I am developing a cache and I need to know when an object expired.
Is possible run a function when the reference counter of a shared_ptr decrease?
std::shared_ptr< MyClass > p1 = std::make_shared( MyClass() );
std::shared_ptr< MyClass > p2 = p1; // p1.use_count() = 2
p2.reset(); // [ run function ] p1.use_count() = 1
You can't have a function called every time the reference count decreases, but you can have one called when it hits zero. You do this by passing a "custom deleter" to the shared_ptr constructor (you can't use the make_shared utility for this); the deleter is a callable object which is responsible for being passed, and deleting, the shared object.
Example:
#include <iostream>
#include <memory>
using namespace std;
void deleteInt(int* i)
{
std::cout << "Deleting " << *i << std::endl;
delete i;
}
int main() {
std::shared_ptr<int> ptr(new int(3), &deleteInt); // refcount now 1
auto ptr2 = ptr; // refcount now 2
ptr.reset(); // refcount now 1
ptr2.reset(); // refcount now 0, deleter called
return 0;
}
You can specify a deleter functor when creating the shared_ptr. The following article show an example use of a deleter:
http://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Not using a vanilla std::shared_ptr, but if you only require customized behaviour when calling reset() (with no arguments), you can easily create a custom adapter:
template <typename T>
struct my_ptr : public std::shared_ptr<T> {
using std::shared_ptr<T>::shared_ptr;
void reset() {
std::shared_ptr<T>::reset(); // Release the managed object.
/* Run custom function */
}
};
And use it like this:
my_ptr<int> p = std::make_shared<int>(5);
std::cout << *p << std::endl; // Works as usual.
p.reset(); // Customized behaviour.
Edit
This answer is meant to suggest a solution to an issue that I didn't think the other answers did address, that is: executing custom behaviour every time when the refcount is decreased by use of reset().
If the issue is simply to make a call upon object release, then use a custom deleter functor as suggested in the answers by #Sneftel and #fjardon.
Related
I am new to boost:asio. I need to pass shared_ptr as argument to handler function.
E.g.
boost::asio::post(std::bind(&::function_x, std::move(some_shared_ptr)));
Is using std::move(some_shared_ptr) correct? or should I use as below,
boost::asio::post(std::bind(&::function_x, some_shared_ptr));
If both are correct, which one is advisable?
Thanks in advance
Regards
Shankar
Bind stores arguments by value.
So both are correct and probably equivalent. Moving the argument into the bind is potentially more efficient if some_argument is not gonna be used after the bind.
Warning: Advanced Use Cases
(just skip this if you want)
Not what you asked: what if function_x took rvalue-reference arguments?
Glad you asked. You can't. However, you can still receive by lvalue reference and just move from that. because:
std::move doesn't move
The rvalue-reference is only there to indicate potentially-moved-from arguments enabling some smart compiler optimizations and diagnostics.
So, as long as you know your bound function is only executed once (!!) then it's safe to move from lvalue parameters.
In the case of shared-pointers there's actually a little bit more leeway, because moving from the shared-ptr doesn't actually move the pointed-to element at all.
So, a little exercise demonstrating it all:
Live On Coliru
#include <boost/asio.hpp>
#include <memory>
#include <iostream>
static void foo(std::shared_ptr<int>& move_me) {
if (!move_me) {
std::cout << "already moved!\n";
} else {
std::cout << "argument: " << *std::move(move_me) << "\n";
move_me.reset();
}
}
int main() {
std::shared_ptr<int> arg = std::make_shared<int>(42);
std::weak_ptr<int> observer = std::weak_ptr(arg);
assert(observer.use_count() == 1);
auto f = std::bind(foo, std::move(arg));
assert(!arg); // moved
assert(observer.use_count() == 1); // so still 1 usage
{
boost::asio::io_context ctx;
post(ctx, f);
ctx.run();
}
assert(observer.use_count() == 1); // so still 1 usage
f(); // still has the shared arg
// but now the last copy was moved from, so it's gone
assert(observer.use_count() == 0); //
f(); // already moved!
}
Prints
argument: 42
argument: 42
already moved!
Why Bother?
Why would you care about the above? Well, since in Asio you have a lot of handlers that are guaranteed to execute precisely ONCE, you can sometimes avoid the overhead of shared pointers (the synchronization, the allocation of the control block, the type erasure of the deleter).
That is, you can use move-only handlers using std::unique_ptr<>:
Live On Coliru
#include <boost/asio.hpp>
#include <memory>
#include <iostream>
static void foo(std::unique_ptr<int>& move_me) {
if (!move_me) {
std::cout << "already moved!\n";
} else {
std::cout << "argument: " << *std::move(move_me) << "\n";
move_me.reset();
}
}
int main() {
auto arg = std::make_unique<int>(42);
auto f = std::bind(foo, std::move(arg)); // this handler is now move-only
assert(!arg); // moved
{
boost::asio::io_context ctx;
post(
ctx,
std::move(f)); // move-only, so move the entire bind (including arg)
ctx.run();
}
f(); // already executed
}
Prints
argument: 42
already moved!
This is going to help a lot in code that uses a lot of composed operations: you can now bind the state of the operation into the handler with zero overhead, even if it's bigger and dynamically allocated.
I have some subscription function that will call my callback when something happens. (Let's say it's a timer, and will pass me an object when a certain number of milliseconds elapses.) The thing I want to be called is a virtual method. I feel std::function and std::bind or lambdas are part of the solution.
The C++99 approach I've used until now involves one-line C functions that know how to call a virtual method. The subscription function takes the C function and a void* user data as arguments. For example:
class Foo {
virtual void OnTimerA( Data* pd );
};
void OnTimerACB( Data* pd, void* pvUserData ) {
( (Foo*) pvUserData )->OnTimerA( pd );
}
/* Inside some method of Foo; 1000 is a number of milliseconds to call me back in;
second arg is a function pointer; third is a void* user data that is passed back
to the C callback. */
SubscribeToTimerOld( 1000, OnTimerACB, this );
What I'm hoping for is a way to write:
SubscribeToTimerNew( 1000, OnTimerA );
or something similar, at least that disposes of the need to write that one-line C binding callback.
I have a feeling that SubscribeToTimerNew()'s argument is probably a std:function of some sort and instead of merely writing OnTimerA I'd have to write something with std::bind to get the this pointer in there.
Alternatively to bind, perhaps a lambda is the way to do it? This compiles, though I dont see how to extend it to let the event handler pass an argument to OnTimerA(). (My linker isn't currently working so don't know if it links or runs as desired.)
SubscribeTimer( 1000, [this](){this->OnTimerA();} );
To mention one alternative I've discarded: give Foo a superclass with a method called OnTimer() that will be called when the timer goes off. Now SubscribeTimer() only need take an elapsed time. I don't like this as it doesn't cleanly allow for multiple timers to be registered. If it did you could give them (say) integer timer ID's and implement OnTimer() as a switch but this seems to be a lot more complicated than the C++99 solution.
Ultimately of the (I assume) several approaches, are there any trade-offs (e.g., heap use) in addition the most obvious question of how much typing is involved? (This is a high-performance application and I'd prefer to minimize or eliminate heap usage.)
C++11, C++14 and C++17 are quite different, especially when it comes to lambdas. And lambdas are a great way to create callbacks. For instance, see Why use std::bind over lambdas in C++14?
Using modern C++, you can use std::function as your callback type and then you can use any callable stuff as an actual callback. Quote from https://en.cppreference.com/w/cpp/utility/functional/function:
Class template std::function is a general-purpose polymorphic function
wrapper. Instances of std::function can store, copy, and invoke any
Callable target -- functions, lambda expressions, bind expressions, or
other function objects, as well as pointers to member functions and
pointers to data members.
Example:
#include <functional>
#include <iostream>
using Callback = std::function<void(int)>;
void subscribe(Callback callback, int duration) {
callback(duration);
}
struct Foo {
void operator()(int duration) {
std::cout << __PRETTY_FUNCTION__ << ' ' << duration << '\n';
}
};
struct Bar {
virtual void myFunction(int duration) {
std::cout << __PRETTY_FUNCTION__ << ' ' << duration << '\n';
}
};
void freeFunction(int duration) {
std::cout << __PRETTY_FUNCTION__ << ' ' << duration << '\n';
}
struct Zorg {
static void staticFunction(int duration) {
std::cout << __PRETTY_FUNCTION__ << ' ' << duration << '\n';
}
};
int main() {
Foo foo;
subscribe(foo, 128);
Bar bar;
auto lambda = [&bar](int duration) {
bar.myFunction(duration);
};
subscribe(lambda, 256);
subscribe(freeFunction, 512);
subscribe(Zorg::staticFunction, 1024);
}
Output:
void Foo::operator()(int) 128
virtual void Bar::myFunction(int) 256
void freeFunction(int) 512
static void Zorg::staticFunction(int) 1024
If a function returns a lambda that captures and mutates a value declared in the scope of the function, where/how is that value stored in memory so the lambda may safely use it?
This example is from listing 6.7 in 'Functional Programming in C++' by Ivan Čukić. It's a utility memoization method that caches results for fast lookup later. The contrived usage computes and then retrieves a cached Fibonacci number:
#include <iostream>
#include <map>
#include <tuple>
template <typename Result, typename... Args>
auto make_memoized(Result (*f)(Args...)) {
std::map<std::tuple<Args...>, Result> cache;
return [f, cache](Args... args) mutable -> Result {
const auto args_tuple = std::make_tuple(args...);
const auto cached = cache.find(args_tuple);
if (cached == cache.end()) {
auto result = f(args...);
cache[args_tuple] = result;
return result;
} else {
return cached->second;
}
};
}
unsigned int fib(unsigned int n) {
return n < 2 ? n : fib(n - 1) + fib(n - 2);
}
int main() {
auto fibmemo = make_memoized(fib);
std::cout << "fib(15) = " << fibmemo(15) << '\n';
std::cout << "fib(15) = " << fibmemo(15) << '\n';
}
My expectation was that cache would be destroyed when make_memoized returned, so a retrospective call to the lambda would have referred to a value that has gone out of scope. However it works fine (g++ 9.1 on OSX).
I can't find a concrete example of this sort of usage on cppreference.com. Any help leading me to the right terminology to search for is greatly appreciated.
The [f, cache] captures the vars by value. Once captured by value, the life of the captured var should be same as the lambda itself.
EDIT: If captured by reference (e.g. [f, &cache]), the life of cache and the lambda are no longer linked. So, while the code will still compile, it is no longer safe to use the returned lambda as cache has already been destroyed by then.
I am reading C++ Primer 5th edition and get the following problems. The book lists several cases that a synthesized move operation is defined as deleted. One of which is "Unlike the copy constructor, the move constructor is defined as deleted if the class has a member that defines its own copy constructor but does not also define a move constructor, or if the class has a member that doesn't define its own copy operations and for which the compiler is unable to synthesize a move constructor. Similarly for move-assignment."
and also provide an demo code as following:
// assume Y is a class that defines its own copy constructor but not a move constructor
struct hasY {
hasY() = default;
hasY(hasY&&) = default;
Y mem; // hasY will have a deleted move constructor
};
hasY hy, hy2 = std::move(hy); // error: move constructor is deleted
However, for both gcc 7.2.1 and clang-900.0.37, the code is runnable, is the book wrong?
Here is the complete test code:
#include <iostream>
struct Y {
Y() { std::cout << "Y()" << std::endl; }
Y(const Y&) { std::cout << "Y(const Y&)" << std::endl; }
//Y(Y&&) { cout << "Y(Y&&)" << endl; }
};
// assume Y is a class that defines its own copy constructor but not a move constructor
struct hasY {
hasY() = default;
hasY(hasY&&) = default;
Y mem; // hasY will have a deleted move constructor
};
int main() {
hasY hy, hy2 = std::move(hy); // error: move constructor is deleted
return 0;
}
The book correctly describes the behavior prescribed by the C++11 standard. The prescribed behavior, however, has changed as of C++14, which adopted the resolution of Defect Report #1402 "Move functions too often deleted"
I'm trying to write a very simple array class with a function that returns a subsection of itself. It is easier to show it than to explain...
template<typename T>
class myArrayType
{
// Constructor; the buffer pointed to by 'data' must be held
// elsewhere and remain valid for the lifetime of the object
myArrayType(int size, T* data) : n(size), p(data)
{
}
// A move constructor and assign operator wouldn't make
//much sense for this type of object:
#ifndef _MSC_VER
myArrayType(myArrayType<T> &&source) = delete;
myArrayType & operator=(myArrayType<T> &&source) && = delete;
#else
#if _MSC_VER >= 2000
myArrayType(myArrayType<T> &&source) = delete;
myArrayType & operator=(myArrayType<T> &&source) && = delete;
#endif
// Earlier versions of Visual C++ do not generate default move members
#endif
// Various whole-array operations, which is the main reason for wanting to do this:
myArrayType & operator+=(const myArrayType &anotherArray) & noexcept
{
for (int i=0; i<n; ++i) p[i] += anotherArray.p[i];
return *this;
}
// etc.
// The interesting bit: create a new myArrayType object which is
// a subsection of this one and shares the same memory buffer
myArrayType operator()(int firstelement, int lastelement) noexcept
{
myArrayType newObject;
newObject.p = &p[firstelement];
newObject.n = lastelement - firstelement + 1;
return newObject;
}
private:
T* p;
int n;
}
What I'd like to do, of course, is to be able to write:
double aBigBlobOfMemory[1000]; // Keep it on the stack
myArrayType<double> myArray(1000, aBigBlobOfMemory);
myArrayType<double> mySmallerArray = myArray(250, 750);
...so that 'mySmallerArray' is a fully-formed myArrayType object which contains a pointer to a subset of myArray's memory.
In Visual Studio 2013 this seems to work (or at least, it compiles), but in gcc it fails in a way that I don't understand. The compiler error on the attempted creation of mySmallerArray is:
use of deleted function myArrayType(myArrayType<T> &&)
...with a caret pointing to the end of the line. In other words, gcc seems to think that in invoking the 'subarray operator' I'm actually trying to invoke a move constructor, but I can't for the life of me see where it would want to use one, or why.
Am I missing something really really obvious, or can anyone shed some light on this?
gcc is doing the right thing.
From operator() you are returning newObject, an instance of myArrayType. This has to be moved into the variable mySmallerArray. That's done with a move constructor, which you don't have.
You need to declare a move constructor.
It does make sense for this class to have a move constructor - it can move the pointer p from the existing instance to the new one.