Problem :
Form a network, that is, all the bases should be reachable from every base.
One base is reachable from other base if there is a path of tunnels connecting bases.
Bases are suppose based on a 2-D plane having integer coordinates.
Cost of building tunnels between two bases are coordinates (x1,y1) and (x2,y2) is min{ |x1-x2|, |y1-y2| }.
What is the minimum cost such that a network is formed.
1 ≤ N ≤ 100000 // Number of bases
-10^9 ≤ xi,yi ≤ 10^9
Typical Kruskal's minimum spanning tree implementation.But u cannot store (10^5)^2 edges.
So how i should make my cost matrix , how to make a graph so i can apply Kruskal algorithm?
You should not store the whole graph as you don't actually need it. In fact in this case I think Prim's algorithm is more suitable in this case. You will not need all the edges at any single time, instead on each iteration you will update a min dist array of size N. Of course complexity will still be in the order of N**2 but at least memory will not be an issue. Also you can further use the specific way distance is computed to improve the complexity(using some ordered structure to store the points).
I believe the only edges that will ever be used (due to your cost function) will be from each base to at most 4 neighbours. The neighbours to use are the closest point with greater (or equal) x value, the closest point with smaller (or equal) x value, the closest point with greater (or equal) y value, the closest point with smaller (or equal) y value.
You can compute these neighbours efficiently by sorting the points according to each axis and then linking each point with the point ahead and behind it in sorted order.
It does not matter if there is more than one point at a particular value of coordinate.
There will therefore be only O(4n) edges for you to consider with Kruskal's algorithm.
Related
I have a set of N points (in particular this point are binary string) and for each of them I have a discrete metric (the Hamming distance) such that given two points, i and j, Dij is the distance between the i-th and the j-th point.
I want to find a subset of k elements (with k < N of course) such that the distance between this k points is the maximum as possibile.
In other words what I want is to find a sort of "border points" that cover the maximum area in the space of the points.
If k = 2 the answer is trivial because I can try to search the two most distant element in the matrix of distances and these are the two points, but how I can generalize this question when k>2?
Any suggest? It's a NP-hard problem?
Thanks for the answer
One generalisation would be "find k points such that the minimum distance between any two of these k points is as large as possible".
Unfortunately, I think this is hard, because I think if you could do this efficiently you could find cliques efficiently. Suppose somebody gives you a matrix of distances and asks you to find a k-clique. Create another matrix with entries 1 where the original matrix had infinity, and entries 1000000 where the original matrix had any finite distance. Now a set of k points in the new matrix where the minimum distance between any two points in that set is 1000000 corresponds to a set of k points in the original matrix which were all connected to each other - a clique.
This construction does not take account of the fact that the points correspond to bit-vectors and the distance between them is the Hamming distance, but I think it can be extended to cope with this. To show that a program capable of solving the original problem can be used to find cliques I need to show that, given an adjacency matrix, I can construct a bit-vector for each point so that pairs of points connected in the graph, and so with 1 in the adjacency matrix, are at distance roughly A from each other, and pairs of points not connected in the graph are at distance B from each other, where A > B. Note that A could be quite close to B. In fact, the triangle inequality will force this to be the case. Once I have shown this, k points all at distance A from each other (and so with minimum distance A, and a sum of distances of k(k-1)A/2) will correspond to a clique, so a program finding such points will find cliques.
To do this I will use bit-vectors of length kn(n-1)/2, where k will grow with n, so the length of the bit-vectors could be as much as O(n^3). I can get away with this because this is still only polynomial in n. I will divide each bit-vector into n(n-1)/2 fields each of length k, where each field is responsible for representing the connection or lack of connection between two points. I claim that there is a set of bit-vectors of length k so that all of the distances between these k-long bit-vectors are roughly the same, except that two of them are closer together than the others. I also claim that there is a set of bit-vectors of length k so that all of the distances between them are roughly the same, except that two of them are further apart than the others. By choosing between these two different sets, and by allocating the nearer or further pair to the two points owning the current bit-field of the n(n-1)/2 fields within the bit-vector I can create a set of bit-vectors with the required pattern of distances.
I think these exist because I think there is a construction that creates such patterns with high probability. Create n random bit-vectors of length k. Any two such bit-vectors have an expected Hamming distance of k/2 with a variance of k/4 so a standard deviation of sqrt(k)/2. For large k we expect the different distances to be reasonably similar. To create within this set two points that are very close together, make one a copy of the other. To create two points that are very far apart, make one the not of the other (0s in one where the other has 1s and vice versa).
Given any two points their expected distance from each other will be (n(n-1)/2 - 1)k/2 + k (if they are supposed to be far apart) and (n(n-1)/2 -1)k/2 (if they are supposed to be close together) and I claim without proof that by making k large enough the expected difference will triumph over the random variability and I will get distances that are pretty much A and pretty much B as I require.
#mcdowella, I think that probably I don't explain very well my problem.
In my problem I have binary string and for each of them I can compute the distance to the other using the Hamming distance
In this way I have a distance matrix D that has a finite value in each element D(i,j).
I can see this distance matrix like a graph: infact, each row is a vertex in the graph and in the column I have the weight of the arc that connect the vertex Vi to the vertex Vj.
This graph, for the reason that I explain, is complete and it's a clique of itself.
For this reason, if i pick at random k vertex from the original graph I obtain a subgraph that is also complete.
From all the possible subgraph with order k I want to choose the best one.
What is the best one? Is a graph such that the distance between the vertex as much large but also much uniform as possible.
Suppose that I have two vertex v1 and v2 in my subgraph and that their distance is 25, and I have three other vertex v3, v4, v5, such that
d(v1, v3) = 24, d(v1, v4) = 7, d(v2, v3) = 5, d(v2, v4) = 22, d(v1, v5) = 14, d(v1, v5) = 14
With these distance I have that v3 is too far from v1 but is very near to v2, and the opposite situation for v4 that is too far from v2 but is near to v1.
Instead I prefer to add the vertex v5 to my subgraph because it is distant to the other two in a more uniform way.
I hope that now my problem is clear.
You think that your formulation is already correct?
I have claimed that the problem of finding k points such that the minimum distance between these points, or the sum of the distances between these points, is as large as possible is NP-complete, so there is no polynomial time exact answer. This suggests that we should look for some sort of heuristic solution, so here is one, based on an idea for clustering. I will describe it for maximising the total distance. I think it can be made to work for maximising the minimum distance as well, and perhaps for other goals.
Pick k arbitrary points and note down, for each point, the sum of the distances to the other points. For each other point in the data, look at the sum of the distances to the k chosen points and see if replacing any of the chosen points with that point would increase the sum. If so, replace whichever point increases the sum most and continue. Keep trying until none of the points can be used to increase the sum. This is only a local optimum, so repeat with another set of k arbitrary/random points in the hope of finding a better one until you get fed up.
This inherits from its clustering forebear the following property, which might at least be useful for testing: if the points can be divided into k classes such that the distance between any two points in the same class is always less than the distance between any two points in different classes then, when you have found k points where no local improvement is possible, these k points should all be from different classes (because if not, swapping out one of a pair of points from the same class would increase the sum of distances between them).
This problem is known as the MaxMin Diversity Problem (MMDP). It is known to be NP-hard. However, there are algorithms for giving good approximate solutions in reasonable time, such as this one.
I'm answering this question years after it was asked because I was looking for algorithms to solve the same problem, and had trouble even finding out what to call it.
Question
How would one going about finding a least cost path when the destination is unknown, but the number of edges traversed is a fixed value? Is there a specific name for this problem, or for an algorithm to solve it?
Note that maybe the term "walk" is more appropriate than "path", I'm not sure.
Explanation
Say you have a weighted graph, and you start at vertex V1. The goal is to find a path of length N (where N is the number of edges traversed, can cross the same edge multiple times, can revisit vertices) that has the smallest cost. This process would need to be repeated for all possible starting vertices.
As an additional heuristic, consider a turn-based game where there are rooms connected by corridors. Each corridor has a cost associated with it, and your final score is lowered by an amount equal to each cost 'paid'. It takes 1 turn to traverse a corridor, and the game lasts 10 turns. You can stay in a room (self-loop), but staying put has a cost associated with it too. If you know the cost of all corridors (and for staying put in each room; i.e., you know the weighted graph), what is the optimal (highest-scoring) path to take for a 10-turn (or N-turn) game? You can revisit rooms and corridors.
Possible Approach (likely to fail)
I was originally thinking of using Dijkstra's algorithm to find least cost path between all pairs of vertices, and then for each starting vertex subset the LCP's of length N. However, I realized that this might not give the LCP of length N for a given starting vertex. For example, Dijkstra's LCP between V1 and V2 might have length < N, and Dijkstra's might have excluded an unnecessary but low-cost edge, which, if included, would have made the path length equal N.
It's an interesting fact that if A is the adjacency matrix and you compute Ak using addition and min in place of the usual multiply and sum used in normal matrix multiplication, then Ak[i,j] is the length of the shortest path from node i to node j with exactly k edges. Now the trick is to use repeated squaring so that Ak needs only log k matrix multiply ops.
If you need the path in addition to the minimum length, you must track where the result of each min operation came from.
For your purposes, you want the location of the min of each row of the result matrix and corresponding path.
This is a good algorithm if the graph is dense. If it's sparse, then doing one bread-first search per node to depth k will be faster.
Say we have a n x n chess board (or a matrix in other words) and each square has a weight to it. A piece can move horizontally or vertically, but it can't move diagonally. The cost of each movement will be equal to the difference of the two squares on the chess board. Using an algorithm, I want to find the minimum cost for a single chess piece to move from the square (1,1) to square (n,n) which has a worst-case time complexity in polynomial time.
Could dikstras algorithm be used to solve this? Would my algorithm below be able to solve this problem? Diijkstras can already be ran in polynomial time, but what makes it this time complexity?
Pseudocode:
We have some empty set S, some integer V, and input a unweighted graph. After that we complete a adjacency matrix showing the cost of an edge without the infinity weighted vertices and while the matrix hasn't picked all the vertices we find a vertex and if the square value is less then the square we're currently on, move to that square and update V with the difference between the two squares and update S marking each vertices thats been visited. We do this process until there are no more vertices.
Thanks.
Since you are trying to find a minimum cost path, you can use Dijkstra's for this. Since Dijkstra is O(|E| + |V|log|V|) in the worst case, where E is the number of edges and V is the number of verticies in the graph, this satisfies your polynomial time complexity requirement.
However, if your algorithm considers only costs associated with the beginning and end square of a move, and not the intermediate nodes, then you must connect all possible beginning and end squares together so that you can take "short-cuts" around the intermediate nodes.
I'm currently interested in generating random geometric graphs. For my particular problem, we randomly place node v in the unit square, and add an edge from v to node u if they have Euclidean distance <= D, where D=D(u,n) varies with u and the number of nodes n in the graph.
Important points:
It is costly to compute D, so I'd like to minimize the number of calls to this function.
The vast majority of the time, when v is added, edges uv will be added to only a small number of nodes u (usually 0 or 1).
Question: What is an efficient method for checking which vertices u are "close enough" to v?
The brute force algorithm is to compute and compare dist(v,u) and D(u,n) for all extant nodes u. This requires O(n2) calls to D.
I feel we should be able to do much better than this. Perhaps some kind of binning would work. We could divide the space up into bins, then for each vertex u, we store a list of bins where a newly placed vertex v could result in the edge uv. If v ends up placed outside of u's list of bins (which should happen most of the time), then it's too far away, and we don't need to compute D. This is somewhat of a off-the-top-of-my-head suggestion, and I don't know if it'd work well (e.g., there would be overhead in computing sufficiently close bins, which might be too costly), so I'm after feedback.
Based on your description of the problem, I would choose an R-tree as your data structure.
It allows for very fast searching by narrowing the set of vertices you need to run D against drastically. However, in the worst-case insertion, O(n) time is required. Thankfully, you're quite unlikely to hit the worst-case insertion with a typical data set.
I would probably just use a binning approach.
Say we cut the unit square in m x m subsquares (each having side length 1/m of course). Since you place your vertices uniformly at random (or so I assumed), every square will contain n / m^2 vertices on average.
Depending on A1, A2, m and n, you can probably determine the maximum radius you need to check. Say that's less than m. Then, after inserting v, you would need to check the square in which it landed, plus all adjacent squares. Anyway, this is a constant number of squares, so for every insertion you'll need to check O(n / m^2) other vertices on average.
I don't know the best value for m (as said, that depends on A1 and A2), but say it would be sqrt(n), then your entire algorithm could run in O(n) expected time.
EDIT
A small addition: you could keep track of vertices with many neighbors (so with high radius, which extends over multiple squares) and check them for every inserted vertex. There should only be few, so that's no problem.
The minimum Manhattan distance between any two points in the cartesian plane is the sum of the absolute differences of the respective X and Y axis. Like, if we have two points (X,Y) and (U,V) then the distance would be: ABS(X-U) + ABS(Y-V). Now, how should I determine the minimum distance between several pairs of points moving only parallel to the coordinate axis such that certain given points need not be visited in the selected path. I need a very efficient algorithm, because the number of avoided points can range up to 10000 with same range for the number of queries. The coordinates of the points would be less than ABS(50000). I would be given the set of points to be avoided in the beginning, so I might use some offline algorithm and/or precomputation.
As an example, the Manhattan distance between (0,0) and (1,1) is 2 from either path (0,0)->(1,0)->(1,1) or (0,0)->(0,1)->(1,1). But, if we are given the condition that (1,0) and (0,1) cannot be visited, the minimum distance increases to 6. One such path would then be: (0,0)->(0,-1)->(1,-1)->(2,-1)->(2,0)->(2,1)->(1,1).
This problem can be solved by breadth-first search or depth-first search, with breadth-first search being the standard approach. You can also use the A* algorithm which may give better results in practice, but in theory (worst case) is no better than BFS.
This is provable because your problem reduces to solving a maze. Obviously you can have so many obstacles that the grid essentially becomes a maze. It is well known that BFS or DFS are the only way to solve mazes. See Maze Solving Algorithms (wikipedia) for more information.
My final recommendation: use the A* algorithm and hope for the best.
You are not understanding the solutions here or we are not understanding the problem:
1) You have a cartesian plane. Therefore, every node has exactly 4 adjacent nodes, given by x+/-1, y+/-1 (ignoring the edges)
2) Do a BFS (or DFS,A*). All you can traverse is x/y +/- 1. Prestore your 10000 obstacles and just check if the node x/y +/-1 is visitable on demand. you don't need a real graph object
If it's too slow, you said you can do an offline calculation - 10^10 only requires 1.25GB to store an indexed obstacle lookup table. leave the algorithm running?
Where am I going wrong?