^3 x number of digit = 100^3*10 = 10^7.
There is 50 test cases -> 50*10^7 = 5*10^8 operations, which still be in the time limit.
Java code:
static int[][][][][] dp;
static int[][][][][] check;
static int cur = 0;
public static void main(String[] args) throws FileNotFoundException {
// PrintWriter out = new PrintWriter(new FileOutputStream(new File(
// "output.txt")));
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner();
int n = in.nextInt();
dp = new int[11][2][2][82][82];
check = new int[11][2][2][82][82];
for (int i = 0; i < n; i++) {
int l = in.nextInt();
int r = in.nextInt();
String L = "" + l;
String R = "" + r;
while (L.length() < R.length()) {
L = "0" + L;
}
int result = 0;
for (int j = 1; j <= 81; j++) {
cur = cur + 1;
result += count(0, 0, 0, j, 0, j, L, R);
}
out.println(result);
}
out.close();
}
public static int count(int index, int larger, int smaller, int left,
int mod, int sum, String L, String R) {
if (index == L.length()) {
if (left == 0 && mod == 0) {
return 1;
}
return 0;
}
if((L.length() - index) * 9 < left){
return 0;
}
if (check[index][larger][smaller][left][mod] == cur) {
return dp[index][larger][smaller][left][mod];
}
//System.out.println(cur);
check[index][larger][smaller][left][mod] = cur;
int x = L.charAt(index) - '0';
int y = R.charAt(index) - '0';
int result = 0;
for (int i = 0; i < 10 && i <= left; i++) {
if (x > i && larger == 0) {
continue;
}
if (y < i && smaller == 0) {
continue;
}
int nxtLarger = larger;
int nxtSmaller = smaller;
if (x < i) {
nxtLarger = 1;
}
if (y > i) {
nxtSmaller = 1;
}
int nxtMod = (mod * 10 + i) % sum;
result += count(index + 1, nxtLarger, nxtSmaller, left - i, nxtMod,
sum, L, R);
}
return dp[index][larger][smaller][left][mod] = result;
}
Update: I have submitted and passed all the test cases for this problem, (2nd person who solved this) This is the link of my submission
Let f (L, R) = "number of integers L ≤ x ≤ R where x is divisible by the sum of its digits". We define that x = 0 is not counted.
Let g (M) = "number of integers 1 ≤ x < M where x is divisible by the sum of its digits". We have f (L, R) = g (R + 1) - g (L).
Find the largest k ≥ 0 such that 10^k <= M. Find the largest a ≥ 1 such that a * 10^k <= M. All integers < M have at most 9k + (a-1) as sum of digits.
Let h (M, n) = "number of integers 1 ≤ x < M where x is divisible by n, and the sum of digits is n". g (M) is the sum of h (M, n) for 1 ≤ n ≤ 9*k + (a - 1).
Let r (a, k, n) = "number of integers a*10^k ≤ x < (a+1)*10^k where x is divisible by n, and the sum of digits is n". h (M, n) can be calculated by adding values of r (a, k, n) in an obvious way; for example:
h (1,234,000,000, n) = r (0, 9, n) + r (10, 8, n) + r (11, 8, n) + r (120, 7, n) + r (121, 7, n) + r (122, 7, n) + r (1230, 6, n) + r (1231, 6, n) + r (1232, 6, n) + r (1233, 6, n).
Let f (k, n, d, m) = "number of integers 0 ≤ x < 10^k where the sum of digits is d, and x % n = m". We can calculate r (a, k, n) using this function: The last k digits must have a digit sum of n - digitsum (a). If the whole number is divisible by n, then the last k digits must have a remainder of (- a*10^k) % n. So r (a, k, n) = f (k, n, n - digitsum(a), - (a*10^k) % n).
f (k, n, d, m) is trivial if k = 1: Only for the number d is the sum of digits equal to d, so f (1, n, d, m) is 1 if d % n = m, and 0 otherwise.
To calculate f (k+1, n, d, m) we add f (k, n, d-a, (m - a*10^k)%n) for 0 ≤ a ≤ 9. Obviously all the values f (k, n, d, m) must be stored so they are not recalculated again and again.
And that's it. How many operations: If R < 10^r, then numbers have up to 9r digits. We calculate values f (k, n, d, m) for 1 ≤ k ≤ r, for 1 ≤ n ≤ 9r, for 0 ≤ d ≤ 9r, for 0 ≤ m < n. For each of those we add 10 different numbers, so we have less than 10,000 r^4 additions. So numbers up to 10^19 are no problem.
The following approach should take about 10^7 operations per case.
Split numbers into a prefix (n/10000) and a suffix (n%10000). Once you choose a digit sum, only a little data from each of the prefix and suffix are needed to determine if the digit sum divides the number. (This is related to some things gnasher729 said, but I get a much different running time.)
For each possible digit sum d from 1 to 81,
Map prefix p to a pair (p*10000 % d, digit sum(p)).
Tally the counts in a matrix M.
Map each possible suffix s to a pair (s % d, digit sum(s)).
Tally the counts in a matrix N.
For every (a,b),
total += M[a,b] *N[-a%d,d-b]
There are about 81 * (10^5 + 10^4) steps.
The edge cases where a prefix is partially allowed (L/10000, R/10000, and 100000) can be brute-forced in about 20000 steps once.
Interesting problem. Straightforward solution would be to iterate through the numbers from L to R, calculate the sum of digits for each, and check for each whether the number is divisible by the sum of digits.
Calculating the sum of digits can be made faster obviously. The numbers xxx0, xxx1, xxx2, ..., xxx9 have digit sums n, n+1, n+2, ..., n+9. So for ten consecutive numbers almost no effort is needed to calculate the digit sum, just a modulo operation to check for divisibility.
The modulo check can be made faster. Compilers use clever tricks to divide by constants, replacing a slow division with a shift and a multiplication. You can search for how this is done, and since there are only 81 possible divisors, do at runtime what the compiler would do for constants. That should get the time down to few nanoseconds per number.
To do better: I'd make a loop checking for numbers with digit sum 1, digit sum 2, etc. As an example, assume I'm checking numbers with digit sum 17. These numbers must have a digit sum of 17, and also be multiples of 17. I take the numbers from 0000 to 9999 and for each I calculate the sum of digits, and the value modulo 17, and divide them into 37 x 17 sets where all the numbers in the set have the same digit sum and the same value modulo 17 and count the elements in each set.
Then to check the numbers from 0 to 9999: I pick the set where the digit sum is 17, and the value modulo 17 is 0 and take the element count of that set. To check numbers from 10,000 to 19,999: I pick the set where the digit sum is 16, and the value modulo 17 is 13 (because 10013 is divisible by 17), and so on.
That's just the idea. I think with a bit of cleverness that can be extended to a method that takes O (log^4 R) steps to handle all the numbers from L to R.
In the C code below, I have focused on the core portion, i.e. finding the DSD count. The code is admittedly ugly, but that's what you get when coding in a hurry.
The basic observation is that the digit sum can be simplified by tracking the digits of the number individually, reducing the digit sum determination to simple increments/decrements in each step. There are probably clever ways to accelerate the modulo computations, I could not come up with any on the double.
On my machine (Xeon E3 1270 v2, 3.5 GHz) the code below finds the count of DSDs in [1,1e9] in 3.54 seconds. I compiled with MSVC 2010 at optimization level -O2. While you stated a time limit of 1 second in an update to your question, it is not clear that this extreme case is exercised by the framework at the website you mentioned. In any event this will provide a reasonable baseline to compare other proposed solutions against.
#include <stdio.h>
#include <stdlib.h>
/* sum digits in decimal representation of x */
int digitsum (int x)
{
int sum = 0;
while (x) {
sum += x % 10;
x = x / 10;
}
return sum;
}
/* split integer into individual decimal digits. p[0]=ones, p[1]=tens, ... */
void split (int a, int *p)
{
int i = 0;
while (a) {
p[i] = a % 10;
a = a / 10;
i++;
}
}
/* return number of DSDs in [first,last] inclusive. first, last in [1,1e9] */
int count_dsd (int first, int last)
{
int num, ds, count = 0, p[10] = {0};
num = first;
split (num, p);
ds = digitsum (num);
while (p[9] < 10) {
while (p[8] < 10) {
while (p[7] < 10) {
while (p[6] < 10) {
while (p[5] < 10) {
while (p[4] < 10) {
while (p[3] < 10) {
while (p[2] < 10) {
while (p[1] < 10) {
while (p[0] < 10) {
count += ((num % ds) == 0);
if (num == last) {
return count;
}
num++;
p[0]++;
ds++;
}
p[0] = 0;
p[1]++;
ds -= 9;
}
p[1] = 0;
p[2]++;
ds -= 9;
}
p[2] = 0;
p[3]++;
ds -= 9;
}
p[3] = 0;
p[4]++;
ds -= 9;
}
p[4] = 0;
p[5]++;
ds -= 9;
}
p[5] = 0;
p[6]++;
ds -= 9;
}
p[6] = 0;
p[7]++;
ds -= 9;
}
p[7] = 0;
p[8]++;
ds -= 9;
}
p[8] = 0;
p[9]++;
ds -= 9;
}
return count;
}
int main (void)
{
int i, first, last, *count, testcases;
scanf ("%d", &testcases);
count = malloc (testcases * sizeof(count[0]));
if (!count) return EXIT_FAILURE;
for (i = 0; i < testcases; i++) {
scanf ("%d %d", &first, &last);
count[i] = count_dsd (first, last);
}
for (i = 0; i < testcases; i++) {
printf ("%d\n", count[i]);
}
free (count);
return EXIT_SUCCESS;
}
I copied the sample inputs stated in the question into a text file testdata, and when I call the executable like so:
dsd < testdata
the output is as desired:
4
10
9
33
Solution in Java
Implement a program to find out whether a number is divisible by the sum of its digits.
Display appropriate messages.
class DivisibleBySum
{
public static void main(String[] args)
{
// Implement your code here
int num = 123;
int number = num;
int sum=0;
for(;num>0;num /=10)
{
int rem = num % 10;
sum += rem;
}
if(number %sum ==0)
System.out.println(number+" is divisible by sum of its digits");
else
System.out.println(number+" is not divisible by sum of its digits");
}
}
What is the best approach to calculating the largest prime factor of a number?
I'm thinking the most efficient would be the following:
Find lowest prime number that divides cleanly
Check if result of division is prime
If not, find next lowest
Go to 2.
I'm basing this assumption on it being easier to calculate the small prime factors. Is this about right? What other approaches should I look into?
Edit: I've now realised that my approach is futile if there are more than 2 prime factors in play, since step 2 fails when the result is a product of two other primes, therefore a recursive algorithm is needed.
Edit again: And now I've realised that this does still work, because the last found prime number has to be the highest one, therefore any further testing of the non-prime result from step 2 would result in a smaller prime.
Here's the best algorithm I know of (in Python)
def prime_factors(n):
"""Returns all the prime factors of a positive integer"""
factors = []
d = 2
while n > 1:
while n % d == 0:
factors.append(d)
n /= d
d = d + 1
return factors
pfs = prime_factors(1000)
largest_prime_factor = max(pfs) # The largest element in the prime factor list
The above method runs in O(n) in the worst case (when the input is a prime number).
EDIT:
Below is the O(sqrt(n)) version, as suggested in the comment. Here is the code, once more.
def prime_factors(n):
"""Returns all the prime factors of a positive integer"""
factors = []
d = 2
while n > 1:
while n % d == 0:
factors.append(d)
n /= d
d = d + 1
if d*d > n:
if n > 1: factors.append(n)
break
return factors
pfs = prime_factors(1000)
largest_prime_factor = max(pfs) # The largest element in the prime factor list
Actually there are several more efficient ways to find factors of big numbers (for smaller ones trial division works reasonably well).
One method which is very fast if the input number has two factors very close to its square root is known as Fermat factorisation. It makes use of the identity N = (a + b)(a - b) = a^2 - b^2 and is easy to understand and implement. Unfortunately it's not very fast in general.
The best known method for factoring numbers up to 100 digits long is the Quadratic sieve. As a bonus, part of the algorithm is easily done with parallel processing.
Yet another algorithm I've heard of is Pollard's Rho algorithm. It's not as efficient as the Quadratic Sieve in general but seems to be easier to implement.
Once you've decided on how to split a number into two factors, here is the fastest algorithm I can think of to find the largest prime factor of a number:
Create a priority queue which initially stores the number itself. Each iteration, you remove the highest number from the queue, and attempt to split it into two factors (not allowing 1 to be one of those factors, of course). If this step fails, the number is prime and you have your answer! Otherwise you add the two factors into the queue and repeat.
My answer is based on Triptych's, but improves a lot on it. It is based on the fact that beyond 2 and 3, all the prime numbers are of the form 6n-1 or 6n+1.
var largestPrimeFactor;
if(n mod 2 == 0)
{
largestPrimeFactor = 2;
n = n / 2 while(n mod 2 == 0);
}
if(n mod 3 == 0)
{
largestPrimeFactor = 3;
n = n / 3 while(n mod 3 == 0);
}
multOfSix = 6;
while(multOfSix - 1 <= n)
{
if(n mod (multOfSix - 1) == 0)
{
largestPrimeFactor = multOfSix - 1;
n = n / largestPrimeFactor while(n mod largestPrimeFactor == 0);
}
if(n mod (multOfSix + 1) == 0)
{
largestPrimeFactor = multOfSix + 1;
n = n / largestPrimeFactor while(n mod largestPrimeFactor == 0);
}
multOfSix += 6;
}
I recently wrote a blog article explaining how this algorithm works.
I would venture that a method in which there is no need for a test for primality (and no sieve construction) would run faster than one which does use those. If that is the case, this is probably the fastest algorithm here.
JavaScript code:
'option strict';
function largestPrimeFactor(val, divisor = 2) {
let square = (val) => Math.pow(val, 2);
while ((val % divisor) != 0 && square(divisor) <= val) {
divisor++;
}
return square(divisor) <= val
? largestPrimeFactor(val / divisor, divisor)
: val;
}
Usage Example:
let result = largestPrimeFactor(600851475143);
Here is an example of the code:
Similar to #Triptych answer but also different. In this example list or dictionary is not used. Code is written in Ruby
def largest_prime_factor(number)
i = 2
while number > 1
if number % i == 0
number /= i;
else
i += 1
end
end
return i
end
largest_prime_factor(600851475143)
# => 6857
All numbers can be expressed as the product of primes, eg:
102 = 2 x 3 x 17
712 = 2 x 2 x 2 x 89
You can find these by simply starting at 2 and simply continuing to divide until the result isn't a multiple of your number:
712 / 2 = 356 .. 356 / 2 = 178 .. 178 / 2 = 89 .. 89 / 89 = 1
using this method you don't have to actually calculate any primes: they'll all be primes, based on the fact that you've already factorised the number as much as possible with all preceding numbers.
number = 712;
currNum = number; // the value we'll actually be working with
for (currFactor in 2 .. number) {
while (currNum % currFactor == 0) {
// keep on dividing by this number until we can divide no more!
currNum = currNum / currFactor // reduce the currNum
}
if (currNum == 1) return currFactor; // once it hits 1, we're done.
}
//this method skips unnecessary trial divisions and makes
//trial division more feasible for finding large primes
public static void main(String[] args)
{
long n= 1000000000039L; //this is a large prime number
long i = 2L;
int test = 0;
while (n > 1)
{
while (n % i == 0)
{
n /= i;
}
i++;
if(i*i > n && n > 1)
{
System.out.println(n); //prints n if it's prime
test = 1;
break;
}
}
if (test == 0)
System.out.println(i-1); //prints n if it's the largest prime factor
}
The simplest solution is a pair of mutually recursive functions.
The first function generates all the prime numbers:
Start with a list of all natural numbers greater than 1.
Remove all numbers that are not prime. That is, numbers that have no prime factors (other than themselves). See below.
The second function returns the prime factors of a given number n in increasing order.
Take a list of all the primes (see above).
Remove all the numbers that are not factors of n.
The largest prime factor of n is the last number given by the second function.
This algorithm requires a lazy list or a language (or data structure) with call-by-need semantics.
For clarification, here is one (inefficient) implementation of the above in Haskell:
import Control.Monad
-- All the primes
primes = 2 : filter (ap (<=) (head . primeFactors)) [3,5..]
-- Gives the prime factors of its argument
primeFactors = factor primes
where factor [] n = []
factor xs#(p:ps) n =
if p*p > n then [n]
else let (d,r) = divMod n p in
if r == 0 then p : factor xs d
else factor ps n
-- Gives the largest prime factor of its argument
largestFactor = last . primeFactors
Making this faster is just a matter of being more clever about detecting which numbers are prime and/or factors of n, but the algorithm stays the same.
n = abs(number);
result = 1;
if (n mod 2 == 0) {
result = 2;
while (n mod 2 = 0) n /= 2;
}
for(i=3; i<sqrt(n); i+=2) {
if (n mod i == 0) {
result = i;
while (n mod i = 0) n /= i;
}
}
return max(n,result)
There are some modulo tests that are superflous, as n can never be divided by 6 if all factors 2 and 3 have been removed. You could only allow primes for i, which is shown in several other answers here.
You could actually intertwine the sieve of Eratosthenes here:
First create the list of integers up
to sqrt(n).
In the for loop mark all multiples
of i up to the new sqrt(n) as not
prime, and use a while loop instead.
set i to the next prime number in
the list.
Also see this question.
I'm aware this is not a fast solution. Posting as hopefully easier to understand slow solution.
public static long largestPrimeFactor(long n) {
// largest composite factor must be smaller than sqrt
long sqrt = (long)Math.ceil(Math.sqrt((double)n));
long largest = -1;
for(long i = 2; i <= sqrt; i++) {
if(n % i == 0) {
long test = largestPrimeFactor(n/i);
if(test > largest) {
largest = test;
}
}
}
if(largest != -1) {
return largest;
}
// number is prime
return n;
}
Python Iterative approach by removing all prime factors from the number
def primef(n):
if n <= 3:
return n
if n % 2 == 0:
return primef(n/2)
elif n % 3 ==0:
return primef(n/3)
else:
for i in range(5, int((n)**0.5) + 1, 6):
#print i
if n % i == 0:
return primef(n/i)
if n % (i + 2) == 0:
return primef(n/(i+2))
return n
I am using algorithm which continues dividing the number by it's current Prime Factor.
My Solution in python 3 :
def PrimeFactor(n):
m = n
while n%2==0:
n = n//2
if n == 1: # check if only 2 is largest Prime Factor
return 2
i = 3
sqrt = int(m**(0.5)) # loop till square root of number
last = 0 # to store last prime Factor i.e. Largest Prime Factor
while i <= sqrt :
while n%i == 0:
n = n//i # reduce the number by dividing it by it's Prime Factor
last = i
i+=2
if n> last: # the remaining number(n) is also Factor of number
return n
else:
return last
print(PrimeFactor(int(input())))
Input : 10
Output : 5
Input : 600851475143
Output : 6857
Inspired by your question I decided to implement my own version of factorization (and finding largest prime factor) in Python.
Probably the simplest to implement, yet quite efficient, factoring algorithm that I know is Pollard's Rho algorithm. It has a running time of O(N^(1/4)) at most which is much more faster than time of O(N^(1/2)) for trial division algorithm. Both algos have these running times only in case of composite (non-prime) number, that's why primality test should be used to filter out prime (non-factorable) numbers.
I used following algorithms in my code: Fermat Primality Test ..., Pollard's Rho Algorithm ..., Trial Division Algorithm. Fermat primality test is used before running Pollard's Rho in order to filter out prime numbers. Trial Division is used as a fallback because Pollard's Rho in very rare cases may fail to find a factor, especially for some small numbers.
Obviously after fully factorizing a number into sorted list of prime factors the largest prime factor will be the last element in this list. In general case (for any random number) I don't know of any other ways to find out largest prime factor besides fully factorizing a number.
As an example in my code I'm factoring first 190 fractional digits of Pi, code factorizes this number within 1 second, and shows largest prime factor which is 165 digits (545 bits) in size!
Try it online!
def is_fermat_probable_prime(n, *, trials = 32):
# https://en.wikipedia.org/wiki/Fermat_primality_test
import random
if n <= 16:
return n in (2, 3, 5, 7, 11, 13)
for i in range(trials):
if pow(random.randint(2, n - 2), n - 1, n) != 1:
return False
return True
def pollard_rho_factor(N, *, trials = 16):
# https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
import random, math
for j in range(trials):
i, stage, y, x = 0, 2, 1, random.randint(1, N - 2)
while True:
r = math.gcd(N, x - y)
if r != 1:
break
if i == stage:
y = x
stage <<= 1
x = (x * x + 1) % N
i += 1
if r != N:
return [r, N // r]
return [N] # Pollard-Rho failed
def trial_division_factor(n, *, limit = None):
# https://en.wikipedia.org/wiki/Trial_division
fs = []
while n & 1 == 0:
fs.append(2)
n >>= 1
d = 3
while d * d <= n and limit is None or d <= limit:
q, r = divmod(n, d)
if r == 0:
fs.append(d)
n = q
else:
d += 2
if n > 1:
fs.append(n)
return fs
def factor(n):
if n <= 1:
return []
if is_fermat_probable_prime(n):
return [n]
fs = trial_division_factor(n, limit = 1 << 12)
if len(fs) >= 2:
return sorted(fs[:-1] + factor(fs[-1]))
fs = pollard_rho_factor(n)
if len(fs) >= 2:
return sorted([e1 for e0 in fs for e1 in factor(e0)])
return trial_division_factor(n)
def demo():
import time, math
# http://www.math.com/tables/constants/pi.htm
# pi = 3.
# 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679
# 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196
# n = first 190 fractional digits of Pi
n = 1415926535_8979323846_2643383279_5028841971_6939937510_5820974944_5923078164_0628620899_8628034825_3421170679_8214808651_3282306647_0938446095_5058223172_5359408128_4811174502_8410270193_8521105559_6446229489
print('Number:', n)
tb = time.time()
fs = factor(n)
print('All Prime Factors:', fs)
print('Largest Prime Factor:', f'({math.log2(fs[-1]):.02f} bits, {len(str(fs[-1]))} digits)', fs[-1])
print('Time Elapsed:', round(time.time() - tb, 3), 'sec')
if __name__ == '__main__':
demo()
Output:
Number: 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489
All Prime Factors: [3, 71, 1063541, 153422959, 332958319, 122356390229851897378935483485536580757336676443481705501726535578690975860555141829117483263572548187951860901335596150415443615382488933330968669408906073630300473]
Largest Prime Factor: (545.09 bits, 165 digits) 122356390229851897378935483485536580757336676443481705501726535578690975860555141829117483263572548187951860901335596150415443615382488933330968669408906073630300473
Time Elapsed: 0.593 sec
Here is my attempt in c#. The last print out is the largest prime factor of the number. I checked and it works.
namespace Problem_Prime
{
class Program
{
static void Main(string[] args)
{
/*
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
*/
long x = 600851475143;
long y = 2;
while (y < x)
{
if (x % y == 0)
{
// y is a factor of x, but is it prime
if (IsPrime(y))
{
Console.WriteLine(y);
}
x /= y;
}
y++;
}
Console.WriteLine(y);
Console.ReadLine();
}
static bool IsPrime(long number)
{
//check for evenness
if (number % 2 == 0)
{
if (number == 2)
{
return true;
}
return false;
}
//don't need to check past the square root
long max = (long)Math.Sqrt(number);
for (int i = 3; i <= max; i += 2)
{
if ((number % i) == 0)
{
return false;
}
}
return true;
}
}
}
#python implementation
import math
n = 600851475143
i = 2
factors=set([])
while i<math.sqrt(n):
while n%i==0:
n=n/i
factors.add(i)
i+=1
factors.add(n)
largest=max(factors)
print factors
print largest
Calculates the largest prime factor of a number using recursion in C++. The working of the code is explained below:
int getLargestPrime(int number) {
int factor = number; // assumes that the largest prime factor is the number itself
for (int i = 2; (i*i) <= number; i++) { // iterates to the square root of the number till it finds the first(smallest) factor
if (number % i == 0) { // checks if the current number(i) is a factor
factor = max(i, number / i); // stores the larger number among the factors
break; // breaks the loop on when a factor is found
}
}
if (factor == number) // base case of recursion
return number;
return getLargestPrime(factor); // recursively calls itself
}
Here is my approach to quickly calculate the largest prime factor.
It is based on fact that modified x does not contain non-prime factors. To achieve that, we divide x as soon as a factor is found. Then, the only thing left is to return the largest factor. It would be already prime.
The code (Haskell):
f max' x i | i > x = max'
| x `rem` i == 0 = f i (x `div` i) i -- Divide x by its factor
| otherwise = f max' x (i + 1) -- Check for the next possible factor
g x = f 2 x 2
The following C++ algorithm is not the best one, but it works for numbers under a billion and its pretty fast
#include <iostream>
using namespace std;
// ------ is_prime ------
// Determines if the integer accepted is prime or not
bool is_prime(int n){
int i,count=0;
if(n==1 || n==2)
return true;
if(n%2==0)
return false;
for(i=1;i<=n;i++){
if(n%i==0)
count++;
}
if(count==2)
return true;
else
return false;
}
// ------ nextPrime -------
// Finds and returns the next prime number
int nextPrime(int prime){
bool a = false;
while (a == false){
prime++;
if (is_prime(prime))
a = true;
}
return prime;
}
// ----- M A I N ------
int main(){
int value = 13195;
int prime = 2;
bool done = false;
while (done == false){
if (value%prime == 0){
value = value/prime;
if (is_prime(value)){
done = true;
}
} else {
prime = nextPrime(prime);
}
}
cout << "Largest prime factor: " << value << endl;
}
Found this solution on the web by "James Wang"
public static int getLargestPrime( int number) {
if (number <= 1) return -1;
for (int i = number - 1; i > 1; i--) {
if (number % i == 0) {
number = i;
}
}
return number;
}
Prime factor using sieve :
#include <bits/stdc++.h>
using namespace std;
#define N 10001
typedef long long ll;
bool visit[N];
vector<int> prime;
void sieve()
{
memset( visit , 0 , sizeof(visit));
for( int i=2;i<N;i++ )
{
if( visit[i] == 0)
{
prime.push_back(i);
for( int j=i*2; j<N; j=j+i )
{
visit[j] = 1;
}
}
}
}
void sol(long long n, vector<int>&prime)
{
ll ans = n;
for(int i=0; i<prime.size() || prime[i]>n; i++)
{
while(n%prime[i]==0)
{
n=n/prime[i];
ans = prime[i];
}
}
ans = max(ans, n);
cout<<ans<<endl;
}
int main()
{
ll tc, n;
sieve();
cin>>n;
sol(n, prime);
return 0;
}
Guess, there is no immediate way but performing a factorization, as examples above have done, i.e.
in a iteration you identify a "small" factor f of a number N, then continue with the reduced problem "find largest prime factor of N':=N/f with factor candidates >=f ".
From certain size of f the expected search time is less, if you do a primality test on reduced N', which in case confirms, that your N' is already the largest prime factor of initial N.
Here is my attempt in Clojure. Only walking the odds for prime? and the primes for prime factors ie. sieve. Using lazy sequences help producing the values just before they are needed.
(defn prime?
([n]
(let [oddNums (iterate #(+ % 2) 3)]
(prime? n (cons 2 oddNums))))
([n [i & is]]
(let [q (quot n i)
r (mod n i)]
(cond (< n 2) false
(zero? r) false
(> (* i i) n) true
:else (recur n is)))))
(def primes
(let [oddNums (iterate #(+ % 2) 3)]
(lazy-seq (cons 2 (filter prime? oddNums)))))
;; Sieve of Eratosthenes
(defn sieve
([n]
(sieve primes n))
([[i & is :as ps] n]
(let [q (quot n i)
r (mod n i)]
(cond (< n 2) nil
(zero? r) (lazy-seq (cons i (sieve ps q)))
(> (* i i) n) (when (> n 1) (lazy-seq [n]))
:else (recur is n)))))
(defn max-prime-factor [n]
(last (sieve n)))
Recursion in C
Algorithm could be
Check if n is a factor or t
Check if n is prime. If so, remember n
Increment n
Repeat until n > sqrt(t)
Here's an example of a (tail)recursive solution to the problem in C:
#include <stdio.h>
#include <stdbool.h>
bool is_factor(long int t, long int n){
return ( t%n == 0);
}
bool is_prime(long int n0, long int n1, bool acc){
if ( n1 * n1 > n0 || acc < 1 )
return acc;
else
return is_prime(n0, n1+2, acc && (n0%n1 != 0));
}
int gpf(long int t, long int n, long int acc){
if (n * n > t)
return acc;
if (is_factor(t, n)){
if (is_prime(n, 3, true))
return gpf(t, n+2, n);
else
return gpf(t, n+2, acc);
}
else
return gpf(t, n+2, acc);
}
int main(int argc, char ** argv){
printf("%d\n", gpf(600851475143, 3, 0));
return 0;
}
The solution is composed of three functions. One to test if the candidate is a factor, another to test if that factor is prime, and finally one to compose those two together.
Some key ideas here are:
1- Stopping the recursion at sqrt(600851475143)
2- Only test odd numbers for factorness
3- Only testing candidate factors for primeness with odd numbers
It seems to me that step #2 of the algorithm given isn't going to be all that efficient an approach. You have no reasonable expectation that it is prime.
Also, the previous answer suggesting the Sieve of Eratosthenes is utterly wrong. I just wrote two programs to factor 123456789. One was based on the Sieve, one was based on the following:
1) Test = 2
2) Current = Number to test
3) If Current Mod Test = 0 then
3a) Current = Current Div Test
3b) Largest = Test
3c) Goto 3.
4) Inc(Test)
5) If Current < Test goto 4
6) Return Largest
This version was 90x faster than the Sieve.
The thing is, on modern processors the type of operation matters far less than the number of operations, not to mention that the algorithm above can run in cache, the Sieve can't. The Sieve uses a lot of operations striking out all the composite numbers.
Note, also, that my dividing out factors as they are identified reduces the space that must be tested.
Compute a list storing prime numbers first, e.g. 2 3 5 7 11 13 ...
Every time you prime factorize a number, use implementation by Triptych but iterating this list of prime numbers rather than natural integers.
With Java:
For int values:
public static int[] primeFactors(int value) {
int[] a = new int[31];
int i = 0, j;
int num = value;
while (num % 2 == 0) {
a[i++] = 2;
num /= 2;
}
j = 3;
while (j <= Math.sqrt(num) + 1) {
if (num % j == 0) {
a[i++] = j;
num /= j;
} else {
j += 2;
}
}
if (num > 1) {
a[i++] = num;
}
int[] b = Arrays.copyOf(a, i);
return b;
}
For long values:
static long[] getFactors(long value) {
long[] a = new long[63];
int i = 0;
long num = value;
while (num % 2 == 0) {
a[i++] = 2;
num /= 2;
}
long j = 3;
while (j <= Math.sqrt(num) + 1) {
if (num % j == 0) {
a[i++] = j;
num /= j;
} else {
j += 2;
}
}
if (num > 1) {
a[i++] = num;
}
long[] b = Arrays.copyOf(a, i);
return b;
}
This is probably not always faster but more optimistic about that you find a big prime divisor:
N is your number
If it is prime then return(N)
Calculate primes up until Sqrt(N)
Go through the primes in descending order (largest first)
If N is divisible by Prime then Return(Prime)
Edit: In step 3 you can use the Sieve of Eratosthenes or Sieve of Atkins or whatever you like, but by itself the sieve won't find you the biggest prime factor. (Thats why I wouldn't choose SQLMenace's post as an official answer...)
Here is the same function#Triptych provided as a generator, which has also been simplified slightly.
def primes(n):
d = 2
while (n > 1):
while (n%d==0):
yield d
n /= d
d += 1
the max prime can then be found using:
n= 373764623
max(primes(n))
and a list of factors found using:
list(primes(n))
I think it would be good to store somewhere all possible primes smaller then n and just iterate through them to find the biggest divisior. You can get primes from prime-numbers.org.
Of course I assume that your number isn't too big :)
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include <time.h>
factor(long int n)
{
long int i,j;
while(n>=4)
{
if(n%2==0) { n=n/2; i=2; }
else
{ i=3;
j=0;
while(j==0)
{
if(n%i==0)
{j=1;
n=n/i;
}
i=i+2;
}
i-=2;
}
}
return i;
}
void main()
{
clock_t start = clock();
long int n,sp;
clrscr();
printf("enter value of n");
scanf("%ld",&n);
sp=factor(n);
printf("largest prime factor is %ld",sp);
printf("Time elapsed: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC);
getch();
}