Elastic Search - Maximum Shard Size - performance

I came across and couldn't reach a final conclusion during learning ElasticSearch.
What is the maximum shard size for ElasticSearch?
How many shards can an index have? Is there any maximum limit?

After reading multiple articles and blogs and running my own load tests, I came to the conclusion that
number of shards and maximum size of each shard depends upon many factors like:
Size of the data inserted
Rate at which the data is inserted
Whether data retrieval / search is happening at the same time? If yes, what is the frequency of search? How many concurrent searches are done?
Server configuration details, like number of cores in CPU, hard disk size, Memory size etc
So, to find out the optimized size for each shard and optimized number of shards for a deployment, one good way is to run tests using various combinations of parameters & loads and arrive at a conclusion.

Simple : Don’t Cross 4 Billions documents
Think about the limit of 32 bits systems of the Heap Size (still valid for 64 bits systems). ES recommand half memory up to 32 GB even for 64 bits systems, as it's concern memory handeling limit and optimization. If you have more than 64 GB of memory, you can keep further memory for Lucene?
For further details : https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html and https://qbox.io/blog/optimizing-elasticsearch-how-many-shards-per-index .

As others have said, the theoretical maximum is very large, however depending on your system, there can be practical limits.
I've found that shards start to become less performant around 150GB. I've had 50GB shards that perform reasonably well. In both cases, the shard was the only shard on the node, and the node had 54GB of system memory, with 31GB devoted to elasticsearch. At 50GB, I was getting results from relatively heavy-duty queries around 100ms, and at 150GB it was taking 500ms or longer.
I'm sure this depends on the mappings I've used, and a host of other factors, but perhaps it's useful if you're polling for datapoints.

Related

How to determine what causes ES's query API instability

Normally, my ES query API takes less than 1s.But sometimes these queries get slow.
cluster consists of three 32G machines (16G allocated to ES).The index consists of 20 primaries and 1 replica, 303,000,000 dos count and 500gb primaries storage size and 1tb storage size.
Here's kibana's monitoring data:
`
Personally, I think it's the result of GC. I want to add machines.But I need to find a reason to convince my leader.
Yes it could be a GC problem. But can you be more specific? What do you mean by slow?
Anyway it seems the allocated heap is way too large for your needs. You have a collection when the heap is at 12Go ( 75% of 16go ) and it goes back to 5go every time. Its generate huge garbage collection.
You should try to lower the heap to like 10Go and check the impact on performance GC count and GC duration.
I recommands you too read this article https://www.elastic.co/blog/a-heap-of-trouble especially the "Together We Can Prevent Forest Fires" part.

how to decide the memory requirement for my elasticsearch server

I have a scenario here,
The Elasticsearch DB with about 1.4 TB of data having,
_shards": {
"total": 202,
"successful": 101,
"failed": 0
}
Each index size is approximately between, 3 GB to 30 GB and in near future, it is expected to have 30GB file size on a daily basis.
OS information:
NAME="Red Hat Enterprise Linux Server"
VERSION="7.2 (Maipo)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="7.2"
PRETTY_NAME="Red Hat Enterprise Linux Server 7.2 (Maipo)"
The system has 32 GB of RAM and the filesystem is 2TB (1.4TB Utilised). I have configured a maximum of 15 GB for Elasticsearch server.
But this is not enough for me to query this DB. The server hangs for a single query hit on server.
I will be including 1TB on the filesystem in this server so that the total available filesystem size will be 3TB.
also I am planning to increase the memory to 128GB which is an approximate estimation.
Could someone help me calculate how to determine the minimum RAM required for a server to respond at least 50 requests simultaneously?
It would be greatly appreciated if you can suggest any tool/ formula to analyze this requirement. also it will be helpful if you can give me any other scenario with numbers so that I can use that to determine my resource need.
You will need to scale using several nodes to stay efficient.
Elasticsearch has its per-node memory sweet spot at 64GB with 32GB reserved for ES.
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html#_memory for more details. The book is a very good read if you are using Elasticsearch for serious stuff
If you're here for a rule of thumb, I'd say that on modern ES and Java, 10-20GB of heap per TB of data (I'm thinking of the typical ELK use-case) should be enough. Multiplying by 2, that's 20-40GB of total RAM per TB.
Now for the datailed answer :) There are two types of memory that are relevant here:
JVM heap
OS cache (the OS will use free memory to cache index files)
OS cache is down to your IO requirements (queries do lots of small random IO). If you have a query-intensive use-case (e.g. E-commerce), you'll want to fit your whole index in the OS cache (or at least most of it). For logs and other time-series data, you typically have more expensive, rarer queries. There, if you have a local SSD you can make do with only a fraction of your data in the cache. I've seen servers with 4TB of disk space on 32GB of OS cache.
JVM heap can also be divided in two:
static memory, required even when the server is idle
transient memory, required by ongoing indexing/search operations
You'd see most of the static memory if you hit the _nodes/stats endpoint. It's best if you have these plotted in your Elasticsearch monitoring tool. You'll see it as segments_memory and various caches. For recent versions of Elasticsearch (e.g. 7.7 or higher), there's not a lot of memory like this - at least for most use-cases. I've seen ELK deployments with multiple TB of data definitely using less than 10GB of RAM for static memory. That said, you may reduce it by not storing info that you don't need. For example by not indexing fields you don't search on.
Transient memory will mainly depend on your queries: how often they run and how expensive they are. One-off expensive queries tend to be more dangerous, so avoid using too many levels of aggregations, massive size values, or queries that expand to too many terms (wildcards, fuzzy...). To accommodate those, you simply need heap. How much? It's really a matter of monitor-and-adjust.
Side-note: I don't agree with the general suggestion that you should stay under 32GB at all costs. With Java 11+ and G1GC, I've seen deployments with over 100GB of heap that run just fine. The overhead of uncompressed oops is not 10-20GB at every 30GB, like the docs suggest - that's an extrapolation of a worse-case scenario. In my experience, it's more like a few GB every 30GB - something like 10% for many deployments. This doesn't mean you have to use 100GB of heap, it's just that if you need a lot of heap in your cluster, you don't have to have hundreds of nodes (you can have fewer bigger ones).
Speaking of GC, it may fall behind if you run many queries that aren't terribly expensive. And then you'd run out of heap, even if you have plenty. Monitoring should tell you this, as a full GC will eventually clean up the heap with a big pause (read: cluster instability). Here, Java 11 with G1GC and a low -XX:GCTimeRatio (e.g. 3) should fix the issue.
This gives a good overview of heap sizing and memory management and you will be able to answer yourself.
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/master/_limiting_memory_usage.html

Is there a limit on the number of indexes that can be created on Elastic Search?

I'm using AWS-provided Elastic Search.
I have a signup page on my website, and on each signup; a new index for the new user gets created (to be used later by his work-group), which means that the number of indexes is continuously growing, (now it reached around 4~5k).
My question is: is there a performance limit on the number of indexes? is it safe (performance-wise) to keep creating new indexes dynamically with each new user?
Note: I haven't used AWS-Elasticsearch, so this answer may vary because they have started using open-distro of Elsticsearch and have forked the main branch. But a lot of principles should be the same. Also, this question doesn't have a definitive answer and it depends on various factors but I hope this answer will help the thought process.
One of the factors is the number of shards and replicas per index as that will contribute to the total number of shards per node. Each shard consumes some memory, so you will have to keep the number of shards limited per node so that they don't exceed maximum recommended 30GB heap space. As per this comment 600 to 1000 should be reasonable and you can scale your cluster according to that.
Also, you have to monitor the number of file descriptors and make sure that doesn't create any bottleneck for nodes to operate.
HTH!
If I'm not mistaken, the only limit is the disk space of your server, but if your index is growing too fast you should think about having more replica servers. I recomend reading this page: Indexing Performance Tips
Indexes themselves have no limit, however shards do, the recommended amount of shards per GB of heap is 20(JVM heap - you can check on kibana stack monitoring tab), this means if you have 5GB of JVM heap, the recommended amount is 100.
Remember that 1 index can take from 1 to x number of shards (1 primary and x secondary), normally people have 1 primary and 1 secondary, if this is you case then you would be able to create 50 indexes with those 5GB of heap

Logstash/Elasticsearch/Kibana resource planning

How to plan resources (I suspect, elasticsearch instances) according to load:
With load I mean ≈500K events/min, each containing 8-10 fields.
What are the configuration knobs I should turn?
I'm new to this stack.
500,000 events per minute is 8,333 events per second, which should be pretty easy for a small cluster (3-5 machines) to handle.
The problem will come with keeping 720M daily documents open for 60 days (43B documents). If each of the 10 fields is 32 bytes, that's 13.8TB of disk space (nearly 28TB with a single replica).
For comparison, I have 5 nodes at the max (64GB of RAM, 31GB heap), with 1.2B documents consuming 1.2TB of disk space (double with a replica). This cluster could not handle the load with only 32GB of RAM per machine, but it's happy now with 64GB. This is 10 days of data for us.
Roughly, you're expecting to have 40x the number of documents consuming 10x the disk space than my cluster.
I don't have the exact numbers in front of me, but our pilot project for using doc_values is giving us something like a 90% heap savings.
If all of that math holds, and doc_values is that good, you could be OK with a similar cluster as far as actual bytes indexed were concerned. I would solicit additional information on the overhead of having so many individual documents.
We've done some amount of elasticsearch tuning, but there's probably more than could be done as well.
I would advise you to start with a handful of 64GB machines. You can add more as needed. Toss in a couple of (smaller) client nodes as the front-end for index and search requests.

Index linear growth - Performance degradation

We have 4 shards with 14GB index on each of them
Each shard has a master and 3 slaves (each of them with 32GB RAM)
We're expecting that the index size will grow to double or triple in near future.
So we thought of merging our indexes to 28GB index so that each shard has 28GB index and also increased our RAM on each slave to 48GB.
We made this changes locally and tested the server by sending same 10K realistic queries to each server with 14GB & 28GB index, we found that
For server with 14GB index (48GB RAM): search time was 480ms, number of index hits: 3.8G
For server with 28GB index (48GB RAM): search time was 900ms, number of index hits: 7.2G
So we saw that having the whole index in RAM doesn't help in sustaining the performance in terms of search time. Search time increased linearly to double when the index size was doubled.
We were thinking of keeping only 4 shards configuration but it looks like now we have to add another shard or another slave to each shard.
Is there any other way that we can configure our servers so that the performance isn't affected even when index size doubles or triples?
I'd hate to say it depends, but it... depends.
The total size of your index on each is 14GB, which basically doesn't mean much of anything to SOLR. To get a real feel for performance what is the uniqueness of the terms indexed? An index of 14GB worth of data with the single word "cat" in it over and over again will be really quick.
Also have you confirmed you need the following features, disabling them can boost performance large amounts:
Schema
Stored Fields
Do you need stored fields? Removing this can greatly increase performance (you can safely have an entire index without any stored fields and rely completely on facets, pivots, and other features in solr to drive a UX).
omitNorms
You can, in some instances, set this flag to false to reduce memory in general and increase performance.
omitTermFreqAndPositions
Can be turned off, reduced memory in general and increase in performance.
System
Optimize Core/Index (Segment Count)
Index optimization is important when dealing with larger index sizes. Ensure each core is optimized and that when you look at the core it says the segment count is = 1. What I found is that this play a more important role as you increase the index size (this plays into OS level file caching and the fact it's easier to read one large file, rather than multiple small files) And yes, that does say 171 million+ documents.
Term Index Interval/Frequency
Configuration of term index interval may be required (by default 256) if you have a field or multiple fields that contain very unique values (for example GUID/UUIDs or unique IDs in general). Typically, the lower the TIF the more memory you need, the higher the TIF the less memory you need but the more disk seeks you may have.
Allocation of too much Ram
Solr works best with a good split between OS level disk cache and RAM used when faceting, you'd be surprised that you could actually get better performance by tweaking other parameters which lower required ram usage and free up resources for disk.

Resources