Passing variable values between class methods - ruby

I am trying to figure out if it is possible to pass a value between methods in a Ruby class.
I haven't found much on my own and figured I would ask the experts. Could it be done passed as a arg/parameter to another method as well?
class PassingValues
def initialize
#foo = 1
end
def one
#foo += 1
end
def two
#foo += 1
end
def three
p #foo
end
end
bar = PassingValues.new
If I wanted this to print out foo value of 3:
bar.three

If you want bar.three to print a 3 you will need to call before the one and two methods to ensure the variable is updated to the three so:
class PassingValues
def initialize
#foo = 1
end
def one
#foo += 1
end
def two
one
#foo += 1
end
def three
two
p #foo
end
end
Anyway this doesn't make sense as long as the methods will be eventually modifying the variable, so each time you call one of them the number will increase the amount expected.

Those are instance methods, not class methods. And #foo is already shared among them.
bar = PassingValues.new
bar.one
bar.two
bar.three

In this case #foo is an instance variable and it can be referenced (it is not passed here) in any method of the class.
When you call you create bar as an instance of the class using: PassingValues.new
it is initialized, and sets #foo to 1.
When you then call the method three using bar.three, you simply print out #foo, which is still equal to 1.
You can change your three method to increment #foo by 2, so it is now equal to 3, then print:
def three
#foo += 2
p #foo
end

Related

Why can't self be replaced in Ruby?

EDIT: For those criticizing my intentions with replacing self, you are free to click the back button, continue developing with your own opinions, and leave me to develop with mine :)
I was wondering if there is a way to completely remove the object that self references and replace it with a new instance.
Example:
def refresh_from_server!
self = newly_fetched_object_from_server
end
I don't want to return the new object.
It seems like I would have to build my own copying interface and call self.copy_from(other_object) but maybe someone has a cool ruby bit to share that works better!
--EDIT
Since some people seem unclear on the question, I want instance.my_method! to completely replace instance with a new instance of that class
For example lets imagine we have a class
class Counter
attr_accessor :count
def initialize
count = 0
end
def reset!
# This is what I want to achieve.
# Obviously in this case it would be trivial to write `self.count = 0`
# Or return a new value
# But I have a much more complex object in real life
# which copying would not be trivial
# All I'm looking for is a bit of stylistic sugar to make my code look cooler
# If it doesn't exist, I would love to know why
self = Counter.new
end
def up
count += 1
end
end
No, you can't replace self. You can only change some/all of its state, but the object reference will remain the same.
Why would you want to do this, anyway? If you just want to piggyback on your initialization logic (as it seems to me to be the case), some refactoring will help: just call a shared method from both places.
class Counter
attr_accessor :count
def initialize
init_state
end
def reset!
init_state
end
def up
self.count += 1
end
private
def init_state
self.count = 0
end
end
As already noted by others, self can't be replaced from enclosed instance. If replacement of instance with a new instance is required, it need to be done from outside, like in a class factory which registers its class instances.
Bellow is a simplest example using a delegator, demonstrating what I mean. SimpleDelegator represents a simple wrapper around Counter instance:
require 'delegate'
class Counter
attr_accessor :count
def initialize
#count = 0
end
end
class CounterDecorator < SimpleDelegator
def reset!
__setobj__(__getobj__.class.new)
end
end
c = CounterDecorator.new(Counter.new)
p c.__getobj__.object_id
c.count = 123
p c.count
c.reset!
p c.__getobj__.object_id
p c.count
# produces following output
20131160
123
20130900
0
Though the question is old, it is still visited. I will attempt to elaborate more on the "why" in "Why can't self be replaced in Ruby?".
usage of self in which context
https://web.archive.org/web/20191217060940/https://www.honeybadger.io/blog/ruby-self-cheat-sheet/
There are various contexts in which self can be used. You question uses it in the context of an instance method, so I will focus on that.
E.g. this context:
class SomeClass
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
end
a = SomeClass.new
a.some_method
# prints : SomeClass - 47013616336320 - #<SomeClass:0x000055846bcd7b80>
Note that there are other usages of self: e.g. where it reference the Class object in scope of a class definition. E.g.
class SomeClass
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
# prints : Class - 47102719314940 - SomeClass
the intended effect of replacing self
Below code a demonstration of what you expected / wished (as I understand it):
class Counter
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
def refresh!
self = Counter.new # not possible
# results in error : "Can't change the value of self"
end
end
a = Counter.new
a.some_method
# prints : Counter - 47013616336320 - #<Counter:0x000055846bcd7b80>
a.refresh!
# now you wish a to point to a different object
But what about other references? E.g. assuming you wanted:
a = Counter.new
b = a
a.some_method
b.some_method
# both print same : Counter - 47013616336320 - #<Counter:0x000055846bcd7b80>
a.refresh!
# now you wish both a and b to point to the same (new) object
If stated as such it gives a hint on the why not.
why we can't replace self
The short answer is that it is simply not something that the language / interpreter offers. As to the reasoning: in a way #matthewd answers that in this answer:
All ruby variable references are essentially pointers (but not
pointers-to-pointers), in C parlance.
You can mutate an object (assuming it's not immutable), and all
variables that reference it will thus be pointing at the same (now
mutated) object. But the only way to change which object a variable is
referring to is with direct assignment to that variable -- and each
variable is a separate reference; you can't alias a single reference
with two names.
In short: there may be other references to that object in variables that are not in the scope of the instance method. These cannot be manipulated by that instance method.
a way to achieve the intended effect
If you want this effect and only want to touch the code of Counter you might move all methods and state to an inner class Counter::Inner and make Counter behave like a decoupled reference. The only 'state' of Counter would be the reference to the Counter::Inner object and Counter can delegate all calls it receives to that reference in a method_missing method. In case of your refresh! you can replace the reference in Counter same as you now intent to replace self. All outside code will now use indirectly the new Counter:Inner instance.
class Counter
class Inner
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
end
def initialize(*args)
#reference = Inner.new(*args)
end
def method_missing(method_id, *args)
#reference.send(method_id, *args)
end
def refresh!
#reference = Inner.new
end
end
a = Counter.new
b = a
a.some_method
b.some_method
# both print same : Counter::Inner - 46991238242100 - #<Counter::Inner:0x0000557a00203e68>
a.refresh!
a.some_method
b.some_method
# both print same : Counter::Inner - 46991238240000 - #<Counter::Inner:0x0000557a00202e00>
Just one more answer for the archives :-) I hope this gives useful insights to future visitors.

Count initializations of Ruby Class

Is there a way to count the amount of instances that get created as long as the program is running?
Something like
class Foo
#bar = 0
def initialize
#bar += 1
end
end
won't work (#bar is nil in initialize).
Can this be done somehow?
You should use a class variable instead of an instance variable:
class Foo
##count = 0
def initialize
##count += 1
end
def Foo.get_count
##count
end
end
foo1 = Foo.new
foo2 = Foo.new
foo3 = Foo.new
puts Foo.get_count
# => 3
Instance variables belong to objects (aka instances), that's why they are called instance variables after all. Your first #bar is an instance variable of Foo, your second #bar is an instance variable of the newly-created instance of Foo. Those are two completely different objects (they aren't even of the same class: the newly-created instance is of class Foo, whereas Foo is of class Class).
You obviously need to increment #bar in a method called on Foo, not in a method called on instances of Foo. So, can we think about a method that is a) called on Foo and b) called everytime an instance is created? What about new?
class Foo
#bar = 0
def self.new(*)
#bar += 1
super
end
end
Okay, technically speaking, this doesn't count the number of instances, only the number of times new was called. Sometimes, instances get created without calling new, e.g. when de-serializing. This should be the closest you can get without resorting to ugly hacks of the interpreter internals.
You might think you can override allocate instead (I thought so, too), but I just tested it and it doesn't work. Presumably, the default implementation of new doesn't call allocate via normal means but actually uses the interpreter internal implementation directly.

Is it possible to temporarily alter an instance variable for a chained method call?

I have a class that lazily loads data from a database into an instance variable, they are events in an array in numeric order. The class has several methods that analyse this array, here is an example of how I use it.
class Foo
def initialize
#a = [1,2,3,4,5] # data from database
end
def analyse
#a.reduce(:+)
end
end
d = Foo.new
result = d.analyse
I wanted to be able to apply these methods to the data after a very basic filter (eg: <= 3) and I imagined being able to call it like so:
d.at(3).analyse
and that the at method only affected the instance variable for the chained analyse call. i.e.
d = Foo.new # data loaded into instance var [1,2,3,4,5]
d.analyse # 15
d.at(3).analyse # 6
d.analyse # 15
I'm not sure how I can do this without re-creating a completely new object within the at call and this feels inefficient. I have a work around which would change how I call the at method - not the end of the world but I wondered if what I want is feasible whilst remaining efficient.
I'm not sure how I can do this without re-creating a completely new object within the at call and this feels inefficient.
I don't think creating a new object is too expensive. You could return a new Foo from at, initialized with a subset of the original data. You'd have another Foo instance and another Array instance, but the array would contain the very same objects:
class Foo
def initialize(a = nil)
#a = a || [1,2,3,4,5] # use a or fetch data from database
end
def analyse
#a.reduce(:+)
end
def at(max)
Foo.new(#a.take_while { |x| x <= max })
end
end
Example:
d = Foo.new
d.analyse #=> 15
d.at(3).analyse #=> 6
d.analyse #=> 15
You can prepare another instance variable which is set by at, overrides #a when defined, and is reset by analyse.
class Foo
def initialize
#a = [1,2,3,4,5]
end
def at i
#b = #a.select{|e| e <= i}
self
end
def array
if instance_variable_defined?(:#b)
#b.tap{remove_instance_variable(:#b)}
else
#a
end
end
def analyse
array.reduce(:+)
end
end

Create blank binding in the scope of an object

class Foo
def self.run(n,code)
foo = self.new(n)
#env = foo.instance_eval{ binding }
#env.eval(code)
end
def initialize(n)
#n = n
end
end
Foo.run( 42, "p #n, defined? foo" )
#=> 42
#=> "local-variable"
The sample program above is intended to evaluate arbitrary code within the scope of a Foo instance. It does that, but the binding is "polluted" with the local variables from the code method. I don't want foo, n, or code to be visible to the eval'd code. The desired output is:
#=> 42
#=> nil
How can I create a binding that is (a) in the scope of the object instance, but (b) devoid of any local variables?
The reason that I am creating a binding instead of just using instance_eval(code) is that in the real usage I need to keep the binding around for later usage, to preserve the local variables created in it.
so like this? or did i miss something important here?
class Foo
attr_reader :b
def initialize(n)
#n = n
#b = binding
end
def self.run(n, code)
foo = self.new(n)
foo.b.eval(code)
end
end
Foo.run(42, "p #n, defined?(foo)")
# 42
# nil
or move it further down to have even less context
class Foo
def initialize(n)
#n = n
end
def b
#b ||= binding
end
def self.run(n, code)
foo = self.new(n)
foo.b.eval(code)
end
end
Foo.run(42, "p #n, defined?(foo), defined?(n)")
# 42
# nil
# nil
Answer:
module BlankBinding
def self.for(object)
#object = object
create
end
def self.create
#object.instance_eval{ binding }
end
end
Description:
In order to get a binding with no local variables, you must call binding in a scope without any of them. Calling a method resets the local variables, so we need to do that. However, if we do something like this:
def blank_binding_for(obj)
obj.instance_eval{ binding }
end
…the resulting binding will have an obj local variable. You can hide this fact like so:
def blank_binding_for(_)
_.instance_eval{ binding }.tap{ |b| b.eval("_=nil") }
end
…but this only removes the value of the local variable. (There is no remove_local_variable method in Ruby currently.) This is sufficient if you are going to use the binding in a place like IRB or ripl where the _ variable is set after every evaluation, and thus will run over your shadow.
However, as shown in the answer at top, there's another way to pass a value to a method, and that's through an instance variable (or class variable, or global variable). Since we are using instance_eval to shift the self to our object, any instance variables we create in order to invoke the method will not be available in the binding.

customizing ruby .new operator

Let's say I have a class Foo and the constructor takes 2 parameters.
Based on these parameters the initialize method does some heavy calculations and stores them as variables in the instance of the class. Object created.
Now I want to optimize this and create a cache of these objects. When creating a new Foo object, I want to return a existing one from the cache if the parameters match. How can I do this?
I currently have a self.new_using_cache(param1, param2), but I would love to have this integrated in the normal Foo.new().
Is this possible in any way?
I can also deduct that using .new() combined with a cache is not really syntactical correct.
That would mean that the method should be called new_or_from_cache().
clarification
It's not just about the heavy calculation, it's also preferred because of limiting the amount of duplicate objects. I don't want 5000 objects in memory, when I can have 50 unique ones from a cache. So I really need to customize the .new method, not just the cached values.
class Foo
##cache = {}
def self.new(value)
if ##cache[value]
##cache[value]
else
##cache[value] = super(value)
end
end
def initialize(value)
#value = value
end
end
puts Foo.new(1).object_id #2148123860
puts Foo.new(2).object_id #2148123820 (different from first instance)
puts Foo.new(1).object_id #2148123860 (same as first instance)
You can actually define self.new, then call super if you actually want to use Class#new.
Also, this totally approach prevents any instantiation from ever occurring if a new instance isn't actually needed. This is die to the fact the initialize method doesn't actually make the decision.
Here's a solution I came up with by defining a generic caching module. The module expects your class to implement the "retrieve_from_cache" and "store_in_cache" methods. If those methods don't exist, it doesn't attempt to do any fancy caching.
module CacheInitializer
def new(*args)
if respond_to?(:retrieve_from_cache) &&
cache_hit = retrieve_from_cache(*args)
cache_hit
else
object = super
store_in_cache(object, *args) if respond_to?(:store_in_cache)
object
end
end
end
class MyObject
attr_accessor :foo, :bar
extend CacheInitializer
#cache = {}
def initialize(foo, bar)
#foo = foo
#bar = bar
end
def self.retrieve_from_cache(foo, bar)
# grab the object from the cache
#cache[cache_key(foo, bar)]
end
def self.store_in_cache(object, foo, bar)
# write back to cache
#cache[cache_key(foo, bar)] = object
end
private
def self.cache_key(foo, bar)
foo + bar
end
end
Something like this?
class Foo
##cache = {}
def initialize prm1, prm2
if ##cache.key?([prm1, prm2]) then #prm1, #prm2 = ##cache[[prm1, prm2]] else
#prm1 = ...
#prm2 = ...
##cache[[prm1, prm2]] = [#prm1, #prm2]
end
end
end
Edited
To not create an instance when the parameters are the same as before,
class Foo
##cache = {}
def self.new prm1, prm2
return if ##cache.key?([prm1, prm2])
#prm1 = ...
#prm2 = ...
##cache[[prm1, prm2]] = [#prm1, #prm2]
super
end
end
p Foo.new(1, 2)
p Foo.new(3, 4)
p Foo.new(1, 2)
# => #<Foo:0x897c4f0>
# => #<Foo:0x897c478>
# => nil
You could use a class-level instance variable to store results from previous object instantiations:
class Foo
#object_cache = {}
def initialize(param1, param2)
#foo1 = #object_cache[param1] || #object_cache[param1] = expensive_calculation
#foo2 = #object_cache[param2] || #object_cache[param2] = expensive_calculation
end
private
def expensive_calculation
...
enf
end
As you probably know you have reinvented the factory method design pattern and it's a perfectly valid solution using your name for the factory method. In fact, it's probably better to do it without redefining new if anyone else is going to have to understand it.
But, it can be done. Here is my take:
class Test
##cache = {}
class << self
alias_method :real_new, :new
end
def self.new p1
o = ##cache[p1]
if o
s = "returning cached object"
else
##cache[p1] = o = real_new(p1)
s = "created new object"
end
puts "%s (%d: %x)" % [s, p1, o.object_id]
o
end
def initialize p
puts "(initialize #{p})"
end
end
Test.new 1
Test.new 2
Test.new 1
Test.new 2
Test.new 3
And this results in:
(initialize 1)
created new object (1: 81176de0)
(initialize 2)
created new object (2: 81176d54)
returning cached object (1: 81176de0)
returning cached object (2: 81176d54)
(initialize 3)

Resources