The project is more complex but the blocking issue is: How to generate a sequence of words of specific length from a list?
I've found how to generate all the possible combinations(see below) but the issue is that I need only the combinations of specific length.
Wolfram working example (it uses permutations though, I need only combinations(order doesn't matter)) :
Permutations[{a, b, c, d}, {3}]
Example(pseudo go):
list := []string{"alice", "moon", "walks", "mars", "sings", "guitar", "bravo"}
var premutationOf3
premutationOf3 = premuate(list, 3)
// this should return a list of all premutations such
// [][]string{[]string{"alice", "walks", "moon"}, []string{"alice", "signs", "guitar"} ....}
Current code to premutate all the possible sequences (no length limit)
for _, perm := range permutations(list) {
fmt.Printf("%q\n", perm)
}
func permutations(arr []string) [][]string {
var helper func([]string, int)
res := [][]string{}
helper = func(arr []string, n int) {
if n == 1 {
tmp := make([]string, len(arr))
copy(tmp, arr)
res = append(res, tmp)
} else {
for i := 0; i < n; i++ {
helper(arr, n-1)
if n%2 == 1 {
tmp := arr[i]
arr[i] = arr[n-1]
arr[n-1] = tmp
} else {
tmp := arr[0]
arr[0] = arr[n-1]
arr[n-1] = tmp
}
}
}
}
helper(arr, len(arr))
return res
}
I implement twiddle algorithm for generating combination in Go. Here is my implementation:
package twiddle
// Twiddle type contains all information twiddle algorithm
// need between each iteration.
type Twiddle struct {
p []int
b []bool
end bool
}
// New creates new twiddle algorithm instance
func New(m int, n int) *Twiddle {
p := make([]int, n+2)
b := make([]bool, n)
// initiate p
p[0] = n + 1
var i int
for i = 1; i != n-m+1; i++ {
p[i] = 0
}
for i != n+1 {
p[i] = i + m - n
i++
}
p[n+1] = -2
if m == 0 {
p[1] = 1
}
// initiate b
for i = 0; i != n-m; i++ {
b[i] = false
}
for i != n {
b[i] = true
i++
}
return &Twiddle{
p: p,
b: b,
}
}
// Next creates next combination and return it.
// it returns nil on end of combinations
func (t *Twiddle) Next() []bool {
if t.end {
return nil
}
r := make([]bool, len(t.b))
for i := 0; i < len(t.b); i++ {
r[i] = t.b[i]
}
x, y, end := t.twiddle()
t.b[x] = true
t.b[y] = false
t.end = end
return r
}
func (t *Twiddle) twiddle() (int, int, bool) {
var i, j, k int
var x, y int
j = 1
for t.p[j] <= 0 {
j++
}
if t.p[j-1] == 0 {
for i = j - 1; i != 1; i-- {
t.p[i] = -1
}
t.p[j] = 0
x = 0
t.p[1] = 1
y = j - 1
} else {
if j > 1 {
t.p[j-1] = 0
}
j++
for t.p[j] > 0 {
j++
}
k = j - 1
i = j
for t.p[i] == 0 {
t.p[i] = -1
i++
}
if t.p[i] == -1 {
t.p[i] = t.p[k]
x = i - 1
y = k - 1
t.p[k] = -1
} else {
if i == t.p[0] {
return x, y, true
}
t.p[j] = t.p[i]
t.p[i] = 0
x = j - 1
y = i - 1
}
}
return x, y, false
}
you can use my tweedle package as follow:
tw := tweedle.New(1, 2)
for b := tw.Next(); b != nil; b = tw.Next() {
fmt.Println(b)
}
I wanted to port a state-of-the-art hash function MeiYan from C to Go. (As far as I know this is one of the best if not just the best hash function for hash tables in terms of speed and collision rate, it beats MurMur at least.)
I am new to Go, just spent one weekend with it, and came up with this version:
func meiyan(key *byte, count int) uint32 {
type P *uint32;
var h uint32 = 0x811c9dc5;
for ;count >= 8; {
a := ((*(*uint32)(unsafe.Pointer(key))) << 5)
b := ((*(*uint32)(unsafe.Pointer(key))) >> 27)
c := *(*uint32)(unsafe.Pointer(uintptr(unsafe.Pointer(key)) + 4))
h = (h ^ ((a | b) ^ c)) * 0xad3e7
count -= 8
key = (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(key)) + 8))
}
if (count & 4) != 0 {
h = (h ^ uint32(*(*uint16)(unsafe.Pointer(key)))) * 0xad3e7
key = (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(key)) + 2))
h = (h ^ uint32(*(*uint16)(unsafe.Pointer(key)))) * 0xad3e7
key = (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(key)) + 2))
}
if (count & 2) != 0 {
h = (h ^ uint32(*(*uint16)(unsafe.Pointer(key)))) * 0xad3e7
key = (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(key)) + 2))
}
if (count & 1) != 0 {
h = (h ^ uint32(*key));
h = h * 0xad3e7
}
return h ^ (h >> 16);
}
Looks messy, but I do not think I can make it look better. Now I measure the speed and it is frustratingly slow, 3 times slower than C/C++ when compiled with gccgo -O3. Can this be made faster? Is this just as good as compiler can make it or unsafe.Pointer conversion is just as slow as it gets? In fact this surprised me, because I have seen that some other number crunching style code was just as fast as C or even faster. Am I doing something inneficiently here?
Here is the original C code I am porting from:
u32 meiyan(const char *key, int count) {
typedef u32* P;
u32 h = 0x811c9dc5;
while (count >= 8) {
h = (h ^ ((((*(P)key) << 5) | ((*(P)key) >> 27)) ^ *(P)(key + 4))) * 0xad3e7;
count -= 8;
key += 8;
}
#define tmp h = (h ^ *(u16*)key) * 0xad3e7; key += 2;
if (count & 4) { tmp tmp }
if (count & 2) { tmp }
if (count & 1) { h = (h ^ *key) * 0xad3e7; }
#undef tmp
return h ^ (h >> 16);
}
Here is how I measure speed:
func main(){
T := time.Now().UnixNano()/1e6
buf := []byte("Hello World!")
var controlSum uint64 = 0
for x := 123; x < 1e8; x++ {
controlSum += uint64(meiyan(&buf[0], 12))
}
fmt.Println(time.Now().UnixNano()/1e6 - T, "ms")
fmt.Println("controlSum:", controlSum)
}
After some careful research I found out why my code was slow, and improved it so it is now faster than the C version in my tests:
package main
import (
"fmt"
"time"
"unsafe"
)
func meiyan(key *byte, count int) uint32 {
type un unsafe.Pointer
type p32 *uint32
type p16 *uint16
type p8 *byte
var h uint32 = 0x811c9dc5;
for ;count >= 8; {
a := *p32(un(key)) << 5
b := *p32(un(key)) >> 27
c := *p32(un(uintptr(un(key)) + 4))
h = (h ^ ((a | b) ^ c)) * 0xad3e7
count -= 8
key = p8(un(uintptr(un(key)) + 8))
}
if (count & 4) != 0 {
h = (h ^ uint32(*p16(un(key)))) * 0xad3e7
key = p8(un(uintptr(un(key)) + 2))
h = (h ^ uint32(*p16(un(key)))) * 0xad3e7
key = p8(un(uintptr(un(key)) + 2))
}
if (count & 2) != 0 {
h = (h ^ uint32(*p16(un(key)))) * 0xad3e7
key = p8(un(uintptr(un(key)) + 2))
}
if (count & 1) != 0 {
h = h ^ uint32(*key)
h = h * 0xad3e7
}
return h ^ (h >> 16);
}
func main() {
T := time.Now().UnixNano()/1e6
buf := []byte("ABCDEFGHABCDEFGH")
var controlSum uint64 = 0
start := &buf[0]
size := len(buf)
for x := 123; x < 1e8; x++ {
controlSum += uint64(meiyan(start, size))
}
fmt.Println(time.Now().UnixNano()/1e6 - T, "ms")
fmt.Println("controlSum:", controlSum)
}
The hash function itself was already fast, but dereferencing the array on each iteration is what made it slow: &buf[0] was replaced with start := &buf[0] and then use start on each iteration.
The implementation from NATS looks impressive! On my machine, for a data of length 30 (bytes) op/sec 157175656.56 and nano-sec/op 6.36! Take a look at it. You might find some ideas.
Problem Statement
Input
The input begins with the number t of test cases in a single line
(t<=10). In each of the next t lines there are two numbers m and n (1
<= m <= n <= 1000000000, n-m<=100000) separated by a space.
Output
For every test case print all prime numbers p such that m <= p <= n,
one number per line, test cases separated by an empty line.
Example
Input:
2
1 10
3 5
Output:
2
3
5
7
3
5
My Problem
I have tried to write this problem with golang, at beginning I got time limit exceed error, then I solved it with finding the biggest n and only generate prime once. But now I got wrong answer error. Anyone can help to to find the bug? I can't figure it out. Thanks.
package main
import (
"fmt"
"math"
)
func main() {
var k, j, i, max_m, max_n, test_cases, kase int64
fmt.Scanln(&test_cases)
case_m, case_n := make([]int64, test_cases), make([]int64, test_cases)
EratosthenesArray := make(map[int64][]bool)
max_m = 0
max_n = 0
for i = 0; i < test_cases; i++ {
fmt.Scanf("%d %d", &case_m[i], &case_n[i])
if case_m[i] > case_n[i] {
case_m[i] = 0
case_n[i] = 0
}
if max_m < case_m[i] {
max_m = case_m[i]
}
if max_n < case_n[i] {
max_n = case_n[i]
}
length := case_n[i] - case_m[i] + 1
EratosthenesArray[i] = make([]bool, length)
}
if max_m <= max_n {
upperbound := int64(math.Sqrt(float64(max_n)))
UpperboundArray := make([]bool, upperbound+1)
for i = 2; i <= upperbound; i++ {
if !UpperboundArray[i] {
for k = i * i; k <= upperbound; k += i {
UpperboundArray[k] = true
}
for kase = 0; kase < test_cases; kase++ {
start := (case_m[kase] - i*i) / i
if case_m[kase]-i*i < 0 {
start = i
}
for k = start * i; k <= case_n[kase]; k += i {
if k >= case_m[kase] && k <= case_n[kase] {
EratosthenesArray[kase][k-case_m[kase]] = true
}
}
}
}
}
}
for i = 0; i < test_cases; i++ {
k = 0
for j = 0; j < case_n[i]-case_m[i]; j++ {
if !EratosthenesArray[i][j] {
ret := case_m[i] + j
if ret > 1 {
fmt.Println(ret)
}
}
}
fmt.Println()
}
}
according to the comments, the output for each prime number range is always have one line short, so here is the ACCEPTED solution
package main
import (
"fmt"
"math"
)
func main() {
var k, j, i, max_m, max_n, test_cases, kase int64
fmt.Scanln(&test_cases)
case_m, case_n := make([]int64, test_cases), make([]int64, test_cases)
EratosthenesArray := make(map[int64][]bool)
max_m = 0
max_n = 0
for i = 0; i < test_cases; i++ {
fmt.Scanf("%d %d", &case_m[i], &case_n[i])
if case_m[i] > case_n[i] {
case_m[i] = 0
case_n[i] = 0
}
if max_m < case_m[i] {
max_m = case_m[i]
}
if max_n < case_n[i] {
max_n = case_n[i]
}
length := case_n[i] - case_m[i] + 1
EratosthenesArray[i] = make([]bool, length)
}
if max_m <= max_n {
upperbound := int64(math.Sqrt(float64(max_n)))
UpperboundArray := make([]bool, upperbound+1)
for i = 2; i <= upperbound; i++ {
if !UpperboundArray[i] {
for k = i * i; k <= upperbound; k += i {
UpperboundArray[k] = true
}
for kase = 0; kase < test_cases; kase++ {
start := (case_m[kase] - i*i) / i
if case_m[kase]-i*i < 0 {
start = i
}
for k = start * i; k <= case_n[kase]; k += i {
if k >= case_m[kase] && k <= case_n[kase] {
EratosthenesArray[kase][k-case_m[kase]] = true
}
}
}
}
}
}
for i = 0; i < test_cases; i++ {
k = 0
for j = 0; j <= case_n[i]-case_m[i]; j++ {
if !EratosthenesArray[i][j] {
ret := case_m[i] + j
if ret > 1 {
fmt.Println(ret)
}
}
}
fmt.Println()
}
}
Note that I only changed one line from for j = 0; j < case_n[i]-case_m[i]; j++ { to for j = 0; j <= case_n[i]-case_m[i]; j++ {
And the execution time is about 1.08s, memory is about 772M (but seems the initial memory for golang in spoj is 771M, so it might be about 1M memory usage)
I tried to implement a slowEqual with golang,but xor operation is limited to int and int8 and I have no idea to convert string to int[] or int8[] , even it can be converted it seems little awkward, and I found bytes.Equal but it seems not a slowEqual implementation.Any advices?
This is my impletation.
//TODO real slow equal
func slowEquals(a, b string) bool {
al := len(a)
bl := len(b)
aInts := make([]int, al)
bInts := make([]int, bl)
for i := 0; i < al; i++ {
aInts[i] = int(a[i])
}
for i := 0; i < bl; i++ {
bInts[i] = int(b[i])
}
var diff uint8 = uint8(al ^ bl)
for i := 0; i < al && i < bl; i++ {
diff |= a[i] ^ b[i]
}
return diff == 0
//长度相等为0
/*
abytes := []int8()
bbytes := []int8()
al := len(a)
bl := len(b)
diff := al ^ bl
for i := 0; i < al && i < bl; i++ {
diff |= a[i] ^ b[i]
}
return diff == 0
*/
}
Or:(after first answer)
import "crypto/subtle"
func SlowEquals(a, b string) bool {
if len(a) != len(b) {
return subtle.ConstantTimeCompare([]byte(a), make([]byte,len(a))) == 1
}else{
return subtle.ConstantTimeCompare([]byte(a), []byte(b)) == 1
}
}
Perhaps this:
import "crypto/subtle"
func SlowEquals(a, b string) bool {
if len(a) != len(b) {
return false
}
return subtle.ConstantTimeCompare([]byte(a), []byte(b)) == 1
}
This returns quickly if the lengths are different, but there's a timing attack against the original code that reveals the length of a, so I think this isn't worse.
I have two strings (they are actually version numbers and they could be any version numbers)
a := "1.05.00.0156"
b := "1.0.221.9289"
I want to compare which one is bigger. How to do it in golang?
There is a nice solution from Hashicorp - https://github.com/hashicorp/go-version
import github.com/hashicorp/go-version
v1, err := version.NewVersion("1.2")
v2, err := version.NewVersion("1.5+metadata")
// Comparison example. There is also GreaterThan, Equal, and just
// a simple Compare that returns an int allowing easy >=, <=, etc.
if v1.LessThan(v2) {
fmt.Printf("%s is less than %s", v1, v2)
}
Some time ago I created a version comparison library: https://github.com/mcuadros/go-version
version.CompareSimple("1.05.00.0156", "1.0.221.9289")
//Returns: 1
Enjoy it!
Here's a general solution.
package main
import "fmt"
func VersionOrdinal(version string) string {
// ISO/IEC 14651:2011
const maxByte = 1<<8 - 1
vo := make([]byte, 0, len(version)+8)
j := -1
for i := 0; i < len(version); i++ {
b := version[i]
if '0' > b || b > '9' {
vo = append(vo, b)
j = -1
continue
}
if j == -1 {
vo = append(vo, 0x00)
j = len(vo) - 1
}
if vo[j] == 1 && vo[j+1] == '0' {
vo[j+1] = b
continue
}
if vo[j]+1 > maxByte {
panic("VersionOrdinal: invalid version")
}
vo = append(vo, b)
vo[j]++
}
return string(vo)
}
func main() {
versions := []struct{ a, b string }{
{"1.05.00.0156", "1.0.221.9289"},
// Go versions
{"1", "1.0.1"},
{"1.0.1", "1.0.2"},
{"1.0.2", "1.0.3"},
{"1.0.3", "1.1"},
{"1.1", "1.1.1"},
{"1.1.1", "1.1.2"},
{"1.1.2", "1.2"},
}
for _, version := range versions {
a, b := VersionOrdinal(version.a), VersionOrdinal(version.b)
switch {
case a > b:
fmt.Println(version.a, ">", version.b)
case a < b:
fmt.Println(version.a, "<", version.b)
case a == b:
fmt.Println(version.a, "=", version.b)
}
}
}
Output:
1.05.00.0156 > 1.0.221.9289
1 < 1.0.1
1.0.1 < 1.0.2
1.0.2 < 1.0.3
1.0.3 < 1.1
1.1 < 1.1.1
1.1.1 < 1.1.2
1.1.2 < 1.2
go-semver is a semantic versioning library for Go. It lets you parse and compare two semantic version strings.
Example:
vA := semver.New("1.2.3")
vB := semver.New("3.2.1")
fmt.Printf("%s < %s == %t\n", vA, vB, vA.LessThan(*vB))
Output:
1.2.3 < 3.2.1 == true
Here are some of the libraries for version comparison:
https://github.com/blang/semver
https://github.com/Masterminds/semver
https://github.com/hashicorp/go-version
https://github.com/mcuadros/go-version
I have used blang/semver.
Eg: https://play.golang.org/p/1zZvEjLSOAr
import github.com/blang/semver/v4
v1, err := semver.Make("1.0.0-beta")
v2, err := semver.Make("2.0.0-beta")
// Options availabe
v1.Compare(v2) // Compare
v1.LT(v2) // LessThan
v1.GT(v2) // GreaterThan
This depends on what you mean by bigger.
A naive approach would be:
package main
import "fmt"
import "strings"
func main() {
a := strings.Split("1.05.00.0156", ".")
b := strings.Split("1.0.221.9289", ".")
for i, s := range a {
var ai, bi int
fmt.Sscanf(s, "%d", &ai)
fmt.Sscanf(b[i], "%d", &bi)
if ai > bi {
fmt.Printf("%v is bigger than %v\n", a, b)
break
}
if bi > ai {
fmt.Printf("%v is bigger than %v\n", b, a)
break
}
}
}
http://play.golang.org/p/j0MtFcn44Z
Based on Jeremy Wall's answer:
func compareVer(a, b string) (ret int) {
as := strings.Split(a, ".")
bs := strings.Split(b, ".")
loopMax := len(bs)
if len(as) > len(bs) {
loopMax = len(as)
}
for i := 0; i < loopMax; i++ {
var x, y string
if len(as) > i {
x = as[i]
}
if len(bs) > i {
y = bs[i]
}
xi,_ := strconv.Atoi(x)
yi,_ := strconv.Atoi(y)
if xi > yi {
ret = -1
} else if xi < yi {
ret = 1
}
if ret != 0 {
break
}
}
return
}
http://play.golang.org/p/AetJqvFc3B
Striving for clarity and simplicity:
func intVer(v string) (int64, error) {
sections := strings.Split(v, ".")
intVerSection := func(v string, n int) string {
if n < len(sections) {
return fmt.Sprintf("%04s", sections[n])
} else {
return "0000"
}
}
s := ""
for i := 0; i < 4; i++ {
s += intVerSection(v, i)
}
return strconv.ParseInt(s, 10, 64)
}
func main() {
a := "3.045.98.0832"
b := "087.2345"
va, _ := intVer(a)
vb, _ := intVer(b)
fmt.Println(va<vb)
}
Comparing versions implies parsing so I believe these 2 steps should be separate to make it robust.
tested in leetcode: https://leetcode.com/problems/compare-version-numbers/
func compareVersion(version1 string, version2 string) int {
len1, len2, i, j := len(version1), len(version2), 0, 0
for i < len1 || j < len2 {
n1 := 0
for i < len1 && '0' <= version1[i] && version1[i] <= '9' {
n1 = n1 * 10 + int(version1[i] - '0')
i++
}
n2 := 0
for j < len2 && '0' <= version2[j] && version2[j] <= '9' {
n2 = n2 * 10 + int(version2[j] - '0')
j++
}
if n1 > n2 {
return 1
}
if n1 < n2 {
return -1
}
i, j = i+1, j+1
}
return 0
}
import (
"fmt"
"strconv"
"strings"
)
func main() {
j := ll("1.05.00.0156" ,"1.0.221.9289")
fmt.Println(j)
}
func ll(a,b string) int {
var length ,r,l int = 0,0,0
v1 := strings.Split(a,".")
v2 := strings.Split(b,".")
len1, len2 := len(v1), len(v2)
length = len2
if len1 > len2 {
length = len1
}
for i:= 0;i<length;i++ {
if i < len1 && i < len2 {
if v1[i] == v2[i] {
continue
}
}
r = 0
if i < len1 {
if number, err := strconv.Atoi(v1[i]); err == nil {
r = number
}
}
l = 0
if i < len2 {
if number, err := strconv.Atoi(v2[i]); err == nil {
l = number
}
}
if r < l {
return -1
}else if r> l {
return 1
}
}
return 0
}
If you can guarantee version strings have same format (i.e. SemVer), you can convert to int and compare int. Here is an implementation for sorting slices of SemVer:
versions := []string{"1.0.10", "1.0.6", "1.0.9"}
sort.Slice(versions[:], func(i, j int) bool {
as := strings.Split(versions[i], ".")
bs := strings.Split(versions[j], ".")
if len(as) != len(bs) || len(as) != 3 {
return versions[i] < versions[j]
}
ais := make([]int, len(as))
bis := make([]int, len(bs))
for i := range as {
ais[i], _ = strconv.Atoi(as[i])
bis[i], _ = strconv.Atoi(bs[i])
}
//X.Y.Z
// If X and Y are the same, compare Z
if ais[0] == bis[0] && ais[1] == bis[1] {
return ais[2] < bis[2]
}
// If X is same, compare Y
if ais[0] == bis[0] {
return ais[1] < bis[1]
}
// Compare X
return ais[0] < bis[0]
})
fmt.Println(versions)
tested in go playground
// If v1 > v2 return '>'
// If v1 < v2 return '<'
// Otherwise return '='
func CompareVersion(v1, v2 string) byte {
v1Slice := strings.Split(v1, ".")
v2Slice := strings.Split(v2, ".")
var maxSize int
{ // Make them both the same size.
if len(v1Slice) < len(v2Slice) {
maxSize = len(v2Slice)
} else {
maxSize = len(v1Slice)
}
}
v1NSlice := make([]int, maxSize)
v2NSlice := make([]int, maxSize)
{
// Convert string to the int.
for i := range v1Slice {
v1NSlice[i], _ = strconv.Atoi(v1Slice[i])
}
for i := range v2Slice {
v2NSlice[i], _ = strconv.Atoi(v2Slice[i])
}
}
var result byte
var v2Elem int
for i, v1Elem := range v1NSlice {
if result != '=' && result != 0 { // The previous comparison has got the answer already.
return result
}
v2Elem = v2NSlice[i]
if v1Elem > v2Elem {
result = '>'
} else if v1Elem < v2Elem {
result = '<'
} else {
result = '='
}
}
return result
}
Convert "1.05.00.0156" to "0001"+"0005"+"0000"+"0156", then to int64.
Convert "1.0.221.9289" to "0001"+"0000"+"0221"+"9289", then to int64.
Compare the two int64 values.
Try it on the Go playground