Finding kth element in the nth order of Farey Sequence - algorithm

Farey sequence of order n is the sequence of completely reduced fractions, between 0 and 1 which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. Detailed explanation here.
Problem
The problem is, given n and k, where n = order of seq and k = element index, can we find the particular element from the sequence. For examples answer for (n=5, k =6) is 1/2.
Lead
There are many less than optimal solution available, but am looking for a near-optimal one. One such algorithm is discussed here, for which I am unable to understand the logic hence unable to apply the examples.
Question
Can some please explain the solution with more detail, preferably with an example.
Thank you.

I've read the method provided in your link, and the accepted C++ solution to it. Let me post them, for reference:
Editorial Explanation
Several less-than-optimal solutions exist. Using a priority queue, one
can iterate through the fractions (generating them one by one) in O(K
log N) time. Using a fancier math relation, this can be reduced to
O(K). However, neither of these solution obtains many points, because
the number of fractions (and thus K) is quadratic in N.
The “good” solution is based on meta-binary search. To construct this
solution, we need the following subroutine: given a fraction A/B
(which is not necessarily irreducible), find how many fractions from
the Farey sequence are less than this fraction. Suppose we had this
subroutine; then the algorithm works as follows:
Determine a number X such that the answer is between X/N and (X+1)/N; such a number can be determined by binary searching the range
1...N, thus calling the subroutine O(log N) times.
Make a list of all fractions A/B in the range X/N...(X+1)/N. For any given B, there is at most one A in this range, and it can be
determined trivially in O(1).
Determine the appropriate order statistic in this list (doing this in O(N log N) by sorting is good enough).
It remains to show how we can construct the desired subroutine. We
will show how it can be implemented in O(N log N), thus giving a O(N
log^2 N) algorithm overall. Let us denote by C[j] the number of
irreducible fractions i/j which are less than X/N. The algorithm is
based on the following observation: C[j] = floor(X*B/N) – Sum(C[D],
where D divides j). A direct implementation, which tests whether any D
is a divisor, yields a quadratic algorithm. A better approach,
inspired by Eratosthene’s sieve, is the following: at step j, we know
C[j], and we subtract it from all multiples of j. The running time of
the subroutine becomes O(N log N).
Relevant Code
#include <cassert>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <vector>
using namespace std;
const int kMaxN = 2e5;
typedef int int32;
typedef long long int64_x;
// #define int __int128_t
// #define int64 __int128_t
typedef long long int64;
int64 count_less(int a, int n) {
vector<int> counter(n + 1, 0);
for (int i = 2; i <= n; i += 1) {
counter[i] = min(1LL * (i - 1), 1LL * i * a / n);
}
int64 result = 0;
for (int i = 2; i <= n; i += 1) {
for (int j = 2 * i; j <= n; j += i) {
counter[j] -= counter[i];
}
result += counter[i];
}
return result;
}
int32 main() {
// ifstream cin("farey.in");
// ofstream cout("farey.out");
int64_x n, k; cin >> n >> k;
assert(1 <= n);
assert(n <= kMaxN);
assert(1 <= k);
assert(k <= count_less(n, n));
int up = 0;
for (int p = 29; p >= 0; p -= 1) {
if ((1 << p) + up > n)
continue;
if (count_less((1 << p) + up, n) < k) {
up += (1 << p);
}
}
k -= count_less(up, n);
vector<pair<int, int>> elements;
for (int i = 1; i <= n; i += 1) {
int b = i;
// find a such that up/n < a / b and a / b <= (up+1) / n
int a = 1LL * (up + 1) * b / n;
if (1LL * up * b < 1LL * a * n) {
} else {
continue;
}
if (1LL * a * n <= 1LL * (up + 1) * b) {
} else {
continue;
}
if (__gcd(a, b) != 1) {
continue;
}
elements.push_back({a, b});
}
sort(elements.begin(), elements.end(),
[](const pair<int, int>& lhs, const pair<int, int>& rhs) -> bool {
return 1LL * lhs.first * rhs.second < 1LL * rhs.first * lhs.second;
});
cout << (int64_x)elements[k - 1].first << ' ' << (int64_x)elements[k - 1].second << '\n';
return 0;
}
Basic Methodology
The above editorial explanation results in the following simplified version. Let me start with an example.
Let's say, we want to find 7th element of Farey Sequence with N = 5.
We start with writing a subroutine, as said in the explanation, that gives us the "k" value (how many Farey Sequence reduced fractions there exist before a given fraction - the given number may or may not be reduced)
So, take your F5 sequence:
k = 0, 0/1
k = 1, 1/5
k = 2, 1/4
k = 3, 1/3
k = 4, 2/5
k = 5, 1/2
k = 6, 3/5
k = 7, 2/3
k = 8, 3/4
k = 9, 4/5
k = 10, 1/1
If we can find a function that finds the count of the previous reduced fractions in Farey Sequence, we can do the following:
int64 k_count_2 = count_less(2, 5); // result = 4
int64 k_count_3 = count_less(3, 5); // result = 6
int64 k_count_4 = count_less(4, 5); // result = 9
This function is written in the accepted solution. It uses the exact methodology explained in the last paragraph of the editorial.
As you can see, the count_less() function generates the same k values as in our hand written list.
We know the values of the reduced fractions for k = 4, 6, 9 using that function. What about k = 7? As explained in the editorial, we will list all the reduced fractions in range X/N and (X+1)/N, here X = 3 and N = 5.
Using the function in the accepted solution (its near bottom), we list and sort the reduced fractions.
After that we will rearrange our k values, as in to fit in our new array as such:
k = -, 0/1
k = -, 1/5
k = -, 1/4
k = -, 1/3
k = -, 2/5
k = -, 1/2
k = -, 3/5 <-|
k = 0, 2/3 | We list and sort the possible reduced fractions
k = 1, 3/4 | in between these numbers
k = -, 4/5 <-|
k = -, 1/1
(That's why there is this piece of code: k -= count_less(up, n);, it basically remaps the k values)
(And we also subtract one more during indexing, i.e.: cout << (int64_x)elements[k - 1].first << ' ' << (int64_x)elements[k - 1].second << '\n';. This is just to basically call the right position in the generated array.)
So, for our new re-mapped k values, for N = 5 and k = 7 (original k), our result is 2/3.
(We select the value k = 0, in our new map)
If you compile and run the accepted solution, it will give you this:
Input: 5 7 (Enter)
Output: 2 3
I believe this is the basic point of the editorial and accepted solution.

Related

Interview Question: Maximum Profit by Investing in Stocks

Suppose we have M coins and we want to invest it in Stocks. There are N stocks in which he can invest some non-negative integer amount. The profit by stock i is given by a Quadratic function:
AiXi2 + BiXi
where Xi is an integer amount of money invested in stock i. (−1000 ≤ Ai ≤ −1) & (1 ≤ Bi ≤ 1000)
Design a Greedy Algorithm to find the maximum amount of money we can make?
It is not allowed to invest fractional amount of money in a stock. We can invest less than M coins.
A greedy algorithm provides the best solution indeed in such a case.
The point is that, if for a given stock x coins have already be invested, then the expected gain for the next spent is equal to:
next_gain = f(x+1) - f(x) = 2ax + a + b
As a is negative, this gain is always decreasing with x, the number of coins already invested. To be pedantic, the gain function is concave.
Then it can be easily proved that the optimal solution is obtained by spending the coins one by one, looking for the stock with the maximum next_gain. This can be implemented with a max_heap, leading to a complexity O(M logN).
If Mis very large, then other solutions should be foreseen, for example based on a Lagrangian function. More maths would be involved in this case. As you mentioned that you are looking to a greedy solution, I supposed this greedy solution is fast enough.
Here is the code in C++. Should be easy to translate to any code having a max-heap.
Output:
Profit = 16
#include <iostream>
#include <vector>
#include <queue>
struct Stock {
int index;
int n_bought;
int next_gain;
Stock (int i, int n, int gain) : index(i), n_bought(n), next_gain (gain) {};
friend operator< (const Stock& x, const Stock& y) {return x.next_gain < y.next_gain;};
};
long long int profit (std::vector<int>& A, std::vector<int>& B, int M) {
int n = A.size();
if (n != B.size()) exit (1);
std::priority_queue<Stock> candidates;
for (int i = 0; i < n; ++i) {
int gain = A[i] + B[i];
if (gain > 0) candidates.emplace(Stock(i, 0, gain));
}
long long int sum = 0.0;
int coins = 0;
while ((coins < M) &&(!candidates.empty())) {
auto zebest = candidates.top();
candidates.pop();
coins++;
sum += zebest.next_gain;
zebest.n_bought++;
int i = zebest.index;
int gain = 2*A[i]*zebest.n_bought + A[i] + B[i];
if (gain > 0) {
zebest.next_gain = gain;
candidates.push (zebest);
}
}
return sum;
}
int main() {
std::vector<int> A = {-2, -1, -2};
std::vector<int> B = {3, 5, 10};
int M = 3;
auto ans = profit (A, B, M);
std::cout << "Profit = " << ans << std::endl;
return 0;
}
Given function Y = AiXi2 + BiXi is a quadratic function.
For the constraints, (−1000 ≤ Ai ≤ −1) and (1 ≤ Bi ≤ 1000) investments can be represented as a parabolas as,
Notice three things :
These parabolas have their maximum at point given by X'i = -Bi / 2Ai
We should always invest coins Xi such that 0 ≤ Xi ≤ X'i to yield a profit.
For a given number of coins k, it's better to invest them in the investment with larger maxima.
The greedy algorithm is then,
Iterate over all N investments and for each i find it's corresponding Xi = floor(X'i).
Take the all such k investments greedily(investment with maximum Xi first) such that Sum(Xi) ≤ M for all such i taken.
Here's pseudocode to get you started,
FIND_MAX(A, B, N, M):
allProfits = [[]]
for i = 1 to N:
profit = []
X = floor((-B[i]) / (2 * A[i]))
profit.coins = X
profit.index = i
allProfits[i] = profit
Sort(allProfits)
maxProfit = 0
for j = N downto 1:
if(M <= 0):
break
coins = min(allProfits[j].coins, M)
i = allProfits[j].index
maxProfit += (A[i] * coins * coins) + (B[i] * coins)
M -= coins
return maxProfit

Number of ways to write n as sum of k numbers with restrictions on each part

Title says it all.
I need to split n as sum of k parts where each part ki should be in the range of
1 <= ki <= ri for given array r.
for example -
n = 4, k = 3 and r = [2, 2, 1]
ans = 2
#[2, 1, 1], [1, 2, 1]
Order matters. (2, 1, 1) and (1, 2, 1) are different.
I taught of solving it using stars and bars method, but be because of upper bound ri i dont know to to approach it.
i implemented a direct recursion function and it works fine for small values only.
Constraints of original problem are
1 <= n <= 107
1 <= k <= 105
1 <= ri <= 51
All calculations will be done under prime Modulo.
i found a similar problem here but i don't know how to implement in program. HERE
My brute-force recursive function -
#define MAX 1000
const int md = 1e9 + 7;
vector <int> k;
vector <map<int, int>> mapper;
vector <int> hold;
int solve(int sum, int cur){
if(cur == (k.size() - 1) && sum >= 1 && sum <= k[cur]) return 1;
if(cur == (k.size() - 1) && (sum < 1 || sum > k[cur])) return 0;
if(mapper[cur].find(sum) != mapper[cur].end())
return mapper[cur][sum];
int ans = 0;
int start = 1;
for(int i=start; i<=k[cur]; ++i){
int remain = sum - i;
int seg = (k.size() - cur) - 1;
if(remain < seg) break;
int res = solve(sum - i, cur + 1);
ans = (1LL * ans + res) % md;
}
mapper[cur][sum] = ans;
return ans;
}
int main(){
for(int i=0; i<MAX; ++i) k.push_back(51); // restriction for each part default 51
mapper.resize(MAX);
cout << solve(MAX + MAX, 0) << endl;
}
Instead of using a map for storing result of computation i used a two dimensional array and it gave very good performance boost but i cannot use it because of large n and k values.
How could i improve my recursive function or what are other ways of solving this problem.
That's interesting problem.
First lets say r_i = r_i - 1, n = n - k, numbers in [0, r_i] just for convenience. Now it's possible to add some fictitious numbers to make m the power of 2 without changing answer.
Now let's represent each interval of [0, r_i] as polynomial 1 * x ^ 0 + 1 * x ^ 1 + ... + 1 * x & r_i. Now if we multiply all these polynomials, coefficient at x ^ n will be answer.
Here is structure called Number Theoretic Transform (NTT) which allows to multiply two polynomials modulo p in O(size * log(size)).
If you will just multiply it using NTT, code will work in something like O(n * k * log (k * max(r))). It's very slow.
But now our fictive numbers help. Let's use divide and conquer technics. We'll make O(log m) steps, on each step multiply 2 * i-th and 2 * i + 1-th polynomials. In the next step we'll multiply resulting polynomials of this step.
Each step works in O(k * log(k)) and there is O(log(k)) steps, so algorhitm works in O(k * log^2 (k)). It's fast asymptotically, but I'm not sure if it fits TL for this problem. I think it will work about 20 seconds on max test.

Variant of Subset-Sum

Given 3 positive integers n, k, and sum, find exactly k number of distinct elements a_i, where
a_i \in S, 1 <= i <= k, and a_i \neq a_j for i \neq j
and, S is the set
S = {1, 2, 3, ..., n}
such that
\sum_{i=1}^{k}{a_i} = sum
I don't want to apply brute force (checking all possible combinations) to solve the problem due to exponential complexity. Can someone give me a hint towards another approach in solving this problem? Also, how can we exploit the fact the set S is sorted?
Is it possible to have complexity of O(k) in this problem?
An idea how to exploit 1..n set properties:
Sum of k continuous members of natural row starting from a is
sum = k*(2*a + (k-1))/2
To get sum of such subsequence about needed s, we can solve
a >= s/k - k/2 + 1/2
or
a <= s/k - k/2 + 1/2
compare s and sum values and make corrections.
For example, having s=173, n=40 and k=5, we can find
a <= 173/5 - 5/2 + 1/2 = 32.6
for starting number 32 we have sequence 32,33,34,35,36 with sum = 170, and for correction by 3 we can just change 36 with 39, or 34,35,36 with 35,36,37 and so on.
Seems that using this approach we get O(1) complexity (of course, there might exist some subtleties that I did miss)
It's possible to modify the pseudo-polynomial algorithm for subset sum.
Prepare a matrix P with dimension k X sum, and initialize all elements to 0. The meaning of P[p, q] == 1 is that there is a subset of p numbers summing to q, and P[p, q] == 0 means that such a subset has not yet been found.
Now iterate over i = 1, ..., n. In each iteration:
If i ≤ sum, set P[1, i] = 1 (there is a subset of size 1 that achieves i).
For any entry P[p, q] == 1, you now know that P[p + 1, q + i] should now be 1 too. If (p + 1, q + i) is within the boundaries of the matrix, set P[p + 1, q + i] = 1.
Finally, check if P[k, sum] == 1.
The complexity, assuming that all integer math operations is constant, is Θ(n2 sum).
There is a O(1) (so to speak) solution. What follows is a formal enough (I hope) development of the idea by #MBo.
It is sufficient to assume that S is a set of all integers and find a minimal solution. Solution K is smaller than K' iff max(K) < max(K'). If max(K) <= n, then K is also a solution to the original problem; otherwise, the original problem has no solution.
So we disregard n and find K, a minimal solution. Let g = max(K) = ceil(sum/k + (k - 1)/2) and s = g + (g-1) + (g-2) + ... (g-k+1) and s' = (g-1) + (g-2) + ... + (g-k). That is, s' is s shifted down by 1. Note s' = s - k.
Obviously s >= sum and (because K is minimal) s' < sum.
If s == sum the solution is K and we're done. Otherwise consider the set K+ = {g, g-1, ..., g-k}. We know that \sum(K+ \setminus {g}) < sum and \sum(K+ \setminus {g-k}) > sum, therefore, there's a single element g_i of K+ such that \sum (K+ \setminus {g_i}) = sum. The solution isK+ \setminus {\sum(K+)-sum}.
The solution in the form of 4 integers a, b, c, d where the actual set is understood to be [a..b] \setunion [c..d] can be computed in O(1).
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
unsigned long int arithmeticSum(unsigned long int a, unsigned long int k, unsigned long int n, unsigned long int *A);
void printSubset(unsigned long int k, unsigned long int *A);
int main(void)
{
unsigned long int n, k, sum;
// scan the respective values of sum, n, and k
scanf("%lu %lu %lu", &sum, &n, &k);
// find the starting element using the formula for the sum of an A.P. having 'k' terms
// starting at 'a', common difference 'd' ( = 1 in this problem), having 'sum' = sum
// sum = [k/2][2*a + (k-1)*d]
unsigned long startElement = (long double)sum/k - (long double)k/2 + (long double)1/2;
// exit if the arithmetic progression formed at the startElement is not within the required bounds
if(startElement < 1 || startElement + k - 1 > n)
{
printf("-1\n");
return 0;
}
// we now work on the k-element set [startElement, startElement + k - 1]
// create an array to store the k elements
unsigned long int *A = malloc(k * sizeof(unsigned long int));
// calculate the sum of k elements in the arithmetic progression [a, a + 1, a + 2, ..., a + (k - 1)]
unsigned long int currentSum = arithmeticSum(startElement, k, n, A);
// if the currentSum is equal to the required sum, then print the array A, and we are done
if(currentSum == sum)
{
printSubset(k, A);
}
// we enter into this block only if currentSum < sum
// i.e. we need to add 'something' to the currentSum in order to make it equal to sum
// i.e. we need to remove an element from the k-element set [startElement, startElement + k - 1]
// and replace it with an element of higher magnitude
// i.e. we need to replace an element in the set [startElement, startElement + k - 1] and replace
// it with an element in the range [startElement + k, n]
else
{
long int j;
bool done;
// calculate the amount which we need to add to the currentSum
unsigned long int difference = sum - currentSum;
// starting from A[k-1] upto A[0] do the following...
for(j = k - 1, done = false; j >= 0; j--)
{
// check if adding the "difference" to A[j] results in a number in the range [startElement + k, n]
// if it does then replace A[j] with that element, and we are done
if(A[j] + difference <= n && A[j] + difference > A[k-1])
{
A[j] += difference;
printSubset(k, A);
done = true;
break;
}
}
// if no such A[j] is found then, exit with fail
if(done == false)
{
printf("-1\n");
}
}
return 0;
}
unsigned long int arithmeticSum(unsigned long int a, unsigned long int k, unsigned long int n, unsigned long int *A)
{
unsigned long int currentSum;
long int j;
// calculate the sum of the arithmetic progression and store the each member in the array A
for(j = 0, currentSum = 0; j < k; j++)
{
A[j] = a + j;
currentSum += A[j];
}
return currentSum;
}
void printSubset(unsigned long int k, unsigned long int *A)
{
long int j;
for(j = 0; j < k; j++)
{
printf("%lu ", A[j]);
}
printf("\n");
}

Efficient way to count subsets with given sum

Given N numbers I need to count subsets whose sum is S.
Note : Numbers in array need not to be distinct.
My current code is :
int countSubsets(vector<int> numbers,int sum)
{
vector<int> DP(sum+1);
DP[0]=1;
int currentSum=0;
for(int i=0;i<numbers.size();i++)
{
currentSum+=numbers[i];
for (int j=min(sum,currentSum);j>=numbers[i];j--)
DP[j]+=DP[j - numbers[i]];
}
return DP[sum];
}
Can their be any efficient way than this ?
Constraints are :
1 ≤ N ≤ 14
1 ≤ S ≤ 100000
1 ≤ A[i] ≤ 10000
Also their are 100 test cases in a single file. So please help if their exist better solution than this one
N is small (2^20 - is about 1 milion - 2^14 is really small value) - just iterate over all subsets, below I wrote pretty fast way to do that (bithacking). Treat integers as sets (that's enumerating subsets in Lexicographical order)
int length = array.Length;
int subsetCount = 0;
for (int i=0; i<(1<<length); ++i)
{
int currentSet = i;
int tempIndex = length-1;
int currentSum = 0;
while (currentSet > 0) // iterate over bits "from the right side"
{
if (currentSet & 1 == 1) // if current bit is "1"
currentSum += array[tempIndex];
currentSet >>= 1;
tempIndex--;
}
subsetCount += (currentSum == targetSum) ? 1 : 0;
}
You can use the fact that N is small: it is possible to generate all possible subsets of the given array and check if its sum is S for each of them. The time complexity is O(N * 2 ** N) or O(2 ** N)(it depends on the way of the generation). This solution should be fast enough for the given constraints.
Here is a pseudo code of an O(2 ** N) solution:
result = 0
void generate(int curPos, int curSum):
if curPos == N:
if curSum == S:
result++
return
// Do not take the current element.
generate(curPos + 1, curSum)
// Take it.
generate(curPos + 1, curSum + numbers[curPos])
generate(0, 0)
A faster solution based on the meet in the middle technique:
Let's generate all subsets for the first half of the array using the algorithm described above and put their sums into a map(which maps a sum to the number of subsets that have it. It can be either a hash table or just an array because S is relatively small). This step takes O(2 ** (N / 2)) time.
Now let's generate all subsets for the second half and for each of them add the number of subset that sum up to S - currentSum e in the first half(using the map constructed in 1.), where the currentSum is the sum of all elements in the current subseta. Again, we have O(2 ** (N / 2)) subsets and each of them is processed in O(1).
The total time complexity is O(2 ** (N / 2)).
A pseudo code for this solution:
Map<int, int> count = new HashMap<int, int>() // or an array of size S + 1.
result = 0
void generate1(int[] numbers, int pos, int currentSum):
if pos == numbers.length:
count[currentSum]++
return
generate1(numbers, pos + 1, currentSum)
generate1(numbers, pos + 1, currentSum + numbers[pos])
void generate2(int[] numbers, int pos, int currentSum):
if pos == numbers.length:
result += count[S - currentSum]
return
generate2(numbers, pos + 1, currentSum)
generate2(numbers, pos + 1, currentSum + numbers[pos])
generate1(the first half of numbers, 0, 0)
generate2(the second half of numbers, 0, 0)
If N is odd, the middle element can go to either the first half or to the second one. It doesn't matter where it goes as long as it goes to exactly one of them.

Fastest way to generate binomial coefficients

I need to calculate combinations for a number.
What is the fastest way to calculate nCp where n>>p?
I need a fast way to generate binomial coefficients for an polynomial equation and I need to get the coefficient of all the terms and store it in an array.
(a+b)^n = a^n + nC1 a^(n-1) * b + nC2 a^(n-2) * ............
+nC(n-1) a * b^(n-1) + b^n
What is the most efficient way to calculate nCp ??
You cau use dynamic programming in order to generate binomial coefficients
You can create an array and than use O(N^2) loop to fill it
C[n, k] = C[n-1, k-1] + C[n-1, k];
where
C[1, 1] = C[n, n] = 1
After that in your program you can get the C(n, k) value just looking at your 2D array at [n, k] indices
UPDATE smth like that
for (int k = 1; k <= K; k++) C[0][k] = 0;
for (int n = 0; n <= N; n++) C[n][0] = 1;
for (int n = 1; n <= N; n++)
for (int k = 1; k <= K; k++)
C[n][k] = C[n-1][k-1] + C[n-1][k];
where the N, K - maximum values of your n, k
If you need to compute them for all n, Ribtoks's answer is probably the best.
For a single n, you're better off doing like this:
C[0] = 1
for (int k = 0; k < n; ++ k)
C[k+1] = (C[k] * (n-k)) / (k+1)
The division is exact, if done after the multiplication.
And beware of overflowing with C[k] * (n-k) : use large enough integers.
If you want complete expansions for large values of n, FFT convolution might be the fastest way. In the case of a binomial expansion with equal coefficients (e.g. a series of fair coin tosses) and an even order (e.g. number of tosses) you can exploit symmetries thus:
Theory
Represent the results of two coin tosses (e.g. half the difference between the total number of heads and tails) with the expression A + A*cos(Pi*n/N). N is the number of samples in your buffer - a binomial expansion of even order O will have O+1 coefficients and require a buffer of N >= O/2 + 1 samples - n is the sample number being generated, and A is a scale factor that will usually be either 2 (for generating binomial coefficients) or 0.5 (for generating a binomial probability distribution).
Notice that, in frequency, this expression resembles the binomial distribution of those two coin tosses - there are three symmetrical spikes at positions corresponding to the number (heads-tails)/2. Since modelling the overall probability distribution of independent events requires convolving their distributions, we want to convolve our expression in the frequency domain, which is equivalent to multiplication in the time domain.
In other words, by raising our cosine expression for the result of two tosses to a power (e.g. to simulate 500 tosses, raise it to the power of 250 since it already represents a pair), we can arrange for the binomial distribution for a large number to appear in the frequency domain. Since this is all real and even, we can substitute the DCT-I for the DFT to improve efficiency.
Algorithm
decide on a buffer size, N, that is at least O/2 + 1 and can be conveniently DCTed
initialise it with the expression pow(A + A*cos(Pi*n/N),O/2)
apply the forward DCT-I
read out the coefficients from the buffer - the first number is the central peak where heads=tails, and subsequent entries correspond to symmetrical pairs successively further from the centre
Accuracy
There's a limit to how high O can be before accumulated floating-point rounding errors rob you of accurate integer values for the coefficients, but I'd guess the number is pretty high. Double-precision floating-point can represent 53-bit integers with complete accuracy, and I'm going to ignore the rounding loss involved in the use of pow() because the generating expression will take place in FP registers, giving us an extra 11 bits of mantissa to absorb the rounding error on Intel platforms. So assuming we use a 1024-point DCT-I implemented via the FFT, that means losing 10 bits' accuracy to rounding error during the transform and not much else, leaving us with ~43 bits of clean representation. I don't know what order of binomial expansion generates coefficients of that size, but I dare say it's big enough for your needs.
Asymmetrical expansions
If you want the asymmetrical expansions for unequal coefficients of a and b, you'll need to use a two-sided (complex) DFT and a complex pow() function. Generate the expression A*A*e^(-Pi*i*n/N) + A*B + B*B*e^(+Pi*i*n/N) [using the complex pow() function to raise it to the power of half the expansion order] and DFT it. What you have in the buffer is, again, the central point (but not the maximum if A and B are very different) at offset zero, and it is followed by the upper half of the distribution. The upper half of the buffer will contain the lower half of the distribution, corresponding to heads-minus-tails values that are negative.
Notice that the source data is Hermitian symmetrical (the second half of the input buffer is the complex conjugate of the first), so this algorithm is not optimal and can be performed using a complex-to-complex FFT of half the required size for optimum efficiency.
Needless to say, all the complex exponentiation will chew more CPU time and hurt accuracy compared to the purely real algorithm for symmetrical distributions above.
This is my version:
def binomial(n, k):
if k == 0:
return 1
elif 2*k > n:
return binomial(n,n-k)
else:
e = n-k+1
for i in range(2,k+1):
e *= (n-k+i)
e /= i
return e
I recently wrote a piece of code that needed to call for a binary coefficient about 10 million times. So I did a combination lookup-table/calculation approach that's still not too wasteful of memory. You might find it useful (and my code is in the public domain). The code is at
http://www.etceterology.com/fast-binomial-coefficients
It's been suggested that I inline the code here. A big honking lookup table seems like a waste, so here's the final function, and a Python script that generates the table:
extern long long bctable[]; /* See below */
long long binomial(int n, int k) {
int i;
long long b;
assert(n >= 0 && k >= 0);
if (0 == k || n == k) return 1LL;
if (k > n) return 0LL;
if (k > (n - k)) k = n - k;
if (1 == k) return (long long)n;
if (n <= 54 && k <= 54) {
return bctable[(((n - 3) * (n - 3)) >> 2) + (k - 2)];
}
/* Last resort: actually calculate */
b = 1LL;
for (i = 1; i <= k; ++i) {
b *= (n - (k - i));
if (b < 0) return -1LL; /* Overflow */
b /= i;
}
return b;
}
#!/usr/bin/env python3
import sys
class App(object):
def __init__(self, max):
self.table = [[0 for k in range(max + 1)] for n in range(max + 1)]
self.max = max
def build(self):
for n in range(self.max + 1):
for k in range(self.max + 1):
if k == 0: b = 1
elif k > n: b = 0
elif k == n: b = 1
elif k == 1: b = n
elif k > n-k: b = self.table[n][n-k]
else:
b = self.table[n-1][k] + self.table[n-1][k-1]
self.table[n][k] = b
def output(self, val):
if val > 2**63: val = -1
text = " {0}LL,".format(val)
if self.column + len(text) > 76:
print("\n ", end = "")
self.column = 3
print(text, end = "")
self.column += len(text)
def dump(self):
count = 0
print("long long bctable[] = {", end="");
self.column = 999
for n in range(self.max + 1):
for k in range(self.max + 1):
if n < 4 or k < 2 or k > n-k:
continue
self.output(self.table[n][k])
count += 1
print("\n}}; /* {0} Entries */".format(count));
def run(self):
self.build()
self.dump()
return 0
def main(args):
return App(54).run()
if __name__ == "__main__":
sys.exit(main(sys.argv))
If you really only need the case where n is much larger than p, one way to go would be to use the Stirling's formula for the factorials. (if n>>1 and p is order one, Stirling approximate n! and (n-p)!, keep p! as it is etc.)
The fastest reasonable approximation in my own benchmarking is the approximation used by the Apache Commons Maths library: http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/special/Gamma.html#logGamma(double)
My colleagues and I tried to see if we could beat it, while using exact calculations rather than approximates. All approaches failed miserably (many orders slower) except one, which was 2-3 times slower. The best performing approach uses https://math.stackexchange.com/a/202559/123948, here is the code (in Scala):
var i: Int = 0
var binCoeff: Double = 1
while (i < k) {
binCoeff *= (n - i) / (k - i).toDouble
i += 1
}
binCoeff
The really bad approaches where various attempts at implementing Pascal's Triangle using tail recursion.
nCp = n! / ( p! (n-p)! ) =
( n * (n-1) * (n-2) * ... * (n - p) * (n - p - 1) * ... * 1 ) /
( p * (p-1) * ... * 1 * (n - p) * (n - p - 1) * ... * 1 )
If we prune the same terms of the numerator and the denominator, we are left with minimal multiplication required. We can write a function in C to perform 2p multiplications and 1 division to get nCp:
int binom ( int p, int n ) {
if ( p == 0 ) return 1;
int num = n;
int den = p;
while ( p > 1 ) {
p--;
num *= n - p;
den *= p;
}
return num / den;
}
I was looking for the same thing and couldn't find it, so wrote one myself that seems optimal for any Binomial Coeffcient for which the endresult fits into a Long.
// Calculate Binomial Coefficient
// Jeroen B.P. Vuurens
public static long binomialCoefficient(int n, int k) {
// take the lowest possible k to reduce computing using: n over k = n over (n-k)
k = java.lang.Math.min( k, n - k );
// holds the high number: fi. (1000 over 990) holds 991..1000
long highnumber[] = new long[k];
for (int i = 0; i < k; i++)
highnumber[i] = n - i; // the high number first order is important
// holds the dividers: fi. (1000 over 990) holds 2..10
int dividers[] = new int[k - 1];
for (int i = 0; i < k - 1; i++)
dividers[i] = k - i;
// for every dividers there is always exists a highnumber that can be divided by
// this, the number of highnumbers being a sequence that equals the number of
// dividers. Thus, the only trick needed is to divide in reverse order, so
// divide the highest divider first trying it on the highest highnumber first.
// That way you do not need to do any tricks with primes.
for (int divider: dividers) {
boolean eliminated = false;
for (int i = 0; i < k; i++) {
if (highnumber[i] % divider == 0) {
highnumber[i] /= divider;
eliminated = true;
break;
}
}
if(!eliminated) throw new Error(n+","+k+" divider="+divider);
}
// multiply remainder of highnumbers
long result = 1;
for (long high : highnumber)
result *= high;
return result;
}
If I understand the notation in the question, you don't just want nCp, you actually want all of nC1, nC2, ... nC(n-1). If this is correct, we can leverage the following relationship to make this fairly trivial:
for all k>0: nCk = prod_{from i=1..k}( (n-i+1)/i )
i.e. for all k>0: nCk = nC(k-1) * (n-k+1) / k
Here's a python snippet implementing this approach:
def binomial_coef_seq(n, k):
"""Returns a list of all binomial terms from choose(n,0) up to choose(n,k)"""
b = [1]
for i in range(1,k+1):
b.append(b[-1] * (n-i+1)/i)
return b
If you need all coefficients up to some k > ceiling(n/2), you can use symmetry to reduce the number of operations you need to perform by stopping at the coefficient for ceiling(n/2) and then just backfilling as far as you need.
import numpy as np
def binomial_coef_seq2(n, k):
"""Returns a list of all binomial terms from choose(n,0) up to choose(n,k)"""
k2 = int(np.ceiling(n/2))
use_symmetry = k > k2
if use_symmetry:
k = k2
b = [1]
for i in range(1, k+1):
b.append(b[-1] * (n-i+1)/i)
if use_symmetry:
v = k2 - (n-k)
b2 = b[-v:]
b.extend(b2)
return b
Time Complexity : O(denominator)
Space Complexity : O(1)
public class binomialCoeff {
static double binomialcoeff(int numerator, int denominator)
{
double res = 1;
//invalid numbers
if (denominator>numerator || denominator<0 || numerator<0) {
res = -1;
return res;}
//default values
if(denominator==numerator || denominator==0 || numerator==0)
return res;
// Since C(n, k) = C(n, n-k)
if ( denominator > (numerator - denominator) )
denominator = numerator - denominator;
// Calculate value of [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
while (denominator>=1)
{
res *= numerator;
res = res / denominator;
denominator--;
numerator--;
}
return res;
}
/* Driver program to test above function*/
public static void main(String[] args)
{
int numerator = 120;
int denominator = 20;
System.out.println("Value of C("+ numerator + ", " + denominator+ ") "
+ "is" + " "+ binomialcoeff(numerator, denominator));
}
}

Resources