Ruby - reference of self in the class method - ruby

Went over this code on RubyMonk:
class Item
def initialize(item)
#item = item
end
def show
puts "The item name is: #{self}"
end
def to_s
"#{#item}"
end
end
Item.new("potion").show
The code passes but the use of the self variable is a bit ambiguous to me. You could've easily supplanted to_s with self in the show method and gotten the same results. Can somebody explain the difference between both interpolations and why/how self is used here?
Additionally, without the the method to_s, the code returns a proxy. What is the significance of defining the to_s here?

String interpolation implicitly calls the to_s method on an object. So, when you define the to_s method on Item, you are explicitly telling that object how to represent itself with respect to a string. self is used in this case because there is an implicit call to to_s within the interpolation of the Item object. Defining to_s explicitly tells Item how to render itself within a string.
For some additional details, check out this excellent post on explicit vs. implicit conversion methods.

While it's true that, in the example you provided, you could have just written "The item name is: #{#item}", that's not always the case.
As CDub points out, string interpolation implicitly calls to_s. If an object doesn't define a to_s method, Ruby returns an object reference in its place. In the example you gave us, writing "The item name is: #{#item}" only works because String implements to_s. If it didn't, or if you use Item to hold an object that doesn't implement to_s, you'll end up with the object's reference.
Now for the difference between using self and #item in your interpolation. self refers to the current object. When you interpolate self, you're calling the current object's to_s method. When you interpolate #item, you're calling #item's to_s method. That's not a problem in this simple case, but let's look at something a little bit more complex. Say we have two classes, Item and OtherItem (creative names, I know).
class Item
def initialize(item)
#item = item
end
def show
puts "The item name is: #{self}"
end
def to_s
"I'm a chunky monkey!"
end
end
class OtherItem
def initialize(item)
#otherItem = item
end
def to_s
"#{#otherItem}"
end
end
In this scenario, Item's show method uses self, so if we were to write:
Item.new(OtherItem.new("potion")).show
Ruby would call Item.show, which, in turn, would call self.to_s. Since self in that context is an Item, our output would be:
"The item name is: I'm a chunky monkey!"
If, however, we redefined Item.show like this:
def show
puts "The item name is: #{#item}"
end
And tried calling Item.new(OtherItem.new("potion")).show again, Item.show would call #item.to_s, and fill that in instead, so we'd get:
"The item name is: potion"

Related

Why can't a class method have the same name as a non-class method?

I'm learning ruby, and noticed that I cannot create a class method called puts:
class Printer
def initialize(text="")
#text = text
end
def puts
puts #text
end
end
The error is:
`puts': wrong number of arguments (given 1, expected 0)
My expectation was that I could use the code like this:
p = Printer.new("hello")
p.puts
It's not just because puts is a built-in method, though. For instance, this code also gives a syntax error:
def my_puts(text)
puts text
end
class Printer
def initialize(text="")
#text = text
end
def my_puts
my_puts #name
end
end
tldr; within the scope of the instance, the puts resolves to self.puts (which then resolves to the locally defined method, and not Kernel#puts). This method overriding is a form of shadowing.
Ruby has an 'implicit self' which is the basis for this behavior and is also how the bare puts is resolved - it comes from Kernel, which is mixed into every object.
The Kernel module is included by class Object, so its methods [like Kernel#puts] are available in every Ruby object. These methods are called without a receiver and thus can be called in functional form [such as puts, except when they are overridden].
To call the original same-named method here, the super keyword can be used. However, this doesn't work in the case where X#another_method calls X#puts with arguments when it expects to be calling Kernel#puts. To address that case, see Calling method in parent class from subclass methods in Ruby (either use an alias or instance_method on the appropriate type).
class X
def puts
super "hello!"
end
end
X.new.puts
P.S. The second example should trivially fail, as my_puts clearly does not take any parameters, without any confusion of there being another "puts". Also, it's not a syntax error as it occurs at run-time after any language parsing.
To add to the previous answer (https://stackoverflow.com/a/62268877/13708583), one way to solve this is to create an alias of the original puts which you use in your new puts method.
class Printer
alias_method :original_puts, :puts
attr_reader :text
def initialize(text="")
#text = text
end
def puts
original_puts text
end
end
Printer.new("Hello World").puts
You might be confused from other (static) programming languages in which you can overwrite a method by creating different signatures.
For instance, this will only create one puts method in Ruby (in Java you would have two puts methods (disclaimer: not a Java expert).
def puts(value)
end
def puts
end
If you want to have another method with the same name but accepting different parameters, you need to use optional method parameters like this:
def value(value = "default value")
end

Binding method to instance

Is there a way to bind an existing method to an existing instance of an object if both the method and the instance are passed as symbols into a method that does that if the instance is not a symbol?
For example:
def some_method
#do something
end
some_instance = Klass.new(something)
def method_that_binds(:some_method, to: :some_instance)
#how do I do that?
end
Your requirements are a little unusual, but it is possible to do this mostly as you say:
class Person; end
harry = Person.new
barry = Person.new
def test
puts 'It works!'
end
define_method :method_that_binds do |a_method, to|
eval(to[:to].to_s).singleton_class.send(:define_method, a_method, &Object.new.method(a_method))
end
method_that_binds :test, to: :harry
harry.test
# It works! will be sent to STDOUT
barry.test
# undefined method 'test'
This doesn't actually use a named parameter, but accepts a hash with a to key, but you can see you can call it in the way you want. It also assumes that the methods you are defining are defined globally on Object.
The API you want doesn't easily work, because you have to know from which scope you want to access the local variable. It's not quite clear to me why you want to pass the name of the local variable instead of passing the content of the local variable … after all, the local variable is present at the call site.
Anyway, if you pass in the scope in addition to the name, this can be accomplished rather easily:
def some_method(*args)
puts args
puts "I can access some_instance's ivar: ##private_instance_var"
end
class Foo; def initialize; #private_instance_var = :foo end end
some_instance = Foo.new
def method_that_binds(meth, to:, within:, with: [])
self.class.instance_method(meth).bind(within.local_variable_get(to)).(*with)
end
method_that_binds(:some_method, to: :some_instance, within: binding, with: ['arg1', 'arg2'])
# arg1
# arg2
# I can access some_instance's ivar: foo
As you can see, I also added a way to pass arguments to the method. Without that extension, it becomes even simpler:
def method_that_binds(meth, to:, within:)
self.class.instance_method(meth).bind(within.local_variable_get(to)).()
end
But you have to pass the scope (Binding) into the method.
If you'd like to add a method just to some_instance i.e. it's not available on other instances of Klass then this can be done using define_singleton_method (documentation here.)
some_instance.define_singleton_method(:some_method, method(:some_method))
Here the first use of the symbol :some_method is the name you'd like the method to have on some_instance and the second use as a parameter to method is creating a Method object from your existing method.
If you'd like to use the same name as the existing method you could wrap this in your own method like:
def add_method(obj, name)
obj.define_singleton_method(name, method(name))
end
Let's say we have a class A with a method a and a local variable c.
class A
def a; 10 end
end
c = '5'
And we want to add the method A#a to c.
This is how it can be done
c.singleton_class.send :define_method, :b, &A.new.method(:a)
p c.b # => 10
Explanations.
One way to add a method to an object instance and not to its class is to define it in its singleton class (which every ruby object has).
We can get the c's singleton class by calling the corresponding method c.signleton_class.
Next we need to dynamically define a method in its class and this can usually be accomplished by using the define_method which takes a method name as its first argument (in our case :b) and a block. Now, converting the method into a block might look a bit tricky but the idea is relatively simple: we first transform the method into a Method instance by calling the Object#method and then by putting the & before A.new.method(:a) we tell the interpreter to call the to_proc method on our object (as our returned object is an instance of the Method, the Method#to_proc will be called) and after that the returned proc will be translated into a block that the define_method expects as its second argument.

How can I maintain a variable via closure with define_method?

I am trying to create a macro "has_accessor_for", that accepts a symbol which is used as a parameter for an internal object that it uses (the Accessorizer object). The problem I am having is, when multiple modules do the has_accessors_for, the parameter (scope) ends up being stuck on the last value it was assigned to.
I added a puts prior to the define_method, which shows that it's scope1, and then scope2... But inside the define_method, it's scope2 always. I am looking for a way to basically encapsulate that variable, so that when it the first module calls has_accessor_for, anytime my_wut is called, it will be bound to scope1... and anytime my_bleah is called, it will be bound to scope2. But as I said, right now, both my_bleah and my_wut are bound to scope2-- If I change the order of the includes in MyModel, then they will both be bound to scope1.
class Accessorizer
def initialize(record, scope)
#record = record
#scope = scope
end
def value_for(key)
#record.send key
end
end
module Magic
def has_accessors_for(scope)
accessors = {}
puts "initial: #{scope}"
define_method :get_value_for do |key|
puts "inside method #{scope}"
accessor.value_for key
end
define_method :accessor do
accessors[:scope] ||= Accessorizer.new(self, scope)
end
end
end
module SomeAccessor
extend Magic
has_accessors_for :scope1
def my_wut
get_value_for :wut
end
end
module SomeOtherAccessor
extend Magic
has_accessors_for :scope2
def my_bleah
get_value_for :bleah
end
end
class MyModel
include SomeAccessor
include SomeOtherAccessor
attr_accessor :wut, :bleah
end
m = MyModel.new
m.wut = 'wut'
m.bleah = 'bleah'
m.my_bleah
m.my_wut
output:
initial: scope1
initial: scope2
inside method scope2
inside method scope2
Short answer: the problem is not with the closures.
Long answer:
define_method :get_value_for do |key|
puts "inside method #{scope}"
accessor.value_for key
end
On a given class there can only be one method called get_value_for - the second definition will overwrite the first.
It doesn't matter so much because you're call accessor in both cases, however that method suffers from the same problem - you define it twice and so the second definition overwrites the first and you end up with only one Accessorizer object.
I think you'll need to rethink your design here.

Return containing object instance in ruby

I'm trying to implement a funky version of method chaining. Returning the instance of the class after each function call is easy, you just do
def chainable_method
some_code()
self
end
My idea is that the methods you can call depend on the previous method call. I'm trying to achieve this by returning an object belonging to the containing object. The contained object will have a few special methods, and then implement method_missing to return the containing object's instance.
Edit: The child object has some state associated with it that should be in itself, and not the parent. It might not have been clear previously as to why I need a whole instance for just method calls.
super is irrelevant in this case because the contained object doesn't inherit from the containing object, and I wouldn't want to call the containing object's methods on the contained object anyway - I want to call the containing object's methods on the containing object itself. I want the containing object, not the containing object class.
Not sure if this is possible.
Edit: reworded everything to use "containing/contained object" instead of the completely incorrect parent/child object.
Also, I'm using 1.9.3, if that matters. Version isn't important, I can change if needed.
My explanation was probably unclear. Here's the code:
class AliasableString
def initialize(string)
#string = string
end
def as(aka)
#aka = aka
end
def has_aka?
!#aka.nil?
end
# alias is a reserved word
def aka
#aka
end
def to_s
#string + (self.has_aka? ? (" as " + #aka) : "")
end
end
class Query
def initialize
#select_statements = Array.new
end
def select(statement)
select_statement = AliasableString.new(statement)
#select_statements.push(select_statement)
select_statement
end
def print
if #select_statements.size != 0
puts "select"
#select_statements.each_with_index {| select, i|
puts select
}
end
end
end
# Example usage
q0 = Query.new
q0.select("This is a select statement")
.select("Here's another one")
.as("But this one has an alias")
.select("This should be passed on to the parent!")
q0.print
I haven't yet fully implemented print. AliasableString needs to have #string and #aka separate so I can pull them apart later.
First of all, it doesn't matter what class of object is contained within a Query instance. All of the syntax shown on your 'example usage' section is appropriately defined in Query. The only requirement of the objects contained within a query instance is that they respond to as (or some similar method). What you have here is something like a state machine, but the only state that really matters is that some object occupies the last position in the select_statements array. Here's how I would build this (again, based mostly on your example at the end, I'm afraid I can't quite follow your initial explanation):
class Query
# ... initialize, etc.
def select(statement, statement_class = AliasableString)
select_statements << statement_class.new(statement)
self
end
def as(aka)
# this will only ever be used on the most recent statement added
statement_to_alias = select_statements.last
# throw an error if select_statements is empty (i.e., :last returns nil)
raise 'You must add a statement first' unless statement_to_alias
# forward the message on to the statement
statement_to_alias.as(aka)
# return the query object again to permit further chaining
self
end
end
AliasableString doesn't need to know a thing about Query; all it needs to do is respond appropriately to as.

Ruby's send method with block variable interpolation

I'm a newb working through some Ruby tutorials and am stumped on the use of the send method below. I can see the send method is reading the value of the attribute iterator over, but the Ruby documentation states the send method takes a method prepended with a colon. So, my confusion lies in how the send method below is interpolating the attribute variable being iterated over.
module FormatAttributes
def formats(*attributes)
#format_attribute = attributes
end
def format_attributes
#format_attributes
end
end
module Formatter
def display
self.class.format_attributes.each do |attribute|
puts "[#{attribute.to_s.upcase}] #{send(attribute)}"
end
end
end
class Resume
extend FormatAttributes
include Formatter
attr_accessor :name, :phone_number, :email, :experience
formats :name, :phone_number, :email, :experience
end
It's not "invoking the value of the iterator", but instead calling a method with that name. In this case because of the attr_accessor declaration, these methods map to properties.
Calling object.send('method_name') or object.send(:method_name) are equivalent to object.method_name in general terms. Likewise, send(:foo) and foo will call the method foo on the context.
Since the module declare a method that is later mixed in with an include, calling send in the module has the effect of calling a method on an instance of the Resume class.
send Documentation
here is simplified version of your code,to feed you what's going on:
def show
p "hi"
end
x = "show"
y = :show
"#{send(y)}" #=> "hi"
"#{send(x)}" #=> "hi"

Resources