Related
HI I would like to know how a method that finds out if two members of a list in Prolog are adjacent as the catch is that the first and the last elements are checked if they are adjacent something like
(b,c,[b,a,d,c])
would give yes they are adjacent. I already have this code
adjacent(X, Y, [X,Y|_]).
adjacent(X, Y, [_|Tail]) :-
adjacent(X, Y, Tail).
but I do not know how to include the head of the list and the last elments as well being compared for being adjacent. If you are really good maybe you can tell me also how it is possible to make something like this
(c,b,[a,b,c,d])
to be true I mean the elements are adjacent no matter which exactly is first.
You can make use of last/2 predicate [swi-doc] to obtain the last element of the list. But you can not use this in the recursive call, since otherwise it will each element in the list pair with the last element as well.
The trick is to make a helper predicate for the recursive part, and then make the adjacent/3 predicate to call the recursive one you wrote yourself, or one where we match with the last element:
adjacent(X, Y, L) :-
adj(X, Y, L).
adjacent(X, Y, [Y|T]) :-
last(T, X).
adj(X, Y, [X,Y|_]).
adj(X, Y, [_|T]) :-
adj(X, Y, T).
Relations about lists can often be described with a Definite Clause Grammar dcg.
A first attempt might be:
adjacent(A, B, L) :-
phrase(adjacent(A, B), L). % interface to DCG
adjacent(A,B) -->
..., ( [A,B] | [B,A] ), ... .
... --> [] | [_], ... .
Yet, this leaves out cases like adjacent(a,d,[a,b,c,d]). One possibility would be to add another rule, or maybe simply extend the list to be considered.
adjacent(A, B, L) :-
L = [E,_|_],
append(L, [E], M),
phrase(adjacent(A, B), L).
I'm writing prolog code that finds a certain number; a number is the right number if it's between 0 and 9 and not present in a given list. To do this I wrote a predicate number/3 that has the possible numbers as the first argument, the list in which the Rightnumber cannot be present and the mystery RightNumber as third argument:
number([XH|XT], [H|T], RightNumber):-
member(XH, [H|T]), !,
number(XT, [H|T], RightNumber).
number([XH|_], [H|T], XH):-
\+ member(XH, [H|T]).
so this code basically says that if the Head of the possible numbers list is already a member of the second list, to cut of the head and continue in recursion with the tail.
If the element is not present in the second list, the second clause triggers and tells prolog that that number is the RightNumber. It's okay that it only gives the first number that is possible, that's how I want to use it.
This code works in theory, but I was wondering if there's a better way to write it down? I'm using this predicate in another predicate later on in my code and it doesn't work as part of that. I think it's only reading the first clause, not the second and fails as a result.
Does anybody have an idea that might improve my code?
sample queries:
?- number([0,1,2,3,4,5,6,7,8,9], [1,2], X).
X = 3
?- number([0,1,2,3,4,5,6,7,8,9], [1,2,3,4,5,6,7,8,0], X).
X = 9
First, the code does not work. Consider:
?- number(Xs, Ys, N).
nontermination
This is obviously bad: For this so-called most general query, we expect to obtain answers, but Prolog does not give us any answer with this program!
So, I first suggest you eliminate all impurities from your program, and focus on a clean declarative description of what you want.
I give you a start:
good_number(N, Ls) :-
N in 0..9,
maplist(#\=(N), Ls).
This states that the relation is true if N is between 0 and 9, and N is different from any integer in Ls. See clpfd for more information about CLP(FD) constraints.
Importantly, this works in all directions. For example:
?- good_number(4, [1,2,3]).
true.
?- good_number(11, [1,2,3]).
false.
?- good_number(N, [1,2,3]).
N in 0\/4..9.
And also in the most general case:
?- good_number(N, Ls).
Ls = [],
N in 0..9 ;
Ls = [_2540],
N in 0..9,
N#\=_2540 ;
Ls = [_2750, _2756],
N in 0..9,
N#\=_2756,
N#\=_2750 .
This, with only two lines of code, we have implemented a very general relation.
Also see logical-purity for more information.
First of all, your predicate does not work, nor does it check all the required constraints (between 0 and 9 for instance).
Several things:
you unpack the second list [H|T], but you re-pack it when you call member(XH, [H|T]); instead you can use a list L (this however slightly alters the semantics of the predicate, but is more accurate towards the description);
you check twice member/2ship;
you do not check whether the value is a number between 0 and 9 (and an integer anyway).
A better approach is to construct a simple clause:
number(Ns, L, Number) :-
member(Number, Ns),
integer(Number),
0 =< Number,
Number =< 9,
\+ member(Number, L).
A problem that remains is that Number can be a variable. In that case integer(Number) will fail. In logic we would however expect that Prolog unifies it with a number. We can achieve this by using the between/3 predicate:
number(Ns, L, Number) :-
member(Number, Ns),
between(0, 9, Number),
\+ member(Number, L).
We can also use the Constraint Logic Programming over Finite Domains library and use the in/2 predicate:
:- use_module(library(clpfd)).
number(Ns, L, Number) :-
member(Number, Ns),
Number in 0..9,
\+ member(Number, L).
There are still other things that can go wrong. For instance we check non-membership with \+ member(Number, L). but in case L is not grounded, this will fail, instead of suggesting lists where none of the elements is equal to Number, we can use the meta-predicate maplist to construct lists and then call a predicate over every element. The predicate we want to call over every element is that that element is not equal to Number, so we can use:
:- use_module(library(clpfd)).
number(Ns, L, Number) :-
member(Number, Ns),
Number in 0..9,
maplist(#\=(Number), L).
I want to write predicate which can count all encountered number:
count(1, [1,0,0,1,0], X).
X = 2.
I tried to write it like:
count(_, [], 0).
count(Num, [H|T], X) :- count(Num, T, X1), Num = H, X is X1 + 1.
Why doesn't work it?
Why doesn't work it?
Prolog is a programming language that often can answer such question directly. Look how I tried out your definition starting with your failing query:
?- count(1, [1,0,0,1,0], X).
false.
?- count(1, Xs, X).
Xs = [], X = 0
; Xs = [1], X = 1
; Xs = [1,1], X = 2
; Xs = [1,1,1], X = 3
; ... .
?- Xs = [_,_,_], count(1, Xs, X).
Xs = [1,1,1], X = 3.
So first I realized that the query does not work at all, then I generalized the query. I replaced the big list by a variable Xs and said: Prolog, fill in the blanks for me! And Prolog did this and reveals us precisely the cases when it will succeed.
In fact, it only succeeds with lists of 1s only. That is odd. Your definition is too restricted - it correctly counts the 1s in lists where there are only ones, but all other lists are rejected. #coder showed you how to extend your definition.
Here is another one using library(reif) for
SICStus|SWI. Alternatively, see tfilter/3.
count(X, Xs, N) :-
tfilter(=(X), Xs, Ys),
length(Ys, N).
A definition more in the style of the other definitions:
count(_, [], 0).
count(E, [X|Xs], N0) :-
if_(E = X, C = 1, C = 0),
count(E, Xs, N1),
N0 is N1+C.
And now for some more general uses:
How does a four element list look like that has 3 times a 1 in it?
?- length(L, 4), count(1, L, 3).
L = [1,1,1,_A], dif(1,_A)
; L = [1,1,_A,1], dif(1,_A)
; L = [1,_A,1,1], dif(1,_A)
; L = [_A,1,1,1], dif(1,_A)
; false.
So the remaining element must be something different from 1.
That's the fine generality Prolog offers us.
The problem is that as stated by #lurker if condition (or better unification) fails then the predicate will fail. You could make another clause for this purpose, using dif/2 which is pure and defined in the iso:
count(_, [], 0).
count(Num, [H|T], X) :- dif(Num,H), count(Num, T, X).
count(Num, [H|T], X) :- Num = H, count(Num, T, X1), X is X1 + 1.
The above is not the most efficient solution since it leaves many choice points but it is a quick and correct solution.
You simply let the predicate fail at the unification Num = X. Basically, it's like you don't accept terms which are different from the only one you are counting.
I propose to you this simple solution which uses tail recursion and scans the list in linear time. Despite the length, it's very efficient and elegant, it exploits declarative programming techniques and the backtracking of the Prolog engine.
count(C, L, R) :-
count(C, L, 0, R).
count(_, [], Acc, Acc).
count(C, [C|Xr], Acc, R) :-
IncAcc is Acc + 1,
count(C, Xr, IncAcc, R).
count(C, [X|Xr], Acc, R) :-
dif(X, C),
count(C, Xr, Acc, R).
count/3 is the launcher predicate. It takes the term to count, the list and gives to you the result value.
The first count/4 is the basic case of the recursion.
The second count/4 is executed when the head of the list is unified with the term you are looking for.
The third count/4 is reached upon backtracking: If the term doesn’t match, the unification fails, you won't need to increment the accumulator.
Acc allows you to scan the entire list propagating the partial result of the recursive processing. At the end you simply have to return it.
I solved it myself:
count(_, [], 0).
count(Num, [H|T], X) :- Num \= H, count(Num, T, X).
count(Num, [H|T], X) :- Num = H, count(Num, T, X1), X is X1 + 1.
I have decided to add my solution to the list here.
Other solutions here use either explicit unification/failure to unify, or libraries/other functions, but mine uses cuts and implicit unification instead. Note my solution is similar to Ilario's solution but simplifies this using cuts.
count(_, [], 0) :- !.
count(Value, [Value|Tail],Occurrences) :- !,
count(Value,Tail,TailOcc),
Occurrences is TailOcc+1.
count(Value, [_|Tail], Occurrences) :- count(Value,Tail,Occurrences).
How does this work? And how did you code it?
It is often useful to equate solving a problem like this to solving a proof by induction, with a base case, and then a inductive step which shows how to reduce the problem down.
Line 1 - base case
Line 1 (count(_, [], 0) :- !.) handles the "base case".
As we are working on a list, and have to look at each element, the simplest case is zero elements ([]). Therefore, we want a list with zero elements to have no instances of the Value we are looking for.
Note I have replaced Value in the final code with _ - this is because we do not care what value we are looking for if there are no values in the list anyway! Therefore, to avoid a singleton variable we negate it here.
I also added a ! (a cut) after this - as there is only one correct value for the number of occurrences we do not want Prolog to backtrack and fail - therefore we tell Prolog we found the correct value by adding this cut.
Lines 2/3 - inductive step
Lines 2 and 3 handle the "inductive step". This should handle if we have one or more elements in the list we are given. In Prolog we can only directly look at the head of the list, therefore let us look at one element at a time. Therefore, we have two cases - either the value at the head of the list is the Value we are looking for, or it is not.
Line 2
Line 2 (count(Value, [Value|Tail],Occurrences) :- !, count(Value,Tail,TailOcc), Occurrences is TailOcc+1.) handles if the head of our list and the value we are looking for match. Therefore, we simply use the same variable name so Prolog will unify them.
A cut is used as the first step in our solution (which makes each case mutually exclusive, and makes our solution last-call-optimised, by telling Prolog not to try any other rules).
Then, we find out how many instances of our term there are in the rest of the list (call it TailOcc). We don't know how many terms there are in the list we have at the moment, but we know it is one more than there are in the rest of the list (as we have a match).
Once we know how many instances there are in the rest of the list (call this Tail), we can take this value and add 1 to it, then return this as the last value in our count function (call this Occurences).
Line 3
Line 3 (count(Value, [_|Tail], Occurrences) :- count(Value,Tail,Occurrences).) handles if the head of our list and the value we are looking for do not match.
As we used a cut in line 2, this line will only be tried if line 2 fails (i.e. there is no match).
We simply take the number of instances in the rest of the list (the tail) and return this same value without editing it.
d_edge(a, b, 5).
e_edge(a, c, 6).
f_edge(b, c, 8).
% I will have a list of rules for the graph point
% from source to destination with weight.
list2pair([T], [A,B], [(T,A,B)]).
list2pair([T1|Tt], [A1,A2|T], Result) :-
list2pair(Tt, [A1|T], R1),
append([(T1,A1,A2)], R1, Result).
I want to come up with the result like
[d_edge(a,b), f_edge(b,c)]
my 1st arg will be the list of names [d_edge,f_edge]
my 2nd arg will be the list of vertexes [a,b,c].
My current code generates [(d_edge,a,b),(f_edge,b,c)].
Whenever I try to update the predicate from (T1,A1,A2) to T1(,A1,A2)
I get an error saying that it is not valid predicate.
I understand why I am getting the error. But I couldn't find a way around it.
First things first: T1(,A1,A2) is syntactically incorrect.
Here's how you could proceed using the built-in predicate (=..)/2 (a.k.a. "univ"):
list2pair([T], [A1,A2], [X]) :-
X =.. [T,A1,A2].
list2pair([T1|Tt], [A1,A2|T], [X|Xs]) :-
X =.. [T1,A1,A2],
list2pair(Tt, [A2|T], Xs).
Sample query using SICStus Prolog 4.3.2:
| ?- list2pair([d_edge,f_edge], [a,b,c], Xs).
Xs = [d_edge(a,b),f_edge(b,c)] ? ; % expected result
no
Note that the above only "constructs" these compound terms—it does not ensure that suitable facts d_edge/3, f_edge/3 etc really do exist.
I'm trying to figure out a way to check if two lists are equal regardless of their order of elements.
My first attempt was:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
However, this only checks if all elements of the list on the left exist in the list on the right; meaning areq([1,2,3],[1,2,3,4]) => true. At this point, I need to find a way to be able to test thing in a bi-directional sense. My second attempt was the following:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L), append([H1], T1, U), areq(U, L).
Where I would try to rebuild the lest on the left and swap lists in the end; but this failed miserably.
My sense of recursion is extremely poor and simply don't know how to improve it, especially with Prolog. Any hints or suggestions would be appreciated at this point.
As a starting point, let's take the second implementation of equal_elements/2 by #CapelliC:
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
Above implementation leaves useless choicepoints for queries like this one:
?- equal_elements([1,2,3],[3,2,1]).
true ; % succeeds, but leaves choicepoint
false.
What could we do? We could fix the efficiency issue by using
selectchk/3 instead of
select/3, but by doing so we would lose logical-purity! Can we do better?
We can!
Introducing selectd/3, a logically pure predicate that combines the determinism of selectchk/3 and the purity of select/3. selectd/3 is based on
if_/3 and (=)/3:
selectd(E,[A|As],Bs1) :-
if_(A = E, As = Bs1,
(Bs1 = [A|Bs], selectd(E,As,Bs))).
selectd/3 can be used a drop-in replacement for select/3, so putting it to use is easy!
equal_elementsB([], []).
equal_elementsB([X|Xs], Ys) :-
selectd(X, Ys, Zs),
equal_elementsB(Xs, Zs).
Let's see it in action!
?- equal_elementsB([1,2,3],[3,2,1]).
true. % succeeds deterministically
?- equal_elementsB([1,2,3],[A,B,C]), C=3,B=2,A=1.
A = 1, B = 2, C = 3 ; % still logically pure
false.
Edit 2015-05-14
The OP wasn't specific if the predicate
should enforce that items occur on both sides with
the same multiplicities.
equal_elementsB/2 does it like that, as shown by these two queries:
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2,3]).
false.
If we wanted the second query to succeed, we could relax the definition in a logically pure way by using meta-predicate
tfilter/3 and
reified inequality dif/3:
equal_elementsC([],[]).
equal_elementsC([X|Xs],Ys2) :-
selectd(X,Ys2,Ys1),
tfilter(dif(X),Ys1,Ys0),
tfilter(dif(X),Xs ,Xs0),
equal_elementsC(Xs0,Ys0).
Let's run two queries like the ones above, this time using equal_elementsC/2:
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2,3]).
true.
Edit 2015-05-17
As it is, equal_elementsB/2 does not universally terminate in cases like the following:
?- equal_elementsB([],Xs), false. % terminates universally
false.
?- equal_elementsB([_],Xs), false. % gives a single answer, but ...
%%% wait forever % ... does not terminate universally
If we flip the first and second argument, however, we get termination!
?- equal_elementsB(Xs,[]), false. % terminates universally
false.
?- equal_elementsB(Xs,[_]), false. % terminates universally
false.
Inspired by an answer given by #AmiTavory, we can improve the implementation of equal_elementsB/2 by "sharpening" the solution set like so:
equal_elementsBB(Xs,Ys) :-
same_length(Xs,Ys),
equal_elementsB(Xs,Ys).
To check if non-termination is gone, we put queries using both predicates head to head:
?- equal_elementsB([_],Xs), false.
%%% wait forever % does not terminate universally
?- equal_elementsBB([_],Xs), false.
false. % terminates universally
Note that the same "trick" does not work with equal_elementsC/2,
because of the size of solution set is infinite (for all but the most trivial instances of interest).
A simple solution using the sort/2 ISO standard built-in predicate, assuming that neither list contains duplicated elements:
equal_elements(List1, List2) :-
sort(List1, Sorted1),
sort(List2, Sorted2),
Sorted1 == Sorted2.
Some sample queries:
| ?- equal_elements([1,2,3],[1,2,3,4]).
no
| ?- equal_elements([1,2,3],[3,1,2]).
yes
| ?- equal_elements([a(X),a(Y),a(Z)],[a(1),a(2),a(3)]).
no
| ?- equal_elements([a(X),a(Y),a(Z)],[a(Z),a(X),a(Y)]).
yes
In Prolog you often can do exactly what you say
areq([],_).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
bi_areq(L1, L2) :- areq(L1, L2), areq(L2, L1).
Rename if necessary.
a compact form:
member_(Ys, X) :- member(X, Ys).
equal_elements(Xs, Xs) :- maplist(member_(Ys), Xs).
but, using member/2 seems inefficient, and leave space to ambiguity about duplicates (on both sides). Instead, I would use select/3
?- [user].
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
^D here
1 ?- equal_elements(X, [1,2,3]).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
2 ?- equal_elements([1,2,3,3], [1,2,3]).
false.
or, better,
equal_elements(Xs, Ys) :- permutation(Xs, Ys).
The other answers are all elegant (way above my own Prolog level), but it struck me that the question stated
efficient for the regular uses.
The accepted answer is O(max(|A| log(|A|), |B|log(|B|)), irrespective of whether the lists are equal (up to permutation) or not.
At the very least, it would pay to check the lengths before bothering to sort, which would decrease the runtime to something linear in the lengths of the lists in the case where they are not of equal length.
Expanding this, it is not difficult to modify the solution so that its runtime is effectively linear in the general case where the lists are not equal (up to permutation), using random digests.
Suppose we define
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
This is the Prolog version of the mathematical function Prod_i h(a_i) | p, where h is the hash, and p is a prime. It effectively maps each list to a random (in the hashing sense) value in the range 0, ...., p - 1 (in the above, p is the large prime 1610612741).
We can now check if two lists have the same digest:
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
If two lists have different digests, they cannot be equal. If two lists have the same digest, then there is a tiny chance that they are unequal, but this still needs to be checked. For this case I shamelessly stole Paulo Moura's excellent answer.
The final code is this:
equal_elements(A, B) :-
same_digests(A, B),
sort(A, SortedA),
sort(B, SortedB),
SortedA == SortedB.
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
One possibility, inspired on qsort:
split(_,[],[],[],[]) :- !.
split(X,[H|Q],S,E,G) :-
compare(R,X,H),
split(R,X,[H|Q],S,E,G).
split(<,X,[H|Q],[H|S],E,G) :-
split(X,Q,S,E,G).
split(=,X,[X|Q],S,[X|E],G) :-
split(X,Q,S,E,G).
split(>,X,[H|Q],S,E,[H|G]) :-
split(X,Q,S,E,G).
cmp([],[]).
cmp([H|Q],L2) :-
split(H,Q,S1,E1,G1),
split(H,L2,S2,[H|E1],G2),
cmp(S1,S2),
cmp(G1,G2).
A simple solution using cut.
areq(A,A):-!.
areq([A|B],[C|D]):-areq(A,C,D,E),areq(B,E).
areq(A,A,B,B):-!.
areq(A,B,[C|D],[B|E]):-areq(A,C,D,E).
Some sample queries:
?- areq([],[]).
true.
?- areq([1],[]).
false.
?- areq([],[1]).
false.
?- areq([1,2,3],[3,2,1]).
true.
?- areq([1,1,2,2],[2,1,2,1]).
true.