I am trying to write a program that will check the structural equivalence of some list input, whether it includes just atoms or nested sub lists.
I am having trouble with using AND, I don't even know if its possible and I cant seem to understand documentation I am looking at.
My code:
(define (structEqual a b)
(cond
(((null? car a) AND (null? car b)) (structEqual (cdr a) (cdr b)))
(((null? car a) OR (null? car b)) #f)
(((pair? car a) AND (pair? car b))
(if (= (length car a) (length car b))
(structEqual (cdr a) (cdr b))
#f))
(((pair? car a) OR (pair? car b)) #f)
(else (structEqual (cdr a) (cdr b)))))
The idea is (i think): (when I say both, i mean the current cdr of a or b)
Check if both a and b are null, then they are structurally equal
Check if only either a or b is null, then they are not structually equal
Check if both of them are pairs
If they are both pairs, then see if the length of the pair is equal, if not they are not structurally equal.
If they are not both pairs, then if one of them is a pair and the other isnt then they are not structurally equivalent.
If neither of them are pairs, then they both must be atoms, so they are structurally equivalent.
So as you can see I am trying to recursively do this by checking the equivalence of the car of a or b, and then either returning #f if they fail or moving on to the cdr of each if they are equivalent at each step.
Any help?
There is no infix operators in Scheme (or any LISP) only prefix. Every time the operator comes first. (or x (and y z q) (and y w e)) where each letter can be a complex expression. Everything that is not #f is a true value. Thus (if 4 'a 'b) evaluates to a because 4 is a true value. car needs its parentheses.
When evaluating another predicate in cond you should make use of the fact that everything up to that has been false. eg.
(define (structure-equal? a b)
(cond
((null? a) (null? b)) ; if a is null the result is if b is null
((not (pair? a)) (not (pair? b))) ; if a is not pair the result is if b is not also
((pair? b) (and (structure-equal? (car a) (car b)) ; if b is pair (both a and b is pair then) both
(structure-equal? (cdr a) (cdr b)))) ; car and cdr needs to be structurally equal
(else #f))) ; one pair the other not makes it #f
(structure-equal '(a (b (c d e) f) g . h) '(h (g (f e d) c) b . a)) ; ==> #t
Related
I tried to implement the cons* (https://scheme.com/tspl4/objects.html#./objects:s44).
Examples:
(cons* '()) -> ()
(cons* '(a b)) -> (a b)
(cons* 'a 'b 'c) -> (a b . c)
(cons* 'a 'b '(c d)) -> (a b c d)
this is what I did do far but I don't know how to replace the ?? to make the third example (the dot notion) work
(define cons*
(lambda x
(if
(null? x)
x
(if (list? (car (reverse x)))
(fold-right cons (car (reverse x)) (reverse (cdr (reverse x))))
???
)
)
)
)
Here's a lo-fi way using lambda -
(define cons*
(lambda l
(cond ((null? l) null)
((null? (cdr l)) (car l))
(else (cons (car l) (apply cons* (cdr l)))))))
Here's a way you can do it using match (Racket)
(define (cons* . l)
(match l
((list) null) ; empty list
((list a) a) ; singleton list
((list a b ...) (cons a (apply cons* b))))) ; two or elements
Often times patterns and order can be rearranged and still produce correct programs. It all depends on how you're thinking about the problem -
(define (cons* . l)
(match l
((list a) a) ; one element
((list a b) (cons a b)) ; two elements
((list a b ...) (cons a (apply cons* b))))) ; more
Or sugar it up with define/match -
(define/match (cons* . l)
[((list)) null]
[((list a)) a]
[((list a b ...)) (cons a (apply cons* b))])
All four variants produce the expected output -
(cons* '())
(cons* '(a b))
(cons* 'a 'b 'c)
(cons* 'a 'b '(c d))
'()
'(a b)
'(a b . c)
'(a b c d)
Personally, I'd use a macro instead of a function to transform a cons* into a series of cons calls:
(define-syntax cons*
(syntax-rules ()
((_ arg) arg)
((_ arg1 rest ...) (cons arg1 (cons* rest ...)))))
(define (writeln x)
(write x)
(newline))
(writeln (cons* '())) ;; -> '()
(writeln (cons* '(a b))) ;; -> '(a b)
(writeln (cons* 'a 'b 'c)) ;; -> (cons 'a (cons 'b 'c)) -> '(a b . c)
(writeln (cons* 'a 'b '(c d))) ;; -> (cons 'a (cons 'b '(c d))) -> '(a b c d)
A Simple Procedure
I think that you are making this more complicated than it needs to be. It seems best not to use lambda x here, since that would allow calls like (cons*) with no arguments. Instead, I would use (x . xs), and I would even just use the define syntax:
(define (cons* x . xs)
(if (null? xs)
x
(cons x (apply cons*
(car xs)
(cdr xs)))))
If there is only one argument to cons*, then xs is empty, i.e., (null? xs) is true, and that single argument x should be returned. Otherwise you should cons the first argument to the result of calling cons* again, with the first element of xs as the first argument, followed by the remaining arguments from xs. The trick here is that (cdr xs) returns a list, which will itself be put into a list thanks to the (x . xs) syntax. This is the reason for using apply, which will apply cons* to the arguments in the list.
This works for all of the test cases:
> (cons* '())
()
> (cons* '(a b))
(a b)
> (cons* 'a 'b 'c)
(a b . c)
> (cons* 'a 'b '(c d))
(a b c d)
Using Mutation
Taking a closer look at what a proper list really is suggests another approach to solving the problem. Consider a list like (a b c d). This is really a chain of cons cells that look like this:
(a . (b . (c . (d . ()))))
We would like to transform this list to an improper, or dotted, list:
(a . (b . (c . (d . ())))) --> (a . (b . (c . d)))
This transformed list is equivalent to (abc.d), which is what we would like the call to (cons* 'a 'b 'c 'd) to return.
We could mutate the proper list to an improper list by setting the cdr of the next-to-last pair to the car of the last pair; that is, by setting the cdr of (c . (d .()) to d. We can use the list-tail procedure to get at the next-to-last pair, list-ref to get at the car of the last pair, and set-cdr! to set the cdr of the next-to-last pair to the new value. After this, the list is no longer terminated by an empty list (unless the car of the final pair is itself an empty list!).
Here is a procedure proper->improper! that mutates a proper list to an improper list. Note that the input must be a proper list to avoid an error. If the input list contains only a single element, then that element is simply returned and no mutation takes place.
(define (proper->improper! xs)
(cond ((null? (cdr xs))
(car xs))
(else
(set-cdr! (list-tail xs (- (length xs) 2))
(list-ref xs (- (length xs) 1)))
xs)))
Now cons* can be defined simply in terms of proper->improper!:
(define (cons* . xs)
(proper->improper! xs))
Here, the arguments to cons* are packed up into a fresh list and passed to proper->improper! which effectively removes the terminal empty list from its input, returning a chain of pairs whose last cdr is the last argument to cons*; or if only one argument is provided, that argument is returned. This works just like the other solution:
> (cons* '())
()
> (cons* 'a)
a
> (cons* 'a 'b 'c 'd)
(a b c . d)
> (cons* 'a 'b '(c d))
(a b c d)
Real Life
In real life, at least in Chez Scheme, cons* is not implemented like any of these solutions, or even in Scheme at all. Instead Chez opted to make cons* a primitive procedure, implemented in C (I believe).
I am trying to reverse a general list using Scheme. How can I reverse a complex list?
I can make a single list like (A B C D) works using my function, but for some complex list inside another list like (F ((E D) C B) A), the result is just (A ((E D) C B) F). How can I improve it?
(define (reverse lst)
(if (null? lst)
lst
(append (reverse (cdr lst)) (list (car lst)))))
Any comments will be much appreciated!
Here is another way that uses a default parameter (r null) instead of the expensive append operation -
(define (reverse-rec a (r null))
(if (null? a)
r
(reverse-rec (cdr a)
(cons (if (list? (car a))
(reverse-rec (car a))
(car a))
r))))
(reverse-rec '(F ((E D) C B) A))
; '(A (B C (D E)) F)
Using a higher-order procedure foldl allows us to encode the same thing without the extra parameter -
(define (reverse-rec a)
(foldl (lambda (x r)
(cons (if (list? x) (reverse-rec x) x)
r))
null
a))
(reverse-rec '(F ((E D) C B) A))
; '(A (B C (D E)) F)
There are several ways of obtaining the expected result. One is to call reverse recursively also on the car of the list that we are reversing, of course taking care of the cases in which we must terminate the recursion:
(define (reverse x)
(cond ((null? x) '())
((not (list? x)) x)
(else (append (reverse (cdr x)) (list (reverse (car x)))))))
(reverse '(F ((E D) C B) A))
'(A (B C (D E)) F)
(A ((E D) C B) F) is the correct result, if your goal is to reverse the input list. There were three elements in the input list, and now the same three elements are present, in reverse order. Since it is correct, I don't suggest you improve its behavior!
If you have some other goal in mind, some sort of deep reversal, you would do well to specify more clearly what result you want, and perhaps a solution will be easier to find then.
I just started learning Common Lisp 2 days ago, so please excuse spaghetti code and non-understanding.
My problem is the following: I want to write a function that performs the set-
operation A\B, where A and B sets that are not empty. They are represented by two lists.
So far I came up with this:
(defun myDifference (a b)
(if (null a)
(return-from myDifference) ;when a hits NIL, get outta the whole function
)
(if (not(member (car a) b)) ; if the first element of A ist not in B, add it to a list (which later should be the return)
(cons (car a) '())
)
(myDifference (cdr a) b) ; proceed with the remaining elements of A, until (null a) hits
)
I tried it with:
(myDifference '( 1 2 3) '(1 5 6))
But the output is NIL, whichever lists I try it on.
I suspect the problem occurs in quitting the function.
You have 3 expressions in your my-difference body. The first returns nil if (null a)
The second computes either (list a) or (list), then discards that value.
The third recurses with a changed to (cdr a).
It's clear that this has to return nil since the last one eventuelly recurses with a becoming nil and the recursion then returns nil since that is the default value when you don't supply a value. A better approach would be to make it one expression like this:
(defun my-difference (a b)
(if (null a)
a
(if (not (member (car a) b))
(cons (car a) (my-difference (cdr a) b))
(my-difference (cdr a) b))))
The third part of if is the else part and as you see we nest to get somthing similar to if-elseif-else of other languages. This can be written flatter with cond:
(defun my-difference (a b)
(cond ((null a) a)
((not (member (car a) b))
(cons (car a) (my-difference (cdr a) b)))
(t (my-difference (cdr a) b))))
I want to write a function that takes two list arguments and returns the longer list of the two inputs. If the two lists are equal in length, the function returns #t, and if one of the arguments is not a list, the function should return #f.
Sample runs:
(longer-list '(1 2 3 4) '(a b c d e)) returns (a b c d e)
(longer-list '(d e f) '(4 5 6)) returns #t (or true)
(longer-list '(g h i) 3) returns #f (or false)
How can I do this?
Seems to be you need to do a case analysis. You need to check if either argument are not a list and return #f there, then if it's not you need to get the lengths of the two lists to check if they are of equal length or if the one list is maller than the other. Something like this perhaps?
(define (longest lst1 lst2)
(if <??> ; check if one of the argument is not a list
#f
(let ((len1 <??>) (len2 <??>))
(cond ((= <??> <??>) #t) ; same length
((< <??> <??>) <??>) ; lst1 shorter than lst2
(else <??>>))))) ; lst2 shorter than lst1
It seems like an assignment so I let you fill in the blanks.
(define (longer-list a b)
(and (list? a)
(list? b)
(let ll ((aa a) (bb b))
(cond
((and (null? aa) (null? bb)) #t)
((null? aa) b)
((null? bb) a)
(else (ll (cdr aa) (cdr bb)))))))
This is the function that removes the last element of the list.
(define (remove-last ll)
(if (null? (cdr ll))
'()
(cons (car ll) (remove-last (cdr ll)))))
So from my understanding if we cons a list (eg. a b c with an empty list, i.e. '(), we should get
a b c. However, testing in interaction windows (DrScheme), the result was:
If (cons '() '(a b c))
(() a b c)
If (cons '(a b c) '())
((a b c))
I'm like what the heck :(!
Then I came back to my problem, remove all elements which have adjacent duplicate. For example,
(a b a a c c) would be (a b).
(define (remove-dup lst)
(cond ((null? lst) '())
((null? (cdr lst)) (car lst))
((equal? (car lst) (car (cdr lst))) (remove-dup (cdr (cdr lst))))
(else (cons (car lst) (car (cdr lst))))
)
)
It was not correct, however I realize the answer have a . between a b. How could this happen?
`(a . b)`
There was only one call to cons in my code above, I couldn't see which part could generate this .. Any idea?
Thanks,
cons build pairs, not lists. Lisp interpreters uses a 'dot' to visually separate the elements in the pair. So (cons 1 2) will print (1 . 2). car and cdr respectively return the first and second elements of a pair. Lists are built on top of pairs. If the cdr of a pair points to another pair, that sequence is treated as a list. The cdr of the last pair will point to a special object called null (represented by '()) and this tells the interpreter that it has reached the end of the list. For example, the list '(a b c) is constructed by evaluating the following expression:
> (cons 'a (cons 'b (cons 'c '())))
(a b c)
The list procedure provides a shortcut for creating lists:
> (list 'a 'b 'c)
(a b c)
The expression (cons '(a b c) '()) creates a pair whose first element is a list.
Your remove-dup procedure is creating a pair at the else clause. Instead, it should create a list by recursively calling remove-dup and putting the result as the second element of the pair. I have cleaned up the procedure a bit:
(define (remove-dup lst)
(if (>= (length lst) 2)
(if (eq? (car lst) (cadr lst))
(cons (car lst) (remove-dup (cddr lst)))
(cons (car lst) (remove-dup (cdr lst))))
lst))
Tests:
> (remove-dup '(a b c))
(a b c)
> (remove-dup '(a a b c))
(a b c)
> (remove-dup '(a a b b c c))
(a b c)
Also see section 2.2 (Hierarchical Data and the Closure Property) in SICP.
For completeness, here is a version of remove-dup that removes all identical adjacent elements:
(define (remove-dup lst)
(if (>= (length lst) 2)
(let loop ((f (car lst)) (r (cdr lst)))
(cond ((and (not (null? r))(eq? f (car r)))
(loop f (cdr r)))
(else
(cons (car lst) (remove-dup r)))))
lst))
Here in pseudocode:
class Pair {
Object left,
Object right}.
function cons(Object left, Object right) {return new Pair(left, right)};
So,
1. cons('A,'B) => Pair('A,'B)
2. cons('A,NIL) => Pair('A,NIL)
3. cons(NIL,'A) => Pair(NIL,'A)
4. cons('A,cons('B,NIL)) => Pair('A, Pair('B,NIL))
5. cons(cons('A 'B),NIL)) => Pair(Pair('A,'B),NIL)
Let's see lefts and rights in all cases:
1. 'A and 'B are atoms, and whole Pair is not a list, so (const 'a 'b) gives (a . b) in scheme
2. NIL is an empty list and 'A is an atom, (cons 'a '()) gives list (a)
3. NIL and 'A as above, but as left is list(!), (cons '() 'a) gives pair (() . a)
4. Easy case, we have proper list here (a b).
5. Proper list, head is pair (a . b), tail is empty.
Hope, you got the idea.
Regarding your function. You working on LIST but construct PAIRS.
Lists are pairs (of pairs), but not all pairs are lists! To be list pair have to have NIL as tail.
(a b) pair & list
(a . b) pair not list
Despite cons, your function has errors, it just don't work on '(a b a a c c d). As this is not related to your question, I will not post fix for this here.