Related
There is a number of weight in array arr.
arr= [1,5,3,2,4], each of the value in arr contains weight.
n = 2, must have 2 blocks while split the weight and order cannot break for split
Combination 1:
block 0: [1] max: 1
block 1: [5,3,2,4] max: 5
----------------------------
sum of max from block 0 and 1 is 6
Combination 2:
block 0: [1,5] max: 5
block 1: [3,2,4] max: 4
----------------------------
sum of max from block 0 and 1 is 9
Combination 3:
block 0: [1,5,3] max: 5
block 1: [2,4] max: 4
----------------------------
sum of max from block 0 and 1 is 9
Combination 4:
block 0: [1,5,3, 2] max: 5
block 1: [4] max: 4
----------------------------
sum of max from block 0 and 1 is 9
So here answer is 6 from Combination 1
The hardest part of some problems is just stating them clearly. If you can do that, the code practically writes itself.
I think the problem statement is this: Find the minimum value of a function (f) applied at every index of an array (f(array, index)), where f is the sum of the max values of two subarrays formed by splitting the input array at the given index.
function f(array, index) {
let left = array.slice(0, index)
let right = array.slice(index)
return Math.max(...left) + Math.max(...right)
}
let array = [1, 5, 3, 2, 4]
let smallestMax = Infinity
for (let i=1; i<array.length; i++) {
let max = f(array, i)
smallestMax = max < smallestMax ? max : smallestMax
}
console.log(smallestMax)
#Danh has a straightforward O(N^2) solution, but linear time is also possible without too much more work, and if you have enough data, it'll make a huge difference. Dan did his in JS it looks like, so I'll try to do the same. A bit rusty on these style for loops, so they may be off by one, but quick test in the JS console gave me 6 as expected (after fixing a copy/paste error).
Idea is to pass left to right finding the max at each index (left side). Then right to left finding the max at each index (right side). Then we look at left side plus the right side to get the value. Basically dynamic programming of a sort.
let array = [1, 5, 3, 2, 4]
let maxLeft = {}
let maxRight = {}
let max,newMax;
for (let i=0; i<array.length; i++) {
if (i === 0) {
maxLeft[i] = array[i]
} else {
maxLeft[i] = array[i] < maxLeft[i-1] ? maxLeft[i-1] : array[i]
}
}
for (let i=array.length - 1; i >= 0; i--) {
if (i === array.length - 1) {
maxRight[i] = array[i]
} else {
maxRight[i] = array[i] < maxRight[i+1] ? maxRight[i+1] : array[i]
}
}
for (let i=0; i<array.length; i++) {
newMax = maxLeft[i] + maxRight[i + 1]
if (i === 0) {
max = newMax
} else {
maxLeft[i] = newMax < maxLeft[i-1] ? max : newMax
}
}
console.log(max)
I would like to understand how to solve the Codility ArrayRecovery challenge, but I don't even know what branch of knowledge to consult. Is it combinatorics, optimization, computer science, set theory, or something else?
Edit:
The branch of knowledge to consult is constraint programming, particularly constraint propagation. You also need some combinatorics to know that if you take k numbers at a time from the range [1..n], with the restriction that no number can be bigger than the one before it, that works out to be
(n+k-1)!/k!(n-1)! possible combinations
which is the same as the number of combinations with replacements of n things taken k at a time, which has the mathematical notation . You can read about why it works out like that here.
Peter Norvig provides an excellent example of how to solve this kind of problem with his Sudoku solver.
You can read the full description of the ArrayRecovery problem via the link above. The short story is that there is an encoder that takes a sequence of integers in the range 1 up to some given limit (say 100 for our purposes) and for each element of the input sequence outputs the most recently seen integer that is smaller than the current input, or 0 if none exists.
input 1, 2, 3, 4 => output 0, 1, 2, 3
input 2, 4, 3 => output 0, 2, 2
The full task is, given the output (and the range of allowable input), figure out how many possible inputs could have generated it. But before I even get to that calculation, I'm not confident about how to even approach formulating the equation. That is what I am asking for help with. (Of course a full solution would be welcome, too, if it is explained.)
I just look at some possible outputs and wonder. Here are some sample encoder outputs and the inputs I can come up with, with * meaning any valid input and something like > 4 meaning any valid input greater than 4. If needed, inputs are referred to as A1, A2, A3, ... (1-based indexing)
Edit #2
Part of the problem I was having with this challenge is that I did not manually generate the exactly correct sets of possible inputs for an output. I believe the set below is correct now. Look at this answer's edit history if you want to see my earlier mistakes.
output #1: 0, 0, 0, 4
possible inputs: [>= 4, A1 >= * >= 4, 4, > 4]
output #2: 0, 0, 0, 2, 3, 4 # A5 ↴ See more in discussion below
possible inputs: [>= 2, A1 >= * >=2, 2, 3, 4, > 4]
output #3: 0, 0, 0, 4, 3, 1
possible inputs: none # [4, 3, 1, 1 >= * > 4, 4, > 1] but there is no number 1 >= * > 4
The second input sequence is very tightly constrained compared to the first just by adding 2 more outputs. The third sequence is so constrained as to be impossible.
But the set of constraints on A5 in example #2 is a bit harder to articulate. Of course A5 > O5, that is the basic constraint on all the inputs. But any output > A4 and after O5 has to appear in the input after A4, so A5 has to be an element of the set of numbers that comes after A5 that is also > A4. Since there is only 1 such number (A6 == 4), A5 has to be it, but it gets more complicated if there is a longer string of numbers that follow. (Editor's note: actually it doesn't.)
As the output set gets longer, I worry these constraints just get more complicated and harder to get right. I cannot think of any data structures for efficiently representing these in a way that leads to efficiently calculating the number of possible combinations. I also don't quite see how to algorithmically add constraint sets together.
Here are the constraints I see so far for any given An
An > On
An <= min(Set of other possible numbers from O1 to n-1 > On). How to define the set of possible numbers greater than On?
Numbers greater than On that came after the most recent occurrence of On in the input
An >= max(Set of other possible numbers from O1 to n-1 < On). How to define the set of possible numbers less than On?
Actually this set is empty because On is, by definition, the largest possible number from the previous input sequence. (Which it not to say it is strictly the largest number from the previous input sequence.)
Any number smaller than On that came before the last occurrence of it in the input would be ineligible because of the "nearest" rule. No numbers smaller that On could have occurred after the most recent occurrence because of the "nearest" rule and because of the transitive property: if Ai < On and Aj < Ai then Aj < On
Then there is the set theory:
An must be an element of the set of unaccounted-for elements of the set of On+1 to Om, where m is the smallest m > n such that Om < On. Any output after such Om and larger than Om (which An is) would have to appear as or after Am.
An element is unaccounted-for if it is seen in the output but does not appear in the input in a position that is consistent with the rest of the output. Obviously I need a better definition than this in order to code and algorithm to calculate it.
It seems like perhaps some kind of set theory and/or combinatorics or maybe linear algebra would help with figuring out the number of possible sequences that would account for all of the unaccounted-for outputs and fit the other constraints. (Editor's note: actually, things never get that complicated.)
The code below passes all of Codility's tests. The OP added a main function to use it on the command line.
The constraints are not as complex as the OP thinks. In particular, there is never a situation where you need to add a restriction that an input be an element of some set of specific integers seen elsewhere in the output. Every input position has a well-defined minimum and maximum.
The only complication to that rule is that sometimes the maximum is "the value of the previous input" and that input itself has a range. But even then, all the values like that are consecutive and have the same range, so the number of possibilities can be calculated with basic combinatorics, and those inputs as a group are independent of the other inputs (which only serve to set the range), so the possibilities of that group can be combined with the possibilities of other input positions by simple multiplication.
Algorithm overview
The algorithm makes a single pass through the output array updating the possible numbers of input arrays after every span, which is what I am calling repetitions of numbers in the output. (You might say maximal subsequences of the output where every element is identical.) For example, for output 0,1,1,2 we have three spans: 0, 1,1 and 2. When a new span begins, the number of possibilities for the previous span is calculated.
This decision was based on a few observations:
For spans longer than 1 in length, the minimum value of the input
allowed in the first position is whatever the value is of the input
in the second position. Calculating the number of possibilities of a
span is straightforward combinatorics, but the standard formula
requires knowing the range of the numbers and the length of the span.
Every time the value of the
output changes (and a new span beings), that strongly constrains the value of the previous span:
When the output goes up, the only possible reason is that the previous input was the value of the new, higher output and the input corresponding to the position of the new, higher output, was even higher.
When an output goes down, new constraints are established, but those are a bit harder to articulate. The algorithm stores stairs (see below) in order to quantify the constraints imposed when the output goes down
The aim here was to confine the range of possible values for every span. Once we do that accurately, calculating the number of combinations is straightforward.
Because the encoder backtracks looking to output a number that relates to the input in 2 ways, both smaller and closer, we know we can throw out numbers that are larger and farther away. After a small number appears in the output, no larger number from before that position can have any influence on what follows.
So to confine these ranges of input when the output sequence decreased, we need to store stairs - a list of increasingly larger possible values for the position in the original array. E.g for 0,2,5,7,2,4 stairs build up like this: 0, 0,2, 0,2,5, 0,2,5,7, 0,2, 0,2,4.
Using these bounds we can tell for sure that the number in the position of the second 2 (next to last position in the example) must be in (2,5], because 5 is the next stair. If the input were greater than 5, a 5 would have been output in that space instead of a 2. Observe, that if the last number in the encoded array was not 4, but 6, we would exit early returning 0, because we know that the previous number couldn't be bigger than 5.
The complexity is O(n*lg(min(n,m))).
Functions
CombinationsWithReplacement - counts number of combinations with replacements of size k from n numbers. E.g. for (3, 2) it counts 3,3, 3,2, 3,1, 2,2, 2,1, 1,1, so returns 6 It is the same as choose(n - 1 + k, n - 1).
nextBigger - finds next bigger element in a range. E.g. for 4 in sub-array 1,2,3,4,5 it returns 5, and in sub-array 1,3 it returns its parameter Max.
countSpan (lambda) - counts how many different combinations a span we have just passed can have. Consider span 2,2 for 0,2,5,7,2,2,7.
When curr gets to the final position, curr is 7 and prev is the final 2 of the 2,2 span.
It computes maximum and minimum possible values of the prev span. At this point stairs consist of 2,5,7 then maximum possible value is 5 (nextBigger after 2 in the stair 2,5,7). A value of greater than 5 in this span would have output a 5, not a 2.
It computes a minimum value for the span (which is the minimum value for every element in the span), which is prev at this point, (remember curr at this moment equals to 7 and prev to 2). We know for sure that in place of the final 2 output, the original input has to have 7, so the minimum is 7. (This is a consequence of the "output goes up" rule. If we had 7,7,2 and curr would be 2 then the minimum for the previous span (the 7,7) would be 8 which is prev + 1.
It adjusts the number of combinations. For a span of length L with a range of n possibilities (1+max-min), there are possibilities, with k being either L or L-1 depending on what follows the span.
For a span followed by a larger number, like 2,2,7, k = L - 1 because the last position of the 2,2 span has to be 7 (the value of the first number after the span).
For a span followed by a smaller number, like 7,7,2, k = L because
the last element of 7,7 has no special constraints.
Finally, it calls CombinationsWithReplacement to find out the number of branches (or possibilities), computes new res partial results value (remainder values in the modulo arithmetic we are doing), and returns new res value and max for further handling.
solution - iterates over the given Encoder Output array. In the main loop, while in a span it counts the span length, and at span boundaries it updates res by calling countSpan and possibly updates the stairs.
If the current span consists of a bigger number than the previous one, then:
Check validity of the next number. E.g 0,2,5,2,7 is invalid input, becuase there is can't be 7 in the next-to-last position, only 3, or 4, or 5.
It updates the stairs. When we have seen only 0,2, the stairs are 0,2, but after the next 5, the stairs become 0,2,5.
If the current span consists of a smaller number then the previous one, then:
It updates stairs. When we have seen only 0,2,5, our stairs are 0,2,5, but after we have seen 0,2,5,2 the stairs become 0,2.
After the main loop it accounts for the last span by calling countSpan with -1 which triggers the "output goes down" branch of calculations.
normalizeMod, extendedEuclidInternal, extendedEuclid, invMod - these auxiliary functions help to deal with modulo arithmetic.
For stairs I use storage for the encoded array, as the number of stairs never exceeds current position.
#include <algorithm>
#include <cassert>
#include <vector>
#include <tuple>
const int Modulus = 1'000'000'007;
int CombinationsWithReplacement(int n, int k);
template <class It>
auto nextBigger(It begin, It end, int value, int Max) {
auto maxIt = std::upper_bound(begin, end, value);
auto max = Max;
if (maxIt != end) {
max = *maxIt;
}
return max;
}
auto solution(std::vector<int> &B, const int Max) {
auto res = 1;
const auto size = (int)B.size();
auto spanLength = 1;
auto prev = 0;
// Stairs is the list of numbers which could be smaller than number in the next position
const auto stairsBegin = B.begin();
// This includes first entry (zero) into stairs
// We need to include 0 because we can meet another zero later in encoded array
// and we need to be able to find in stairs
auto stairsEnd = stairsBegin + 1;
auto countSpan = [&](int curr) {
const auto max = nextBigger(stairsBegin, stairsEnd, prev, Max);
// At the moment when we switch from the current span to the next span
// prev is the number from previous span and curr from current.
// E.g. 1,1,7, when we move to the third position cur = 7 and prev = 1.
// Observe that, in this case minimum value possible in place of any of 1's can be at least 2=1+1=prev+1.
// But if we consider 7, then we have even more stringent condition for numbers in place of 1, it is 7
const auto min = std::max(prev + 1, curr);
const bool countLast = prev > curr;
const auto branchesCount = CombinationsWithReplacement(max - min + 1, spanLength - (countLast ? 0 : 1));
return std::make_pair(res * (long long)branchesCount % Modulus, max);
};
for (int i = 1; i < size; ++i) {
const auto curr = B[i];
if (curr == prev) {
++spanLength;
}
else {
int max;
std::tie(res, max) = countSpan(curr);
if (prev < curr) {
if (curr > max) {
// 0,1,5,1,7 - invalid because number in the fourth position lies in [2,5]
// and so in the fifth encoded position we can't something bigger than 5
return 0;
}
// It is time to possibly shrink stairs.
// E.g if we had stairs 0,2,4,9,17 and current value is 5,
// then we no more interested in 9 and 17, and we change stairs to 0,2,4,5.
// That's because any number bigger than 9 or 17 also bigger than 5.
const auto s = std::lower_bound(stairsBegin, stairsEnd, curr);
stairsEnd = s;
*stairsEnd++ = curr;
}
else {
assert(curr < prev);
auto it = std::lower_bound(stairsBegin, stairsEnd, curr);
if (it == stairsEnd || *it != curr) {
// 0,5,1 is invalid sequence because original sequence lloks like this 5,>5,>1
// and there is no 1 in any of the two first positions, so
// it can't appear in the third position of the encoded array
return 0;
}
}
spanLength = 1;
}
prev = curr;
}
res = countSpan(-1).first;
return res;
}
template <class T> T normalizeMod(T a, T m) {
if (a < 0) return a + m;
return a;
}
template <class T> std::pair<T, std::pair<T, T>> extendedEuclidInternal(T a, T b) {
T old_x = 1;
T old_y = 0;
T x = 0;
T y = 1;
while (true) {
T q = a / b;
T t = a - b * q;
if (t == 0) {
break;
}
a = b;
b = t;
t = x; x = old_x - x * q; old_x = t;
t = y; y = old_y - y * q; old_y = t;
}
return std::make_pair(b, std::make_pair(x, y));
}
// Returns gcd and Bezout's coefficients
template <class T> std::pair<T, std::pair<T, T>> extendedEuclid(T a, T b) {
if (a > b) {
if (b == 0) return std::make_pair(a, std::make_pair(1, 0));
return extendedEuclidInternal(a, b);
}
else {
if (a == 0) return std::make_pair(b, std::make_pair(0, 1));
auto p = extendedEuclidInternal(b, a);
std::swap(p.second.first, p.second.second);
return p;
}
}
template <class T> T invMod(T a, T m) {
auto p = extendedEuclid(a, m);
assert(p.first == 1);
return normalizeMod(p.second.first, m);
}
int CombinationsWithReplacement(int n, int k) {
int res = 1;
for (long long i = n; i < n + k; ++i) {
res = res * i % Modulus;
}
int denom = 1;
for (long long i = k; i > 0; --i) {
denom = denom * i % Modulus;
}
res = res * (long long)invMod(denom, Modulus) % Modulus;
return res;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Only the above is needed for the Codility challenge. Below is to run on the command line.
//
// Compile with: gcc -std=gnu++14 -lc++ -lstdc++ array_recovery.cpp
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include <string.h>
// Usage: 0 1 2,3, 4 M
// Last arg is M, the max value for an input.
// Remaining args are B (the output of the encoder) separated by commas and/or spaces
// Parentheses and brackets are ignored, so you can use the same input form as Codility's tests: ([1,2,3], M)
int main(int argc, char* argv[]) {
int Max;
std::vector<int> B;
const char* delim = " ,[]()";
if (argc < 2 ) {
printf("Usage: %s M 0 1 2,3, 4... \n", argv[0]);
return 1;
}
for (int i = 1; i < argc; i++) {
char* parse;
parse = strtok(argv[i], delim);
while (parse != NULL)
{
B.push_back(atoi(parse));
parse = strtok (NULL, delim);
}
}
Max = B.back();
B.pop_back();
printf("%d\n", solution(B, Max));
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Only the above is needed for the Codility challenge. Below is to run on the command line.
//
// Compile with: gcc -std=gnu++14 -lc++ -lstdc++ array_recovery.cpp
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include <string.h>
// Usage: M 0 1 2,3, 4
// first arg is M, the max value for an input.
// remaining args are B (the output of the encoder) separated by commas and/or spaces
int main(int argc, char* argv[]) {
int Max;
std::vector<int> B;
const char* delim = " ,";
if (argc < 3 ) {
printf("Usage: %s M 0 1 2,3, 4... \n", argv[0]);
return 1;
}
Max = atoi(argv[1]);
for (int i = 2; i < argc; i++) {
char* parse;
parse = strtok(argv[i], delim);
while (parse != NULL)
{
B.push_back(atoi(parse));
parse = strtok (NULL, delim);
}
}
printf("%d\n", solution(B, Max));
return 0;
}
Let's see an example:
Max = 5
Array is
0 1 3 0 1 1 3
1
1 2..5
1 3 4..5
1 3 4..5 1
1 3 4..5 1 2..5
1 3 4..5 1 2..5 >=..2 (sorry, for a cumbersome way of writing)
1 3 4..5 1 3..5 >=..3 4..5
Now count:
1 1 2 1 3 2 which amounts to 12 total.
Here's an idea. One known method to construct the output is to use a stack. We pop it while the element is greater or equal, then output the smaller element if it exists, then push the greater element onto the stack. Now what if we attempted to do this backwards from the output?
First we'll demonstrate the stack method using the c∅dility example.
[2, 5, 3, 7, 9, 6]
2: output 0, stack [2]
5: output 2, stack [2,5]
3: pop 5, output, 2, stack [2,3]
7: output 3, stack [2,3,7]
... etc.
Final output: [0, 2, 2, 3, 7, 3]
Now let's try reconstruction! We'll use stack both as the imaginary stack and as the reconstituted input:
(Input: [2, 5, 3, 7, 9, 6])
Output: [0, 2, 2, 3, 7, 3]
* Something >3 that reached 3 in the stack
stack = [3, 3 < *]
* Something >7 that reached 7 in the stack
but both of those would've popped before 3
stack = [3, 7, 7 < x, 3 < * <= x]
* Something >3, 7 qualifies
stack = [3, 7, 7 < x, 3 < * <= x]
* Something >2, 3 qualifies
stack = [2, 3, 7, 7 < x, 3 < * <= x]
* Something >2 and >=3 since 3 reached 2
stack = [2, 2 < *, 3, 7, 7 < x, 3 < * <= x]
Let's attempt your examples:
Example 1:
[0, 0, 0, 2, 3, 4]
* Something >4
stack = [4, 4 < *]
* Something >3, 4 qualifies
stack = [3, 4, 4 < *]
* Something >2, 3 qualifies
stack = [2, 3, 4, 4 < *]
* The rest is non-increasing with lowerbound 2
stack = [y >= x, x >= 2, 2, 3, 4, >4]
Example 2:
[0, 0, 0, 4]
* Something >4
stack [4, 4 < *]
* Non-increasing
stack = [z >= y, y >= 4, 4, 4 < *]
Calculating the number of combinations is achieved by multiplying together the possibilities for all the sections. A section is either a bounded single cell; or a bound, non-increasing subarray of one or more cells. To calculate the latter we use the multi-choose binomial, (n + k - 1) choose (k - 1). Consider that we can express the differences between the cells of a bound, non-increasing sequence of 3 cells as:
(ub - cell_3) + (cell_3 - cell_2) + (cell_2 - cell_1) + (cell_1 - lb) = ub - lb
Then the number of ways to distribute ub - lb into (x + 1) cells is
(n + k - 1) choose (k - 1)
or
(ub - lb + x) choose x
For example, the number of non-increasing sequences between
(3,4) in two cells is (4 - 3 + 2) choose 2 = 3: [3,3] [4,3] [4,4]
And the number of non-increasing sequences between
(3,4) in three cells is (4 - 3 + 3) choose 3 = 4: [3,3,3] [4,3,3] [4,4,3] [4,4,4]
(Explanation attributed to Brian M. Scott.)
Rough JavaScript sketch (the code is unreliable; it's only meant to illustrate the encoding. The encoder lists [lower_bound, upper_bound], or a non-increasing sequence as [non_inc, length, lower_bound, upper_bound]):
function f(A, M){
console.log(JSON.stringify(A), M);
let i = A.length - 1;
let last = A[i];
let s = [[last,last]];
if (A[i-1] == last){
let d = 1;
s.splice(1,0,['non_inc',d++,last,M]);
while (i > 0 && A[i-1] == last){
s.splice(1,0,['non_inc',d++,last,M]);
i--
}
} else {
s.push([last+1,M]);
i--;
}
if (i == 0)
s.splice(0,1);
for (; i>0; i--){
let x = A[i];
if (x < s[0][0])
s = [[x,x]].concat(s);
if (x > s[0][0]){
let [l, _l] = s[0];
let [lb, ub] = s[1];
s[0] = [x+1, M];
s[1] = [lb, x];
s = [[l,_l], [x,x]].concat(s);
}
if (x == s[0][0]){
let [l,_l] = s[0];
let [lb, ub] = s[1];
let d = 1;
s.splice(0,1);
while (i > 0 && A[i-1] == x){
s =
[['non_inc', d++, lb, M]].concat(s);
i--;
}
if (i > 0)
s = [[l,_l]].concat(s);
}
}
// dirty fix
if (s[0][0] == 0)
s.splice(0,1);
return s;
}
var a = [2, 5, 3, 7, 9, 6]
var b = [0, 2, 2, 3, 7, 3]
console.log(JSON.stringify(a));
console.log(JSON.stringify(f(b,10)));
b = [0,0,0,4]
console.log(JSON.stringify(f(b,10)));
b = [0,2,0,0,0,4]
console.log(JSON.stringify(f(b,10)));
b = [0,0,0,2,3,4]
console.log(JSON.stringify(f(b,10)));
b = [0,2,2]
console.log(JSON.stringify(f(b,4)));
b = [0,3,5,6]
console.log(JSON.stringify(f(b,10)));
b = [0,0,3,0]
console.log(JSON.stringify(f(b,10)));
So, I'm trying to do something similar to a paginator (list of page numbers) where the current number is in the middle or as close as can be
Every way I solve it is hard and weird, just wondering if there is a nice mathy way to do it :)
given:
a: current page number
x: first page number
y: last page number
n: number required
I want to generate a list of numbers where a is as close to the center as can be, while staying within x and y
so f(5, 1, 10, 5) would return [3, 4, 5, 6, 7]
but f(1, 1, 10, 5) would return [1, 2, 3, 4, 5]
and f(9, 1, 10, 5) would return [6, 7, 8, 9, 10]
Can anyone think of a nice way of getting that kind of thing?
Implemented in a probably complicated way in ruby, can it be done simpler?
def numbers_around(current:, total:, required: 5)
required_before = (required - 1) / 2
required_after = (required - 1) / 2
before_x = current - required_before
after_x = current + required_after
if before_x < 1
after_x += before_x.abs + 1
before_x = 1
end
if after_x > total
before_x -= (after_x - total)
after_x = total
end
(before_x..after_x)
end
Here's something kind of mathy that returns the first number in the list (JavaScript code):
function f(a,x,y,n){
var m = n >> 1;
return x * (n > y - x) || a - m
+ Math.max(0,m - a + x)
- Math.max(0,m - y + a);
}
Output:
console.log(f(5,1,10,5)); // 3
console.log(f(1,1,10,5)); // 1
console.log(f(9,1,10,5)); // 6
console.log(f(2,1,10,5)); // 1
console.log(f(11,1,10,5)); // 6
console.log(f(7,3,12,10)); // 3
As you wont be mentioning the language you want this to do, here is some explained code I put together in C++:
std::vector<int> getPageNumbers(int first, int last, int page, int count) {
int begin = page - (count / 2);
if (begin < first) {
begin = first;
}
int cur = 0;
std::vector<int> result;
while (begin + cur <= last && cur < count) {
result.push_back(begin + cur);
++cur;
}
cur = 0;
while (begin - cur >= first && result.size() < count) {
++cur;
result.insert(result.begin(), begin-cur);
}
return result;
}
int main() {
std::vector<int> foo = getPageNumbers(1,10,10,4);
std::vector<int>::iterator it;
for (it = foo.begin(); it != foo.end(); ++it) {
std::cout << *it << " " << std::endl;
}
return 0;
}
What it does is basically:
Start at the Element page - (count/2) (count/2 is fine, you dont need to substract zero, as e.g. 2.5 will get rounded to 2).
If start element is below first, start at first
Keep adding Elements to the Result as long as current page number is smaller or equal the lastpage or until enough elements are inserted
Keep on inserting Elements in the beginning as long as there are less than count elements in the Resultvector or until the current Element is smaller than the first page
That is my basic attempt now. The code is executable.
After writing this, I realized it's very similar to #Nidhoegger's answer but maybe it will help? PHP
<?
//Assume 0 index pages
$current = 2;
$first = 1;
$last = 10;
$limit = 5;
$page_counter = floor($limit / 2); //start at half the limit, so if the limit is 5, start at current -2 (page 0) and move up
$pages = array();
for ($i = 0; $i < $limit) {
$page_to_add = $current + $page_counter;
$page_counter++;
if ($page_to_add > $last)
break;
if ($page_to_add > -1) {
$i++;
$pages[] = $page_to_add;
}
}
?>
I think it's just one of those problems with a lot of annoying corner cases.
start = a - (n / 2);
if (start < x) start = x; // don't go past first page.
end = start + (n - 1); // whereever you start, proceed n pages
if (end > y) { // also don't go past last page.
end = y;
start = end - (n - 1); // if you hit the end, go back n pages
if (start < x) start = x; // but _still_ don't go past first page (fewer than n pages)
}
// make some kind of vector [start..end] inclusive.
or, assuming higher-level primitives, if you prefer:
start = max(x, a - (n / 2)) // (n/2) pages before but don't pass x
end = min(start + (n - 1), y) // n pages long, but don't pass y
start = max(x, end - (n - 1)) // really n pages long, but really don't pass x
// make some kind of vector [start..end] inclusive.
Here's what seems to be the most efficient way to me. Using an array from 1 to n, find the index for the a value. First find the center point of the indexes of the array, then check to see if the number is close to one end or the other, and modify it by the difference. Then fill in the values.
It should be quick since instead of iterating, it uses algorithms to arrive at the index numbers.
Pseudocode:
centerindex = Ceiling(n/2, 1)
If (y-a) < (n - centerindex) Then centerindex = 2 * centerindex - (y - a) - 1
If (a-x) < (n - centerindex) Then centerindex = (a - x) + 1
For i = 1 to n
pages(i) = a - (centerindex - i)
Next i
Four men have to cross a bridge at night.Any party who crosses, either one or two men, must carry the flashlight with them. The flashlight must be walked back and forth; it cannot be thrown, etc. Each man walks at a different speed. One takes 1 minute to cross, another 2 minutes, another 5, and the last 10 minutes. If two men cross together, they must walk at the slower man's pace. There are no tricks--the men all start on the same side, the flashlight cannot shine a long distance, no one can be carried, etc.
And the question is What's the fastest they can all get across. I am basically looking for some generalized approach to these kind of problem. I was told by my friend, that this can be solved by Fibonacci series, but the solution does not work for all.
Please note this is not a home work.
There is an entire PDF (alternate link) that solves the general case of this problem (in a formal proof).
17 minutes - this is a classic MS question.
1,2 => 2 minutes passed.
1 retuns => 3 minutes passed.
5,10 => 13 minutes passed.
2 returns => 15 minutes passed.
1,2 => 17 minute passed.
In general the largest problem / slowest people should always be put together, and sufficient trips of the fastest made to be able to bring the light back each time without using a slow resource.
I would solve this problem by placing a fake job ad on Dice.com, and then asking this question in the interviews until someone gets it right.
As per Wikipedia
The puzzle is known to have appeared as early as 1981, in the book Super Strategies For Puzzles and Games. In this version of the puzzle, A, B, C and D take 5, 10, 20, and 25 minutes, respectively, to cross, and the time limit is 60 minutes
This question was however popularized after its appearance in the book "How Would You Move Mount Fuji?"
the question can be generalized for N people with varying individual time taken to cross the bridge.
The below program works for a generic N no of people and their times.
class Program
{
public static int TotalTime(List<int> band, int n)
{
if (n < 3)
{
return band[n - 1];
}
else if (n == 3)
{
return band[0] + band[1] + band[2];
}
else
{
int temp1 = band[n - 1] + band[0] + band[n - 2] + band[0];
int temp2 = band[1] + band[0] + band[n - 1] + band[1];
if (temp1 < temp2)
{
return temp1 + TotalTime(band, n - 2);
}
else if (temp2 < temp1)
{
return temp2 + TotalTime(band, n - 2);
}
else
{
return temp2 + TotalTime(band, n - 2);
}
}
}
static void Main(string[] args)
{
// change the no of people crossing the bridge
// add or remove corresponding time to the list
int n = 4;
List<int> band = new List<int>() { 1, 2, 5, 10 };
band.Sort();
Console.WriteLine("The total time taken to cross the bridge is: " + Program.TotalTime(band, n));
Console.ReadLine();
}
}
OUTPUT:
The total time taken to cross the bridge is: 17
For,
int n = 5;
List<int> band = new List<int>() { 1, 2, 5, 10, 12 };
OUTPUT:
The total time taken to cross the bridge is: 25
For,
int n = 4;
List<int> band = new List<int>() { 5, 10, 20, 25 };
OUTPUT
The total time taken to cross the bridge is: 60
Here's the response in ruby:
#values = [1, 2, 5, 10]
# #values = [1, 2, 5, 10, 20, 25, 30, 35, 40]
#values.sort!
#position = #values.map { |v| :first }
#total = 0
def send_people(first, second)
first_time = #values[first]
second_time = #values[second]
#position[first] = :second
#position[second] = :second
p "crossing #{first_time} and #{second_time}"
first_time > second_time ? first_time : second_time
end
def send_lowest
value = nil
#values.each_with_index do |v, i|
if #position[i] == :second
value = v
#position[i] = :first
break
end
end
p "return #{value}"
return value
end
def highest_two
first = nil
second = nil
first_arr = #position - [:second]
if (first_arr.length % 2) == 0
#values.each_with_index do |v, i|
if #position[i] == :first
first = i unless first
second = i if !second && i != first
end
break if first && second
end
else
#values.reverse.each_with_index do |v, i|
real_index = #values.length - i - 1
if #position[real_index] == :first
first = real_index unless first
second = real_index if !second && real_index != first
end
break if first && second
end
end
return first, second
end
#we first send the first two
#total += send_people(0, 1)
#then we get the lowest one from there
#total += send_lowest
#we loop through the rest with highest 2 always being sent
while #position.include?(:first)
first, second = highest_two
#total += send_people(first, second)
#total += send_lowest if #position.include?(:first)
end
p "Total time: #{#total}"
Another Ruby implementation inspired by #roc-khalil 's solution
#values = [1,2,5,10]
# #values = [1,2,5,10,20,25]
#left = #values.sort
#right = []
#total_time = 0
def trace(moving)
puts moving
puts "State: #{#left} #{#right}"
puts "Time: #{#total_time}"
puts "-------------------------"
end
# move right the fastest two
def move_fastest_right!
fastest_two = #left.shift(2)
#right = #right + fastest_two
#right = #right.sort
#total_time += fastest_two.max
trace "Moving right: #{fastest_two}"
end
# move left the fastest runner
def move_fastest_left!
fastest_one = #right.shift
#left << fastest_one
#left.sort!
#total_time += fastest_one
trace "Moving left: #{fastest_one}"
end
# move right the slowest two
def move_slowest_right!
slowest_two = #left.pop(2)
#right = #right + slowest_two
#right = #right.sort
#total_time += slowest_two.max
trace "Moving right: #{slowest_two}"
end
def iterate!
move_fastest_right!
return if #left.length == 0
move_fastest_left!
move_slowest_right!
return if #left.length == 0
move_fastest_left!
end
puts "State: #{#left} #{#right}"
puts "-------------------------"
while #left.length > 0
iterate!
end
Output:
State: [1, 2, 5, 10] []
-------------------------
Moving right: [1, 2]
State: [5, 10] [1, 2]
Time: 2
-------------------------
Moving left: 1
State: [1, 5, 10] [2]
Time: 3
-------------------------
Moving right: [5, 10]
State: [1] [2, 5, 10]
Time: 13
-------------------------
Moving left: 2
State: [1, 2] [5, 10]
Time: 15
-------------------------
Moving right: [1, 2]
State: [] [1, 2, 5, 10]
Time: 17
-------------------------
An exhaustive search of all possibilities is simple with such a small problem space. Breadth or depth first would work. It is a simple CS problem.
I prefer the missionary and cannibal problems myself
17 -- a very common question
-> 1-2 = 2
<- 2 = 2
-> 5,10 = 10 (none of them has to return)
<- 1 = 1
-> 1,2 = 2
all on the other side
total = 2+2+10+1+2 = 17
usually people get it as 19 in the first try
Considering there will be 2 sides, side 1 and side 2, and N number of people should cross from side 1 to side 2. The logic to cross the bridge by a limit of L number of people would be -
Step 1 : Move L number of the fastest members from side 1 to side 2
Step 2 : Bring back the fastest person back from Side 2 to Side 1
Step 3 : Move L number of slowest members from side 1 to side 2
Step 4 : Bring back the fastest person among the ones present in Side 2
Repeat these steps until you will be left with no one in Side 1, either at the end of step 2 or at the end of step 4.
A code in C# for n number of people, with just 2 persons at a time is here. This will intake N number of people, which can be specified in runtime. It will then accept person name and time taken, for N people. The output also specifies the iteration of the lowest time possible.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace RiverCrossing_Problem
{
class Program
{
static void Main(string[] args)
{
Dictionary<string, int> Side1 = new Dictionary<string, int>();
Dictionary<string, int> Side2 = new Dictionary<string, int>();
Console.WriteLine("Enter number of persons");
int n = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Enter the name and time taken by each");
for(int a =0; a<n; a++)
{
string tempname = Console.ReadLine();
int temptime = Convert.ToInt32(Console.ReadLine());
Side1.Add(tempname, temptime);
}
Console.WriteLine("Shortest time and logic:");
int totaltime = 0;
int i = 1;
do
{
KeyValuePair<string, int> low1, low2, high1, high2;
if (i % 2 == 1)
{
LowestTwo(Side1, out low1, out low2);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", low1.Key, low2.Key, low2.Value);
Side1.Remove(low2.Key);
Side1.Remove(low1.Key);
Side2.Add(low2.Key, low2.Value);
Side2.Add(low1.Key, low1.Value);
totaltime += low2.Value;
low1 = LowestOne(Side2);
Console.WriteLine("{0} comes back to side 1, time taken = {1}", low1.Key, low1.Value);
totaltime += low1.Value;
Side1.Add(low1.Key, low1.Value);
Side2.Remove(low1.Key);
i++;
}
else
{
HighestTwo(Side1, out high1, out high2);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", high1.Key, high2.Key, high1.Value);
Side1.Remove(high1.Key);
Side1.Remove(high2.Key);
Side2.Add(high1.Key, high1.Value);
Side2.Add(high2.Key, high2.Value);
totaltime += high1.Value;
low1 = LowestOne(Side2);
Console.WriteLine("{0} comes back to side 1, time taken = {1}", low1.Key, low1.Value);
Side2.Remove(low1.Key);
Side1.Add(low1.Key, low1.Value);
totaltime += low1.Value;
i++;
}
} while (Side1.Count > 2);
KeyValuePair<string, int> low3, low4;
LowestTwo(Side1, out low3, out low4);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", low3.Key, low4.Key, low4.Value);
Side2.Add(low4.Key, low4.Value);
Side2.Add(low3.Key, low3.Value);
totaltime += low4.Value;
Console.WriteLine("\n");
Console.WriteLine("Total Time taken = {0}", totaltime);
}
public static void LowestTwo(Dictionary<string, int> a, out KeyValuePair<string, int> low1, out KeyValuePair<string, int> low2)
{
Dictionary<string, int> b = a;
low1 = b.OrderBy(kvp => kvp.Value).First();
b.Remove(low1.Key);
low2 = b.OrderBy(kvp => kvp.Value).First();
}
public static void HighestTwo(Dictionary<string,int> a, out KeyValuePair<string,int> high1, out KeyValuePair<string,int> high2)
{
Dictionary<string, int> b = a;
high1 = b.OrderByDescending(k => k.Value).First();
b.Remove(high1.Key);
high2 = b.OrderByDescending(k => k.Value).First();
}
public static KeyValuePair<string, int> LowestOne(Dictionary<string,int> a)
{
Dictionary<string, int> b = a;
return b.OrderBy(k => k.Value).First();
}
}
}
Sample output for a random input provided which is 7 in this case, and 2 persons to cross at a time will be:
Enter number of persons
7
Enter the name and time taken by each
A
2
B
5
C
3
D
7
E
9
F
4
G
6
Shortest time and logic:
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
E and D goes from side 1 to side 2, time taken = 9
C comes back to side 1, time taken = 3
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
G and B goes from side 1 to side 2, time taken = 6
C comes back to side 1, time taken = 3
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
A and F goes from side 1 to side 2, time taken = 4
Total Time taken = 40
I mapped out the possible solutions algebraically and came out the with the fastest time . and assigning algebra with the list of A,B,C,D where A is the smallest and D is the biggest
the formula for the shortest time is B+A+D+B+B or 3B+A+D
or in wordy terms, the sum of second fastest times 3 and add with the Most Fastest and Most Slowest.
looking at the program there was also a question of increased items. Although I haven't gone through it, but I am guessing the formula still applies, just add till all items with the second item times 3 and sum of everything except 2nd slowest times.
e.g. since 4 items are 3 x second + first and fourth.
then 5 items are 3 x second + first, third and fifth.
would like to check this out using the program.
also i just looked at the pdf shared above, so for more items it is the sum of
3 x second + fastest + sum of slowest of each subsequent pair.
looking at the steps for the optimized solution, the idea is
-right - for two items going to the right the fastest is 1st and 2nd fastest ,
-left - then plus the fastest going back for a single item is the fastest item
-right - bring the slowest 2 items, which will account for only the slowest item and disregard the second slowest.
-left - the 2nd fastest item.
-final right - the 1st and 2nd fastest again
so again summing up = 2nd fastest goes 3 times, fastest goes once, and slowest goes with 2nd slowest.
A simple algorithm is : assume 'N' is the number of people who can cross at same time and one person has to cross back bearing the torch
When moving people from first side to second side preference should be given to the 'N' slowest walkers
Always use fastest walker to take torch from second side to first side
When moving people from first side to second side, take into consideration who will bring back the torch in the next step. If the speed of the torch bearer in next step will be equal to the fastest walker, among the 'N' slowest walkers, in the current step then instead of choosing 'N' slowest walker, as given in '1', choose 'N' fastest walkers
Here is a sample python script which does this: https://github.com/meowbowgrr/puzzles/blob/master/bridgentorch.py
Does anyone know a simple algorithm to check if a Sudoku-Configuration is valid? The simplest algorithm I came up with is (for a board of size n) in Pseudocode
for each row
for each number k in 1..n
if k is not in the row (using another for-loop)
return not-a-solution
..do the same for each column
But I'm quite sure there must be a better (in the sense of more elegant) solution. Efficiency is quite unimportant.
You need to check for all the constraints of Sudoku :
check the sum on each row
check the sum on each column
check for sum on each box
check for duplicate numbers on each row
check for duplicate numbers on each column
check for duplicate numbers on each box
that's 6 checks altogether.. using a brute force approach.
Some sort of mathematical optimization can be used if you know the size of the board (ie 3x3 or 9x9)
Edit: explanation for the sum constraint: Checking for the sum first (and stoping if the sum is not 45) is much faster (and simpler) than checking for duplicates. It provides an easy way of discarding a wrong solution.
Peter Norvig has a great article on solving sudoku puzzles (with python),
https://norvig.com/sudoku.html
Maybe it's too much for what you want to do, but it's a great read anyway
Check each row, column and box such that it contains the numbers 1-9 each, with no duplicates. Most answers here already discuss this.
But how to do that efficiently? Answer: Use a loop like
result=0;
for each entry:
result |= 1<<(value-1)
return (result==511);
Each number will set one bit of the result. If all 9 numbers are unique, the lowest 9
bits will be set.
So the "check for duplicates" test is just a check that all 9 bits are set, which is the same as testing result==511.
You need to do 27 of these checks.. one for each row, column, and box.
Just a thought: don't you need to also check the numbers in each 3x3 square?
I'm trying to figure out if it is possible to have the rows and columns conditions satisfied without having a correct sudoku
This is my solution in Python, I'm glad to see it's the shortest one yet :)
The code:
def check(sud):
zippedsud = zip(*sud)
boxedsud=[]
for li,line in enumerate(sud):
for box in range(3):
if not li % 3: boxedsud.append([]) # build a new box every 3 lines
boxedsud[box + li/3*3].extend(line[box*3:box*3+3])
for li in range(9):
if [x for x in [set(sud[li]), set(zippedsud[li]), set(boxedsud[li])] if x != set(range(1,10))]:
return False
return True
And the execution:
sudoku=[
[7, 5, 1, 8, 4, 3, 9, 2, 6],
[8, 9, 3, 6, 2, 5, 1, 7, 4],
[6, 4, 2, 1, 7, 9, 5, 8, 3],
[4, 2, 5, 3, 1, 6, 7, 9, 8],
[1, 7, 6, 9, 8, 2, 3, 4, 5],
[9, 3, 8, 7, 5, 4, 6, 1, 2],
[3, 6, 4, 2, 9, 7, 8, 5, 1],
[2, 8, 9, 5, 3, 1, 4, 6, 7],
[5, 1, 7, 4, 6, 8, 2, 3, 9]]
print check(sudoku)
Create an array of booleans for every row, column, and square. The array's index represents the value that got placed into that row, column, or square. In other words, if you add a 5 to the second row, first column, you would set rows[2][5] to true, along with columns[1][5] and squares[4][5], to indicate that the row, column, and square now have a 5 value.
Regardless of how your original board is being represented, this can be a simple and very fast way to check it for completeness and correctness. Simply take the numbers in the order that they appear on the board, and begin building this data structure. As you place numbers in the board, it becomes a O(1) operation to determine whether any values are being duplicated in a given row, column, or square. (You'll also want to check that each value is a legitimate number: if they give you a blank or a too-high number, you know that the board is not complete.) When you get to the end of the board, you'll know that all the values are correct, and there is no more checking required.
Someone also pointed out that you can use any form of Set to do this. Arrays arranged in this manner are just a particularly lightweight and performant form of a Set that works well for a small, consecutive, fixed set of numbers. If you know the size of your board, you could also choose to do bit-masking, but that's probably a little overly tedious considering that efficiency isn't that big a deal to you.
Create cell sets, where each set contains 9 cells, and create sets for vertical columns, horizontal rows, and 3x3 squares.
Then for each cell, simply identify the sets it's part of and analyze those.
You could extract all values in a set (row, column, box) into a list, sort it, then compare to '(1, 2, 3, 4, 5, 6, 7, 8, 9)
I did this once for a class project. I used a total of 27 sets to represent each row, column and box. I'd check the numbers as I added them to each set (each placement of a number causes the number to be added to 3 sets, a row, a column, and a box) to make sure the user only entered the digits 1-9. The only way a set could get filled is if it was properly filled with unique digits. If all 27 sets got filled, the puzzle was solved. Setting up the mappings from the user interface to the 27 sets was a bit tedious, but made the rest of the logic a breeze to implement.
It would be very interesting to check if:
when the sum of each row/column/box equals n*(n+1)/2
and the product equals n!
with n = number of rows or columns
this suffices the rules of a sudoku. Because that would allow for an algorithm of O(n^2), summing and multiplying the correct cells.
Looking at n = 9, the sums should be 45, the products 362880.
You would do something like:
for i = 0 to n-1 do
boxsum[i] := 0;
colsum[i] := 0;
rowsum[i] := 0;
boxprod[i] := 1;
colprod[i] := 1;
rowprod[i] := 1;
end;
for i = 0 to n-1 do
for j = 0 to n-1 do
box := (i div n^1/2) + (j div n^1/2)*n^1/2;
boxsum[box] := boxsum[box] + cell[i,j];
boxprod[box] := boxprod[box] * cell[i,j];
colsum[i] := colsum[i] + cell[i,j];
colprod[i] := colprod[i] * cell[i,j];
rowsum[j] := colsum[j] + cell[i,j];
rowprod[j] := colprod[j] * cell[i,j];
end;
end;
for i = 0 to n-1 do
if boxsum[i] <> 45
or colsum[i] <> 45
or rowsum[i] <> 45
or boxprod[i] <> 362880
or colprod[i] <> 362880
or rowprod[i] <> 362880
return false;
Some time ago, I wrote a sudoku checker that checks for duplicate number on each row, duplicate number on each column & duplicate number on each box. I would love it if someone could come up one with like a few lines of Linq code though.
char VerifySudoku(char grid[81])
{
for (char r = 0; r < 9; ++r)
{
unsigned int bigFlags = 0;
for (char c = 0; c < 9; ++c)
{
unsigned short buffer = r/3*3+c/3;
// check horizontally
bitFlags |= 1 << (27-grid[(r<<3)+r+c])
// check vertically
| 1 << (18-grid[(c<<3)+c+r])
// check subgrids
| 1 << (9-grid[(buffer<<3)+buffer+r%3*3+c%3]);
}
if (bitFlags != 0x7ffffff)
return 0; // invalid
}
return 1; // valid
}
if the sum and the multiplication of a row/col equals to the right number 45/362880
First, you would need to make a boolean, "correct". Then, make a for loop, as previously stated. The code for the loop and everything afterwards (in java) is as stated, where field is a 2D array with equal sides, col is another one with the same dimensions, and l is a 1D one:
for(int i=0; i<field.length(); i++){
for(int j=0; j<field[i].length; j++){
if(field[i][j]>9||field[i][j]<1){
checking=false;
break;
}
else{
col[field[i].length()-j][i]=field[i][j];
}
}
}
I don't know the exact algorithim to check the 3x3 boxes, but you should check all the rows in field and col with "/*array name goes here*/[i].contains(1)&&/*array name goes here*/[i].contains(2)" (continues until you reach the length of a row) inside another for loop.
def solution(board):
for i in board:
if sum(i) != 45:
return "Incorrect"
for i in range(9):
temp2 = []
for x in range(9):
temp2.append(board[i][x])
if sum(temp2) != 45:
return "Incorrect"
return "Correct"
board = []
for i in range(9):
inp = raw_input()
temp = [int(i) for i in inp]
board.append(temp)
print solution(board)
Here's a nice readable approach in Python:
from itertools import chain
def valid(puzzle):
def get_block(x,y):
return chain(*[puzzle[i][3*x:3*x+3] for i in range(3*y, 3*y+3)])
rows = [set(row) for row in puzzle]
columns = [set(column) for column in zip(*puzzle)]
blocks = [set(get_block(x,y)) for x in range(0,3) for y in range(0,3)]
return all(map(lambda s: s == set([1,2,3,4,5,6,7,8,9]), rows + columns + blocks))
Each 3x3 square is referred to as a block, and there are 9 of them in a 3x3 grid. It is assumed as the puzzle is input as a list of list, with each inner list being a row.
Let's say int sudoku[0..8,0..8] is the sudoku field.
bool CheckSudoku(int[,] sudoku)
{
int flag = 0;
// Check rows
for(int row = 0; row < 9; row++)
{
flag = 0;
for (int col = 0; col < 9; col++)
{
// edited : check range step (see comments)
if ((sudoku[row, col] < 1)||(sudoku[row, col] > 9))
{
return false;
}
// if n-th bit is set.. but you can use a bool array for readability
if ((flag & (1 << sudoku[row, col])) != 0)
{
return false;
}
// set the n-th bit
flag |= (1 << sudoku[row, col]);
}
}
// Check columns
for(int col= 0; col < 9; col++)
{
flag = 0;
for (int row = 0; row < 9; row++)
{
if ((flag & (1 << sudoku[row, col])) != 0)
{
return false;
}
flag |= (1 << sudoku[row, col]);
}
}
// Check 3x3 boxes
for(int box= 0; box < 9; box++)
{
flag = 0;
for (int ofs = 0; ofs < 9; ofs++)
{
int col = (box % 3) * 3;
int row = ((int)(box / 3)) * 3;
if ((flag & (1 << sudoku[row, col])) != 0)
{
return false;
}
flag |= (1 << sudoku[row, col]);
}
}
return true;
}
Let's assume that your board goes from 1 - n.
We'll create a verification array, fill it and then verify it.
grid [0-(n-1)][0-(n-1)]; //this is the input grid
//each verification takes n^2 bits, so three verifications gives us 3n^2
boolean VArray (3*n*n) //make sure this is initialized to false
for i = 0 to n
for j = 0 to n
/*
each coordinate consists of three parts
row/col/box start pos, index offset, val offset
*/
//to validate rows
VArray( (0) + (j*n) + (grid[i][j]-1) ) = 1
//to validate cols
VArray( (n*n) + (i*n) + (grid[i][j]-1) ) = 1
//to validate boxes
VArray( (2*n*n) + (3*(floor (i/3)*n)+ floor(j/3)*n) + (grid[i][j]-1) ) = 1
next
next
if every array value is true then the solution is correct.
I think that will do the trick, although i'm sure i made a couple of stupid mistakes in there. I might even have missed the boat entirely.
array = [1,2,3,4,5,6,7,8,9]
sudoku = int [][]
puzzle = 9 #9x9
columns = map []
units = map [] # box
unit_l = 3 # box width/height
check_puzzle()
def strike_numbers(line, line_num, columns, units, unit_l):
count = 0
for n in line:
# check which unit we're in
unit = ceil(n / unit_l) + ceil(line_num / unit_l) # this line is wrong - rushed
if units[unit].contains(n): #is n in unit already?
return columns, units, 1
units[unit].add(n)
if columns[count].contains(n): #is n in column already?
return columns, units, 1
columns[count].add(n)
line.remove(n) #remove num from temp row
return columns, units, line.length # was a number not eliminated?
def check_puzzle(columns, sudoku, puzzle, array, units):
for (i=0;i< puzzle;i++):
columns, units, left_over = strike_numbers(sudoku[i], i, columns, units) # iterate through rows
if (left_over > 0): return false
Without thoroughly checking, off the top of my head, this should work (with a bit of debugging) while only looping twice. O(n^2) instead of O(3(n^2))
Here is paper by math professor J.F. Crook: A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles
This paper was published in April 2009 and it got lots of publicity as definite Sudoku solution (check google for "J.F.Crook Sudoku" ).
Besides algorithm, there is also a mathematical proof that algorithm works (professor admitted that he does not find Sudoku very interesting, so he threw some math in paper to make it more fun).
I'd write an interface that has functions that receive the sudoku field and returns true/false if it's a solution.
Then implement the constraints as single validation classes per constraint.
To verify just iterate through all constraint classes and when all pass the sudoku is correct. To speedup put the ones that most likely fail to the front and stop in the first result that points to invalid field.
Pretty generic pattern. ;-)
You can of course enhance this to provide hints which field is presumably wrong and so on.
First constraint, just check if all fields are filled out. (Simple loop)
Second check if all numbers are in each block (nested loops)
Third check for complete rows and columns (almost same procedure as above but different access scheme)
Here is mine in C. Only pass each square once.
int checkSudoku(int board[]) {
int i;
int check[13] = { 0 };
for (i = 0; i < 81; i++) {
if (i % 9 == 0) {
check[9] = 0;
if (i % 27 == 0) {
check[10] = 0;
check[11] = 0;
check[12] = 0;
}
}
if (check[i % 9] & (1 << board[i])) {
return 0;
}
check[i % 9] |= (1 << board[i]);
if (check[9] & (1 << board[i])) {
return 0;
}
check[9] |= (1 << board[i]);
if (i % 9 < 3) {
if (check[10] & (1 << board[i])) {
return 0;
}
check[10] |= (1 << board[i]);
} else if (i % 9 < 6) {
if (check[11] & (1 << board[i])) {
return 0;
}
check[11] |= (1 << board[i]);
} else {
if (check[12] & (1 << board[i])) {
return 0;
}
check[12] |= (1 << board[i]);
}
}
}
Here is what I just did for this:
boolean checkers=true;
String checking="";
if(a.length/3==1){}
else{
for(int l=1; l<a.length/3; l++){
for(int n=0;n<3*l;n++){
for(int lm=1; lm<a[n].length/3; lm++){
for(int m=0;m<3*l;m++){
System.out.print(" "+a[n][m]);
if(a[n][m]<=0){
System.out.print(" (Values must be positive!) ");
}
if(n==0){
if(m!=0){
checking+=", "+a[n][m];
}
else{
checking+=a[n][m];
}
}
else{
checking+=", "+a[n][m];
}
}
}
System.out.print(" "+checking);
System.out.println();
}
}
for (int i=1;i<=a.length*a[1].length;i++){
if(checking.contains(Integer.toString(i))){
}
else{
checkers=false;
}
}
}
checkers=checkCol(a);
if(checking.contains("-")&&!checking.contains("--")){
checkers=false;
}
System.out.println();
if(checkers==true){
System.out.println("This is correct! YAY!");
}
else{
System.out.println("Sorry, it's not right. :-(");
}
}
private static boolean checkCol(int[][]a){
boolean checkers=true;
int[][]col=new int[][]{{0,0,0},{0,0,0},{0,0,0}};
for(int i=0; i<a.length; i++){
for(int j=0; j<a[i].length; j++){
if(a[i][j]>9||a[i][j]<1){
checkers=false;
break;
}
else{
col[a[i].length-j][i]=a[i][j];
}
}
}
String alia="";
for(int i=0; i<col.length; i++){
for(int j=1; j<=col[i].length; j++){
alia=a[i].toString();
if(alia.contains(""+j)){
alia=col[i].toString();
if(alia.contains(""+j)){}
else{
checkers=false;
}
}
else{
checkers=false;
}
}
}
return checkers;
}
You can check if sudoku is solved, in these two similar ways:
Check if the number is unique in each row, column and block.
A naive solution would be to iterate trough every square and check if the number is unique in the row, column block that number occupies.
But there is a better way.
Sudoku is solved if every row, column and block contains a permutation of the numbers (1 trough 9)
This only requires to check every row, column and block, instead of doing that for every number. A simple implementation would be to have a bitfield of numbers 1 trough 9 and remove them when you iterate the columns, rows and blocks. If you try to remove a missing number or if the field isn't empty when you finish then sudoku isn't correctly solved.
Here's a very concise version in Swift, that only uses an array of Ints to track the groups of 9 numbers, and only iterates over the sudoku once.
import UIKit
func check(_ sudoku:[[Int]]) -> Bool {
var groups = Array(repeating: 0, count: 27)
for x in 0...8 {
for y in 0...8 {
groups[x] += 1 << sudoku[x][y] // Column (group 0 - 8)
groups[y + 9] += 1 << sudoku[x][y] // Row (group 9 - 17)
groups[(x + y * 9) / 9 + 18] += 1 << sudoku[x][y] // Box (group 18 - 27)
}
}
return groups.filter{ $0 != 1022 }.count == 0
}
let sudoku = [
[7, 5, 1, 8, 4, 3, 9, 2, 6],
[8, 9, 3, 6, 2, 5, 1, 7, 4],
[6, 4, 2, 1, 7, 9, 5, 8, 3],
[4, 2, 5, 3, 1, 6, 7, 9, 8],
[1, 7, 6, 9, 8, 2, 3, 4, 5],
[9, 3, 8, 7, 5, 4, 6, 1, 2],
[3, 6, 4, 2, 9, 7, 8, 5, 1],
[2, 8, 9, 5, 3, 1, 4, 6, 7],
[5, 1, 7, 4, 6, 8, 2, 3, 9]
]
if check(sudoku) {
print("Pass")
} else {
print("Fail")
}
One minor optimization you can make is that you can check for duplicates in a row, column, or box in O(n) time rather than O(n^2): as you iterate through the set of numbers, you add each one to a hashset. Depending on the language, you may actually be able to use a true hashset, which is constant time lookup and insertion; then checking for duplicates can be done in the same step by seeing if the insertion was successful or not. It's a minor improvement in the code, but going from O(n^2) to O(n) is a significant optimization.