EDIT: For those criticizing my intentions with replacing self, you are free to click the back button, continue developing with your own opinions, and leave me to develop with mine :)
I was wondering if there is a way to completely remove the object that self references and replace it with a new instance.
Example:
def refresh_from_server!
self = newly_fetched_object_from_server
end
I don't want to return the new object.
It seems like I would have to build my own copying interface and call self.copy_from(other_object) but maybe someone has a cool ruby bit to share that works better!
--EDIT
Since some people seem unclear on the question, I want instance.my_method! to completely replace instance with a new instance of that class
For example lets imagine we have a class
class Counter
attr_accessor :count
def initialize
count = 0
end
def reset!
# This is what I want to achieve.
# Obviously in this case it would be trivial to write `self.count = 0`
# Or return a new value
# But I have a much more complex object in real life
# which copying would not be trivial
# All I'm looking for is a bit of stylistic sugar to make my code look cooler
# If it doesn't exist, I would love to know why
self = Counter.new
end
def up
count += 1
end
end
No, you can't replace self. You can only change some/all of its state, but the object reference will remain the same.
Why would you want to do this, anyway? If you just want to piggyback on your initialization logic (as it seems to me to be the case), some refactoring will help: just call a shared method from both places.
class Counter
attr_accessor :count
def initialize
init_state
end
def reset!
init_state
end
def up
self.count += 1
end
private
def init_state
self.count = 0
end
end
As already noted by others, self can't be replaced from enclosed instance. If replacement of instance with a new instance is required, it need to be done from outside, like in a class factory which registers its class instances.
Bellow is a simplest example using a delegator, demonstrating what I mean. SimpleDelegator represents a simple wrapper around Counter instance:
require 'delegate'
class Counter
attr_accessor :count
def initialize
#count = 0
end
end
class CounterDecorator < SimpleDelegator
def reset!
__setobj__(__getobj__.class.new)
end
end
c = CounterDecorator.new(Counter.new)
p c.__getobj__.object_id
c.count = 123
p c.count
c.reset!
p c.__getobj__.object_id
p c.count
# produces following output
20131160
123
20130900
0
Though the question is old, it is still visited. I will attempt to elaborate more on the "why" in "Why can't self be replaced in Ruby?".
usage of self in which context
https://web.archive.org/web/20191217060940/https://www.honeybadger.io/blog/ruby-self-cheat-sheet/
There are various contexts in which self can be used. You question uses it in the context of an instance method, so I will focus on that.
E.g. this context:
class SomeClass
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
end
a = SomeClass.new
a.some_method
# prints : SomeClass - 47013616336320 - #<SomeClass:0x000055846bcd7b80>
Note that there are other usages of self: e.g. where it reference the Class object in scope of a class definition. E.g.
class SomeClass
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
# prints : Class - 47102719314940 - SomeClass
the intended effect of replacing self
Below code a demonstration of what you expected / wished (as I understand it):
class Counter
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
def refresh!
self = Counter.new # not possible
# results in error : "Can't change the value of self"
end
end
a = Counter.new
a.some_method
# prints : Counter - 47013616336320 - #<Counter:0x000055846bcd7b80>
a.refresh!
# now you wish a to point to a different object
But what about other references? E.g. assuming you wanted:
a = Counter.new
b = a
a.some_method
b.some_method
# both print same : Counter - 47013616336320 - #<Counter:0x000055846bcd7b80>
a.refresh!
# now you wish both a and b to point to the same (new) object
If stated as such it gives a hint on the why not.
why we can't replace self
The short answer is that it is simply not something that the language / interpreter offers. As to the reasoning: in a way #matthewd answers that in this answer:
All ruby variable references are essentially pointers (but not
pointers-to-pointers), in C parlance.
You can mutate an object (assuming it's not immutable), and all
variables that reference it will thus be pointing at the same (now
mutated) object. But the only way to change which object a variable is
referring to is with direct assignment to that variable -- and each
variable is a separate reference; you can't alias a single reference
with two names.
In short: there may be other references to that object in variables that are not in the scope of the instance method. These cannot be manipulated by that instance method.
a way to achieve the intended effect
If you want this effect and only want to touch the code of Counter you might move all methods and state to an inner class Counter::Inner and make Counter behave like a decoupled reference. The only 'state' of Counter would be the reference to the Counter::Inner object and Counter can delegate all calls it receives to that reference in a method_missing method. In case of your refresh! you can replace the reference in Counter same as you now intent to replace self. All outside code will now use indirectly the new Counter:Inner instance.
class Counter
class Inner
def some_method
puts "#{self.class} - #{self.object_id} - #{self.inspect}"
end
end
def initialize(*args)
#reference = Inner.new(*args)
end
def method_missing(method_id, *args)
#reference.send(method_id, *args)
end
def refresh!
#reference = Inner.new
end
end
a = Counter.new
b = a
a.some_method
b.some_method
# both print same : Counter::Inner - 46991238242100 - #<Counter::Inner:0x0000557a00203e68>
a.refresh!
a.some_method
b.some_method
# both print same : Counter::Inner - 46991238240000 - #<Counter::Inner:0x0000557a00202e00>
Just one more answer for the archives :-) I hope this gives useful insights to future visitors.
Related
Sorry that I have no clue how to title this, I'm having a hard time looking this up because I don't know how to say this. Anyway...
Let's say I have a class that looks like this for example:
class Run
def self.starting
print "starting..."
end
def self.finished
print "Finished!"
end
end
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting. Now let's say that I wanted to add some instance variables...
class Run
attr_accessor :starting, :finished
def self.starting
print "starting..."
#starting = true
#finished = false
end
def self.finished
print "finished!"
#starting = false
#finished = true
end
end
What if I wanted to access those instance variables from outside the class? I know that something like print "#{Run.finished}" or print "#{Run.starting}" won't do anything. Can I do that without run = Run.new? Or should I just remove self and then use run = Run.new? (Sorry if this question is a mess.)
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting
There's much more to it than this. In your case you're calling class methods. If you did runner = Runner.new - then you'd be calling instance methods (those are defined without self.
In general, if you need "the thing" to hold some kind of state (like #running = true) then you'd rather want to instantiate an object, and call those methods.
Now, #whatever are instance variables, and you don't have the access to them in class methods.
class Run
attr_reader :running
def start
#running = true
end
def stop
#running = false
end
end
runner = Run.new
runner.running # nil
runner.start
runner.running # true
runner.stop
runner.running # false
I'd recommend you doing some tutorial or basic level book on rails programming, find a chapter about objects and classes. Do some exercises.
In Ruby instance variables are just lexical variables scoped to an instance of a class. Since they are scoped to the instance they always act like a private variable.
If you want to provide access to an instance variable from the outside you create setter and getter methods. Thats what attr_accessor does.
class Person
attr_accessor :name
def initialize(name:)
#name = name
end
def hello
"Hello my name is #{#name}"
end
end
john = Person.new(name: 'John')
john.name = "John Smith"
puts john.hello # "Hello my name is John Smith"
puts john.name # "John Smith"
Methods defined with def self.foo are class methods which are also referred to as singleton methods. You can't access variables belonging to an instance from inside a class method since the recipient when calling the method is the class itself and not an instance of the class.
Ruby also has class variables which are shared by a class and its subclasses:
class Person
##count = 0
def initialize
self.class.count += 1
end
def self.count
##count
end
def self.count=(value)
##count = value
end
end
class Student < Person
end
Person.new
Student.new
puts Person.count # 2 - wtf!
And class instance variables that are not shared with subclasses:
class Person
#count = 0 # sets an instance variable in the eigenclass
def initialize
self.class.count += 1
end
def self.count
#count
end
def self.count=(value)
#count = value
end
end
class Student < Person
#count = 0 # sets its own class instance variable
end
Person.new
Student.new
puts Person.count # 1
Class variables are not used as often and usually hold references to things like database connections or configuration which is shared by all instances of a class.
You can't access instance variables from outside the instance. That is the whole point of instance variables.
The only thing you can access from outside the instance are (public) methods.
However, you can create a public method that returns the instance variable. Such a method is called an attribute reader in Ruby, other languages may call it a getter. In Ruby, an attribute reader is typically named the same as the instance variable, but in your case that is not possible since there are already methods with the names starting and finished. Therefore, we have to find some other names for the attribute readers:
class Run
def self.starting?
#starting
end
def self.finished?
#finished
end
end
Since this is a common operation, there are helper methods which generate those methods for you, for example Module#attr_reader. However, they also assume that the name of the attribute reader method is the same as the name of the instance variable, so if you were to use this helper method, it would overwrite the methods you have already written!
class << Run
attr_reader :starting, :finished
end
When you do this, you will get warnings (you always have warning turned on when developing, do you?) telling you that you have overwritten your existing methods:
run.rb:19: warning: method redefined; discarding old starting
run.rb:2: warning: previous definition of starting was here
run.rb:19: warning: method redefined; discarding old finished
run.rb:5: warning: previous definition of finished was here
I keep trying to reason upon the functionality of a method within a subclass that inherits functionality of a parents class. But it seems that I keep getting into a mental loop of: one cannot behave without the other but the other cannot come before the one... My brain hurts...
Ok heres my relevant code in the parent class
class BankAccount
# method to initialize and other methods etc...
def withdraw(amount)
if (amount <= #balance)
#balance -= amount
else
'Insufficient funds'
end
end
end
And heres my relevant code in the subclass
class CheckingAccount < BankAccount
# methods to initialize and other methods etc...
def withdraw
super
end
end
According to the tutorial im learning from - what I am trying to accomplish is
"CheckingAccount methods #withdraw increments 'number_of_withdrawals' by one after a successful withdrawal"
So if I create a variable number_of_withdrawals inside of my BankAccount class (as tutorial examples hint towards) then how is it that when I call super from the subclass version of withdraw that it would know to increment number_of_withdrawals based on the if else statement executing a withdraw or not.
Shouldn't a variable number_of_withdrawals be declared in the BankAccount class, not the CheckingAccount class (even though tutorial examples hint towards putting it in the CheckingAccount class). For a full picture of this here is a gist with the test specs() below of my current code state:
Test Specs / Code Attempt
If someone can provide a working example of
"CheckingAccount methods #withdraw increments 'number_of_withdrawals' by one after a successful withdrawal"
With modified code I have provided in the GIST - I would really appreciate it. Im very new to ruby.(1 week)
With the code as it's currently written, CheckingAccount#withdraw could check the return value of super to determine whether the withdrawal was successful or not.
For example:
def withdraw(n)
result = super
if result != 'Insufficient funds'
#number_of_withdrawals += 1
end
result
end
Your method does way too much and internalizes too many assumptions. A better approach to this is to break things up a little:
class BankAccount
attr_reader :balance
def initialize
#balance = 0
end
def withdraw(amount)
if (can_withdraw?(amount))
credit(amount)
after_withdraw
else
false
end
end
def can_withdraw?(amount)
amount <= balance
end
def after_withdraw
# No default behaviour
end
def debit(amount)
#balance += amount
end
def credit(amount)
#balance -= amount
end
end
Then you can make the subclass specialize very specific methods instead of having to lean on super so hard:
class CheckingAccount < BankAccount
attr_reader :overdraft
def initialize
super
#overdraft = 0
#withdrawals = 0
end
def can_withdraw?(amount)
amount <= balance + overdraft
end
def after_withdraw
#withdrawals += 1
end
end
With inheritance, the parent can be thought of as a 'template' for the child. That is to say, you can instead of using a parent at all simply write everything into the child class (not that you should). The point is that everything from the parent class can be thought of as getting copied on to the child class, so if you make an instance variable on the parent and change it from the child, there is only one instance variable defined since there is only one object instantiated. In other words, when you say CheckingAccount.new there is no separate BankAccount getting instantiated - it's all the same object.
So, for every method that is defined in both the parent and child, you need to call super or else the parent method won't be called. Here's an example with your code:
class BankAccount
def initialize
#balance = 0
#number_of_withdrawals = 0
end
def withdraw(amount)
if amount <= #balance
#balance -= amount
#number_of_withdrawals += 1
else
'Insufficient funds'
end
end
end
class CheckingAccount < BankAccount
MAX_FREE_WITHDRAWALS = 3
def withdraw(amount)
if #number_of_withdrawals >= self.class::MAX_FREE_WITHDRAWALS
amount += 5
super(amount)
end
end
I just skimmed the requirement document, so make sure to double check (e.g. don't just take my code and hand it is as homework :D)
The behavior you're seeing -- or expected to provide in order to complete the exercise -- is due to Ruby's dynamic nature. Since your program is "interpreted" as it's run (and is subject to change), there's no way for Ruby to know that the instance variable in question won't exist until the method is actually executed.
Here's a contrived example which (hopefully) demonstrates why you're seeing/hoping to see this behavior:
class Foo
def say_something_that_doesnt_exist
# Foo is free to try to make use of #nothing,
# in case it's been provided by a child class'
# instance, but if it's not present, its value
# will just be nil
puts "say_something_that_doesnt_exist, like #{#nothing}!"
end
def say_something_that_does_exist
puts "say_something_that_does_exist, like #{#bar}!"
end
end
class Bar < Foo
attr_reader :bar
def initialize
super
#bar = "bar"
end
end
bar = Bar.new
bar.say_something_that_doesnt_exist # say_something_that_doesnt_exist, like !
bar.say_something_that_does_exist # say_something_that_does_exist, like bar!
You should have a look at this question and its answers for a more detailed discussion about the distinction between static/dynamic languages and the early/late binding of values.
How can I create an opbjet that's totally lazy by itself? I have a block, and I want to pass around (as a dependency) the "current value" (at call time) of the block instead of the value at dependency injection time.
I can't actually pass around a lambda because all the services expect an actual object, so they won't send :call to them, just access them.
This (oversimplified) example might clarify the situation:
class Timer
def initialize(current_time)
#current_time = current_time
end
def print_current_time
print #current_time
end
end
class Injector
def current_time
# a lazy object that when accessed actually calls the lambda below
# every single time.
end
def current_time_lazy
-> { Time.now }
end
def instantiate(class_name)
# search for the class, look at the constructor and
# create an instance with the dependencies injected by
# name
# but to be simple
if class_name == "Timer"
Timer.new(current_time)
end
end
end
timer = Injector.new.instantiate("Timer")
timer.print_current_time # => some time
sleep 2
timer.print_current_time # => some *different* time
The actual situation implies passing around the current_user but depending on the situation the current user might change after those values are injected.
I would really appreciate any suggestion (even if for now I will carefully sort the dependency injection code so this doesn't happen, but I think it's pretty fragile)
This should help :
class Timer
def initialize(current_time)
#current_time = current_time
end
def print_current_time
puts #current_time
end
end
class LazyMaker < BasicObject
def self.instantiate(class_name, lambada)
if class_name == 'Timer'
::Timer.new(new(class_name, lambada))
end
end
def initialize(class_name, lambada)
#lambada = lambada
end
def method_missing(method, *args)
#lambada.call.send(method, *args)
end
end
timer = LazyMaker.instantiate('Timer', -> { Time.now })
timer.print_current_time # some time
sleep 2
timer.print_current_time # some other time
I'm trying to use delegation to implement it, so that I can call the block first, get a new object and redirect the method call to it. Why this way ? Because basically, accessing an object to do something means to call a method on it. For instance, in print #current_time, it sends #current_time.to_s.
But since almost all objects will have a few methods inherited from standard base classes in Ruby like Object, LazyMaker also has methods like to_s. So I thought of making just the LazyMaker inherit from BasicObject, which is a blank class. So almost all of the methods get delegated.
But yeah, there might be another way to do this.
Ok so I just started learning ruby and I'm making a Yhatzee game, now this is where I'm currently at:
class Yhatzee
def dices
#dices.to_a= [
dice1=rand(1..6),
dice2=rand(1..6),
dice3=rand(1..6),
dice4=rand(1..6),
dice5=rand(1..6)
]
end
def roll_dice
#dices.to_a.each do |dice|
puts dice
end
end
end
x = Yhatzee.new
puts x.roll_dice
Now the reason i typed .to_a after the array is i kept getting a "uninitialized variable #dices" error, and that seemed to fix it, i have no idea why.
anyways on to my question, i currently don't get any errors but my program still won't print anything to the screen. I expected it to print out the value of each dice in the array... any idea what I'm doing wrong? It seems to work when i do it in a procedural style without using classes or methods so i assumed it might work if i made the 'dices' method public. But no luck.
There are a few issues here. Firstly #dices is nil because it is not set anywhere. Thus when you call #dices.to_a you will get []. Also the dices method will not work either because nil does not have a to_a= method and the local variables you are assigning in the array will be ignored.
It seems a little reading is in order but I would do something like the following: (Not the whole game just refactor of your code)
class Yhatzee
def dice
#dice = Array.new(5){rand(1..6)}
end
def roll_dice
puts dice
end
end
x = Yhatzee.new
puts x.roll_dice
There are alot of additional considerations that need to be made here but this should at least get you started. Small Example of how I would recommend expanding your logic: (I did not handle many scenarios here so don't copy paste. Just wanted to give you a more in depth look)
require 'forwardable'
module Yahtzee
module Display
def show_with_index(arr)
print arr.each_index.to_a
print "\n"
print arr
end
end
class Roll
include Display
extend Forwardable
def_delegator :#dice, :values_at
attr_reader :dice
def initialize(dice=5)
#dice = Array.new(dice){rand(1..6)}
end
def show
show_with_index(#dice)
end
end
class Turn
class << self
def start
t = Turn.new
t.show
t
end
end
attr_reader :rolls
include Display
def initialize
#roll = Roll.new
#rolls = 1
#kept = []
end
def show
#roll.show
end
def roll_again
if available_rolls_and_dice
#rolls += 1
#roll = Roll.new(5-#kept.count)
puts "Hand => #{#kept.inspect}"
show
else
puts "No Rolls left" if #rolls == 3
puts "Remove a Die to keep rolling" if #kept.count == 5
show_hand
end
end
def keep(*indices)
#kept += #roll.values_at(*indices)
end
def show_hand
show_with_index(#kept)
end
def remove(*indices)
indices.each do |idx|
#kept.delete_at(idx)
end
show_hand
end
private
def available_rolls_and_dice
#rolls < 3 && #kept.count < 5
end
end
end
The main problem with this code is that you are trying to use the #dices instance variable inside of the roll_dice method, however you are not defining the instance variable anywhere (anywhere that is being used). You have created the dices method but you are not actually instantiating it anywhere. I have outlined a fix below:
class Yhatzee
def initialize
create_dices
end
def roll_dice
#dices.each do |dice|
puts dice
end
end
private
def create_dices
#dices = Array.new(5){rand(1..6)}
end
end
x = Yhatzee.new
x.roll_dice
I have done some simple refactoring:
Created an initialize method, which creates the #dice instance variable on the class initialization.
Made the 'dices' method more descriptive and changed the method visibility to private so only the class itself is able to create the #dice.
Cleaned up the creation of the dices inside of the #dice instance variable
I have omitted the .to_a from the roll_dice method, now that we create the variable from within the class and we know that it is an array and it will be unless we explicitly redefine it.
UPDATE
Although I cleaned up the implementation of the class, it was kindly pointed out by #engineersmnky that I oversaw that the roll would return the same results each time I called the roll_dice function, I have therefore written two functions which will achieve this, one that defines an instance variable for later use and one that literally just returns the results.
class Yhatzee
def roll_dice
#dice = Array.new(5){rand(1..6)} # You will have access to this in other methods defined on the class
#dice.each {|dice| puts dice }
end
def roll_dice_two
Array.new(5){rand(1..6)}.each {|dice| puts dice } # This will return the results but will not be stored for later use
end
end
x = Yhatzee.new
x.roll_dice
x.roll_dice # Will now return a new result
I have the following piece of code, which tracks how many instances there are of a class:
module InstanceTracker
def self.instances
counter = 0
ObjectSpace.each_object do |i|
if i.class == self
counter += 1
end
end
return counter
end
end
What I want the end user to be able to do is:
class Foo
include InstanceTracker
end
But when I do that, I get a NoMethodError for Foo.instances. It works fine if I make InstanceTracker a class and do this:
class Foo < InstanceTracker; end
How can I make it a module mixin?
I played a little with your code. Apparently, you were comparing an instance's class with the caller, not the caller's class.
Try this:
module InstanceTracker
def instances
counter = 0
ObjectSpace.each_object do |i|
if i.class == self.class
counter += 1
end
end
return counter
end
end
Worked for me.
Also, note that the self in def self.instances will cause your code to fail. For instance method declaration, use the method's simple name.
BTW, your code will cause the interpreter to iterate over every single object and test each one of them with each method call.
I suggest you hack the class' new method so it increments a class variable, making this variable accessible through an attribute reader.