We have built a simple instruction set simulator for the sparc v8 processor. The model consists of a v8 processor, a main memory and a character input and a character output device. Currently I am able to run simple user-level programs on this simulator which are built using a cross compiler and placed in the modeled main memory directly.
I am trying to get a linux kernel to run on this simulator by building a simplest bootloader. (I'm considering uClinux which is made for mmu-less systems). The uncompressed kernel and the filesystem are both assumed to be present in the main memory itself, and all that my bootloader has to do is pass the relevant information to the kernel and make a jump to the start of the kernel code. I have no experience in OS development or porting linux.
I have the following questions :
What is this bare minimum information that a bootloader has to supply to the kernel ?
How to pass this information?
How to point the kernel to use my custom input/output devices?
There is some documentation available for porting linux to ARM boards, and from this documentation, it seems that the bootloader passes information about the size of RAM etc
via a data structure called ATAGS. How is it done in the case of a Sparc processor? I could not find much documentation for Sparc on the internet. There exists a linux bootloader for the Leon3 implementation of Sparc v8, but I could not find the specific information I was looking for in its code.
I will be grateful for any links that explain the bare minimum information to be passed to a kernel and how to pass it.
Thanks,
-neha
Related
I'm currently struggling to determine how I can get an emulated environment via QEMU to correctly display output on the command line. I have an environment that displays perfectly well using the virt reference board, a cortex-a9CPU, and the 4.1 Linux kernel cross-compiled for ARM. However, if I swap out the 4.1 kernel for 2.6 or 3.1, suddenly I can no longer see console output.
While solving this issue is my main goal, I feel like I lack a critical understanding of how Linux and the hardware initially integrate before userspace configurations via boot scripts and whatnot have a chance to execute. I am aware of the device tree, and have a loose understanding of how it works. But the issue I ran into where a different kernel version broke console availability entirely confounds me. Can someone explain how Linux initially maps console output to a hardware device on the ARM architecture?
Thank you!
The answer depends quite a bit on which kernel version, what config options are set, what hardware, and also possibly on kernel command line arguments.
For modern kernels, the answer is that it looks in the device tree blob it is passed for descriptions of devices, some of which will be serial ports, and it initializes those. The kernel config or command line will specify which of those is to be used for the console. For earlier kernels, especially if you go all the way back to 2.6, use of device tree was less universal, and for some hardware the boot loader simply said "this is a versatile express board" (for instance) and the kernel had compiled-in data structures to tell it where the devices were for each board that it supported. As the transition to device tree progressed, boards were converted one by one, and sometimes a few devices at a time, so what exactly the situation was for any specific kernel version depends on which board you're using.
The other thing that I rather suspect you're running into is that if the kernel crashes early in bootup (ie before it finds the serial port at all) then it will never output anything. So if the kernel is just too early to support the "virt" board properly at all, or if your kernel config is missing something important, then the chances are good that it crashes in early boot without being able to print you a useful message. (Sometimes "earlycon" or "earlyprintk" kernel arguments can assist here, but not always.)
I am new to embedded Linux development. I have to port uboot and custom Linux distribution to a new ARM based board.
The uboot we are using (2009.08) does not have Arch and DTS folders. I suppose it is an older version which does not use use DTS to pass hardware information to the Kernel (v 3.0). I have read a lot about DTS but here is not enough information on internet about this (obsolete?) method of passing hardware information from uboot to kernel that we are using. Internet tells me that there are C files for this task both in uboot and kernel source code that have to be sync'd, but can some one point me in that direction? Also, please correct me if my assumptions are wrong, and ask for more info if needed.
The (old) method to pass data between U-Boot and the Linux ARM kernel is called the ATAG memory list. Information such as usable memory regions, machine type and board information are passed from U-Boot to the Linux ARM kernel using this data list.
In U-Boot, ATAGs are built in lib_arm/armlinux.c (1.1.5) or lib_arm/bootm.c (2009.08) or arch/arm/lib/bootm.c (2015.04), and require the configuration options CONFIG_SETUP_MEMORY_TAGS and salient CONFIG_xxx_TAG s.
Then the ATAGs are processed by Linux in arch/arm/kernel/setup.c.
For documentation see Section 8 of this or this alt site.
Addendum
Also see slide #4 of this presentation about before-Device_Tree booting
I wonder, are there any ways to generate with the gcc some native x86 code (which can be booted without any OS)?
Yes, the Linux kernel is compiled with GCC and runs in ring 0 on x86.
The question isn't well-formed. Certainly not all of the instructions needed to initialize a modern CPU from scratch can be emitted by gcc alone, you'll need to use some assembly for that. But that's sort of academic because modern CPUs don't actually document all this stuff and instead expect your hardware manufacturer to ship firmware to do it. After firmware initialization, a modern PC leaves you either in an old-style 16 bit 8086 environment ("legacy" BIOS) or a fairly clean 32 or 64 bit (depending on your specific hardware platform) environment called "EFI Boot Services".
Operations in EFI mode are all done using C function pointers, and you can indeed build for this environment using gcc. See the gummiboot boot loader for an excellent example of working with EFI.
I am new to linux kernel and Try to understand booting of Linux kernel from the point it loaded into RAM,I would like to know after Linux image loaded into RAM ,How control is passed to this image ,what all are necessary parameter needs to pass to kernel and can we pass control to linux image without passing any parameter,
I am looking into the UBOOT code with "bootm.c" but unable to understand where control is passed to Linux image,which function is responsible for it.
Is load_zimage() is responsible for passing the control/
Can anybody lead me to right direction or suggest some good tutorials on this particular part
of linux booting from x86 archetectiure.
I think it depends. Different kinds of CPU architecture, they use different ways to pass information to Linux Kernel. Of course, the Linux Kernel can boot up successfully without bootloader pass information to it, but it need to statically set up correctly in the Linux Kernel, such as root device name, console device, mem size, and also some parameters to enable/disable some features in Linux Kernel.
Why bootloader need to pass various information(parameters) to Linux Kernel, I think it's flexible consideration. Think about this case that it's possible to share one Linux Kernel on two board with same CPU but different peripheral modules.
Let me show some examples that UBoot passes information to Linux Kernel:
(1) For PowerPC cpu, nowadays they use DTB(Device Tree Blob) file to pass more information from UBoot to Linux Kernel. They consider UBoot and DTB as firmware, and in Linux Kernel, they adopt one open firmware(OF) infrastructure. You may know "bootm" command in UBoot, bootm can have three parameters, the first is uImage address, the secondary one is initrd address, and the third one is the dtb address.
(2) Earlier days, they use bootargs to pass information to Linux Kernel. Also you may know there is gd/bd structure in the UBoot, they also can pass information to Linux Kernel. But the information passed in this way is limited, not like DTB.
Hope the above information help you to understand your question.
I'm trying to implement a "Semantic based memory sharing model" for Xen. As a part of my project, i'm trying to share kernel code pages across VMs. I' ve assumed that the code segments of linux kernels with similar version are 100% identical. But when i carry out some experiments using Virtual Machines running Debian Squeeze, i have found 3 memory pages are different in kernel code segment.
So my question is that, does the linux kernel modifies its code pages at runtime?
Yes, it can - for example, spinlocks can be dynamically patched out of the code if the kernel sees at runtime that it is running on a uniprocessor system. I do not know of an exhaustive list of such cases, you will need to inspect the code.
See the LWN article on SMP Alternatives for more information on one system that does runtime patching within the kernel.