Getting numbers around a number - algorithm

So, I'm trying to do something similar to a paginator (list of page numbers) where the current number is in the middle or as close as can be
Every way I solve it is hard and weird, just wondering if there is a nice mathy way to do it :)
given:
a: current page number
x: first page number
y: last page number
n: number required
I want to generate a list of numbers where a is as close to the center as can be, while staying within x and y
so f(5, 1, 10, 5) would return [3, 4, 5, 6, 7]
but f(1, 1, 10, 5) would return [1, 2, 3, 4, 5]
and f(9, 1, 10, 5) would return [6, 7, 8, 9, 10]
Can anyone think of a nice way of getting that kind of thing?
Implemented in a probably complicated way in ruby, can it be done simpler?
def numbers_around(current:, total:, required: 5)
required_before = (required - 1) / 2
required_after = (required - 1) / 2
before_x = current - required_before
after_x = current + required_after
if before_x < 1
after_x += before_x.abs + 1
before_x = 1
end
if after_x > total
before_x -= (after_x - total)
after_x = total
end
(before_x..after_x)
end

Here's something kind of mathy that returns the first number in the list (JavaScript code):
function f(a,x,y,n){
var m = n >> 1;
return x * (n > y - x) || a - m
+ Math.max(0,m - a + x)
- Math.max(0,m - y + a);
}
Output:
console.log(f(5,1,10,5)); // 3
console.log(f(1,1,10,5)); // 1
console.log(f(9,1,10,5)); // 6
console.log(f(2,1,10,5)); // 1
console.log(f(11,1,10,5)); // 6
console.log(f(7,3,12,10)); // 3

As you wont be mentioning the language you want this to do, here is some explained code I put together in C++:
std::vector<int> getPageNumbers(int first, int last, int page, int count) {
int begin = page - (count / 2);
if (begin < first) {
begin = first;
}
int cur = 0;
std::vector<int> result;
while (begin + cur <= last && cur < count) {
result.push_back(begin + cur);
++cur;
}
cur = 0;
while (begin - cur >= first && result.size() < count) {
++cur;
result.insert(result.begin(), begin-cur);
}
return result;
}
int main() {
std::vector<int> foo = getPageNumbers(1,10,10,4);
std::vector<int>::iterator it;
for (it = foo.begin(); it != foo.end(); ++it) {
std::cout << *it << " " << std::endl;
}
return 0;
}
What it does is basically:
Start at the Element page - (count/2) (count/2 is fine, you dont need to substract zero, as e.g. 2.5 will get rounded to 2).
If start element is below first, start at first
Keep adding Elements to the Result as long as current page number is smaller or equal the lastpage or until enough elements are inserted
Keep on inserting Elements in the beginning as long as there are less than count elements in the Resultvector or until the current Element is smaller than the first page
That is my basic attempt now. The code is executable.

After writing this, I realized it's very similar to #Nidhoegger's answer but maybe it will help? PHP
<?
//Assume 0 index pages
$current = 2;
$first = 1;
$last = 10;
$limit = 5;
$page_counter = floor($limit / 2); //start at half the limit, so if the limit is 5, start at current -2 (page 0) and move up
$pages = array();
for ($i = 0; $i < $limit) {
$page_to_add = $current + $page_counter;
$page_counter++;
if ($page_to_add > $last)
break;
if ($page_to_add > -1) {
$i++;
$pages[] = $page_to_add;
}
}
?>

I think it's just one of those problems with a lot of annoying corner cases.
start = a - (n / 2);
if (start < x) start = x; // don't go past first page.
end = start + (n - 1); // whereever you start, proceed n pages
if (end > y) { // also don't go past last page.
end = y;
start = end - (n - 1); // if you hit the end, go back n pages
if (start < x) start = x; // but _still_ don't go past first page (fewer than n pages)
}
// make some kind of vector [start..end] inclusive.
or, assuming higher-level primitives, if you prefer:
start = max(x, a - (n / 2)) // (n/2) pages before but don't pass x
end = min(start + (n - 1), y) // n pages long, but don't pass y
start = max(x, end - (n - 1)) // really n pages long, but really don't pass x
// make some kind of vector [start..end] inclusive.

Here's what seems to be the most efficient way to me. Using an array from 1 to n, find the index for the a value. First find the center point of the indexes of the array, then check to see if the number is close to one end or the other, and modify it by the difference. Then fill in the values.
It should be quick since instead of iterating, it uses algorithms to arrive at the index numbers.
Pseudocode:
centerindex = Ceiling(n/2, 1)
If (y-a) < (n - centerindex) Then centerindex = 2 * centerindex - (y - a) - 1
If (a-x) < (n - centerindex) Then centerindex = (a - x) + 1
For i = 1 to n
pages(i) = a - (centerindex - i)
Next i

Related

Given some rounded numbers, how to find the original fraction?

After asking this question on math.stackexchange.com I figured this might be a better place after all...
I have a small list of positive numbers rounded to (say) two decimals:
1.15 (can be 1.145 - 1.154999...)
1.92 (can be 1.915 - 1.924999...)
2.36 (can be 2.355 - 2.364999...)
2.63 (can be 2.625 - 2.634999...)
2.78 (can be 2.775 - 2.784999...)
3.14 (can be 3.135 - 3.144999...)
24.04 (can be 24.035 - 24.044999...)
I suspect that these numbers are fractions of integers and that all numerators or all denominators are equal. Choosing 100 as a common denominator would work in this case, that would leave the last value as 2404/100. But there could be a 'simpler' solution with much smaller integers.
How do I efficiently find the smallest common numerator and/or denominator? Or (if that is different) the one that would result in the smallest maximum denominator resp. numerator?
Of course I could brute force for small lists/numbers and few decimals. That would find 83/72, 138/72, 170/72, 189/72, 200/72, 226/72 and 1731/72 for this example.
Assuming the numbers don't have too many significant digits and aren't too big you can try increasing the denominator until you find a valid solution. It is not just brute-forcing. Additionally the following script is staying at the number violating the constraints as long as there is nothing found, in the hope of getting the denominator higher faster, without having to calculate for the non-problematic numbers.
It works based on the following formula:
x / y < a / b if x * b < a * y
This means a denominator d is valid if:
ceil(loNum * d / loDen) * hiDen < hiNum * d
The ceil(...) part calculates the smallest possible numerator satisfying the constraint of the low boundary and the rest is checking if it also satysfies the high boundary.
Better would be to work with real integer calculations, e.g. just longs in Java, then the ceil part becomes:
(loNum * d + loDen - 1) / loDen
function findRatios(arr) {
let lo = [], hi = [], consecutive = 0, d = 1
for (let i = 0; i < arr.length; i++) {
let x = '' + arr[i], len = x.length, dot = x.indexOf('.'),
num = parseInt(x.substr(0, dot) + x.substr(dot + 1)) * 10,
den = Math.pow(10, len - dot),
loGcd = gcd(num - 5, den), hiGcd = gcd(num + 5, den)
lo[i] = {num: (num - 5) / loGcd, den: den / loGcd}
hi[i] = {num: (num + 5) / hiGcd, den: den / hiGcd}
}
for (let index = 0; consecutive < arr.length; index = (index + 1) % arr.length) {
if (!valid(d, lo[index], hi[index])) {
consecutive = 1
d++
while (!valid(d, lo[index], hi[index]))
d++
} else {
consecutive++
}
}
for (let i = 0; i < arr.length; i++)
console.log(Math.ceil(lo[i].num * d / lo[i].den) + ' / ' + d)
}
function gcd(x, y) {
while(y) {
let t = y
y = x % y
x = t
}
return x
}
function valid(d, lo, hi) {
let n = Math.ceil(lo.num * d / lo.den)
return n * hi.den < hi.num * d
}
findRatios([1.15, 1.92, 2.36, 2.63, 2.78, 3.14, 24.04])

Maximum number achievable by converting two adjacent x to one (x+1)

Given a sequence of N integers where 1 <= N <= 500 and the numbers are between 1 and 50. In a step any two adjacent equal numbers x x can be replaced with a single x + 1. What is the maximum number achievable by such steps.
For example if given 2 3 1 1 2 2 then the maximum possible is 4:
2 3 1 1 2 2 ---> 2 3 2 2 2 ---> 2 3 3 2 ---> 2 4 2.
It is evident that I should try to do better than the maximum number available in the sequence. But I can't figure out a good algorithm.
Each substring of the input can make at most one single number (invariant: the log base two of the sum of two to the power of each entry). For every x, we can find the set of substrings that can make x. For each x, this is (1) every occurrence of x (2) the union of two contiguous substrings that can make x - 1. The resulting algorithm is O(N^2)-time.
An algorithm could work like this:
Convert the input to an array where every element has a frequency attribute, collapsing repeated consecutive values in the input into one single node. For example, this input:
1 2 2 4 3 3 3 3
Would be represented like this:
{val: 1, freq: 1} {val: 2, freq: 2} {val: 4, freq: 1} {val: 3, freq: 4}
Then find local minima nodes, like the node (3 3 3 3) in 1 (2 2) 4 (3 3 3 3) 4, i.e. nodes whose neighbours both have higher values. For those local minima that have an even frequency, "lift" those by applying the step. Repeat this until no such local minima (with even frequency) exist any more.
Start of the recursive part of the algorithm:
At both ends of the array, work inwards to "lift" values as long as the more inner neighbour has a higher value. With this rule, the following:
1 2 2 3 5 4 3 3 3 1 1
will completely resolve. First from the left side inward:
1 4 5 4 3 3 3 1 1
Then from the right side:
1 4 6 3 2
Note that when there is an odd frequency (like for the 3s above), there will be a "remainder" that cannot be incremented. The remainder should in this rule always be left on the outward side, so to maximise the potential towards the inner part of the array.
At this point the remaining local minima have odd frequencies. Applying the step to such a node will always leave a "remainder" (like above) with the original value. This remaining node can appear anywhere, but it only makes sense to look at solutions where this remainder is on the left side or the right side of the lift (not in the middle). So for example:
4 1 1 1 1 1 2 3 4
Can resolve to one of these:
4 2 2 1 2 3 4
Or:
4 1 2 2 2 3 4
The 1 in either second or fourth position, is the above mentioned "remainder". Obviously, the second way of resolving is more promising in this example. In general, the choice is obvious when on one side there is a value that is too high to merge with, like the left-most 4 is too high for five 1 values to get to. The 4 is like a wall.
When the frequency of the local minimum is one, there is nothing we can do with it. It actually separates the array in a left and right side that do not influence each other. The same is true for the remainder element discussed above: it separates the array into two parts that do not influence each other.
So the next step in the algorithm is to find such minima (where the choice is obvious), apply that kind of step and separate the problem into two distinct problems which should be solved recursively (from the top). So in the last example, the following two problems would be solved separately:
4
2 2 3 4
Then the best of both solutions will count as the overall solution. In this case that is 5.
The most challenging part of the algorithm is to deal with those local minima for which the choice of where to put the remainder is not obvious. For instance;
3 3 1 1 1 1 1 2 3
This can go to either:
3 3 2 2 1 2 3
3 3 1 2 2 2 3
In this example the end result is the same for both options, but in bigger arrays it would be less and less obvious. So here both options have to be investigated. In general you can have many of them, like 2 in this example:
3 1 1 1 2 3 1 1 1 1 1 3
Each of these two minima has two options. This seems like to explode into too many possibilities for larger arrays. But it is not that bad. The algorithm can take opposite choices in neighbouring minima, and go alternating like this through the whole array. This way alternating sections are favoured, and get the most possible value drawn into them, while the other sections are deprived of value. Now the algorithm turns the tables, and toggles all choices so that the sections that were previously favoured are now deprived, and vice versa. The solution of both these alternatives is derived by resolving each section recursively, and then comparing the two "grand" solutions to pick the best one.
Snippet
Here is a live JavaScript implementation of the above algorithm.
Comments are provided which hopefully should make it readable.
"use strict";
function Node(val, freq) {
// Immutable plain object
return Object.freeze({
val: val,
freq: freq || 1, // Default frequency is 1.
// Max attainable value when merged:
reduced: val + (freq || 1).toString(2).length - 1
});
}
function compress(a) {
// Put repeated elements in a single node
var result = [], i, j;
for (i = 0; i < a.length; i = j) {
for (j = i + 1; j < a.length && a[j] == a[i]; j++);
result.push(Node(a[i], j - i));
}
return result;
}
function decompress(a) {
// Expand nodes into separate, repeated elements
var result = [], i, j;
for (i = 0; i < a.length; i++) {
for (j = 0; j < a[i].freq; j++) {
result.push(a[i].val);
}
}
return result;
}
function str(a) {
return decompress(a).join(' ');
}
function unstr(s) {
s = s.replace(/\D+/g, ' ').trim();
return s.length ? compress(s.split(/\s+/).map(Number)) : [];
}
/*
The function merge modifies an array in-place, performing a "step" on
the indicated element.
The array will get an element with an incremented value
and decreased frequency, unless a join occurs with neighboring
elements with the same value: then the frequencies are accumulated
into one element. When the original frequency was odd there will
be a "remainder" element in the modified array as well.
*/
function merge(a, i, leftWards, stats) {
var val = a[i].val+1,
odd = a[i].freq % 2,
newFreq = a[i].freq >> 1,
last = i;
// Merge with neighbouring nodes of same value:
if ((!odd || !leftWards) && a[i+1] && a[i+1].val === val) {
newFreq += a[++last].freq;
}
if ((!odd || leftWards) && i && a[i-1].val === val) {
newFreq += a[--i].freq;
}
// Replace nodes
a.splice(i, last-i+1, Node(val, newFreq));
if (odd) a.splice(i+leftWards, 0, Node(val-1));
// Update statistics and trace: this is not essential to the algorithm
if (stats) {
stats.total_applied_merges++;
if (stats.trace) stats.trace.push(str(a));
}
return i;
}
/* Function Solve
Parameters:
a: The compressed array to be reduced via merges. It is changed in-place
and should not be relied on after the call.
stats: Optional plain object that will be populated with execution statistics.
Return value:
The array after the best merges were applied to achieve the highest
value, which is stored in the maxValue custom property of the array.
*/
function solve(a, stats) {
var maxValue, i, j, traceOrig, skipLeft, skipRight, sections, goLeft,
b, choice, alternate;
if (!a.length) return a;
if (stats && stats.trace) {
traceOrig = stats.trace;
traceOrig.push(stats.trace = [str(a)]);
}
// Look for valleys of even size, and "lift" them
for (i = 1; i < a.length - 1; i++) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val && (a[i].freq % 2) < 1) {
// Found an even valley
i = merge(a, i, false, stats);
if (i) i--;
}
}
// Check left-side elements with always increasing values
for (i = 0; i < a.length-1 && a[i].val < a[i+1].val; i++) {
if (a[i].freq > 1) i = merge(a, i, false, stats) - 1;
};
// Check right-side elements with always increasing values, right-to-left
for (j = a.length-1; j > 0 && a[j-1].val > a[j].val; j--) {
if (a[j].freq > 1) j = merge(a, j, true, stats) + 1;
};
// All resolved?
if (i == j) {
while (a[i].freq > 1) merge(a, i, true, stats);
a.maxValue = a[i].val;
} else {
skipLeft = i;
skipRight = a.length - 1 - j;
// Look for other valleys (odd sized): they will lead to a split into sections
sections = [];
for (i = a.length - 2 - skipRight; i > skipLeft; i--) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val) {
// Odd number of elements: if more than one, there
// are two ways to merge them, but maybe
// one of both possibilities can be excluded.
goLeft = a[i+1].val > a[i].reduced;
if (a[i-1].val > a[i].reduced || goLeft) {
if (a[i].freq > 1) i = merge(a, i, goLeft, stats) + goLeft;
// i is the index of the element which has become a 1-sized valley
// Split off the right part of the array, and store the solution
sections.push(solve(a.splice(i--), stats));
}
}
}
if (sections.length) {
// Solve last remaining section
sections.push(solve(a, stats));
sections.reverse();
// Combine the solutions of all sections into one
maxValue = sections[0].maxValue;
for (i = sections.length - 1; i >= 0; i--) {
maxValue = Math.max(sections[i].maxValue, maxValue);
}
} else {
// There is no more valley that can be resolved without branching into two
// directions. Look for the remaining valleys.
sections = [];
b = a.slice(0); // take copy
for (choice = 0; choice < 2; choice++) {
if (choice) a = b; // restore from copy on second iteration
alternate = choice;
for (i = a.length - 2 - skipRight; i > skipLeft; i--) {
if (a[i-1].val > a[i].val && a[i].val < a[i+1].val) {
// Odd number of elements
alternate = !alternate
i = merge(a, i, alternate, stats) + alternate;
sections.push(solve(a.splice(i--), stats));
}
}
// Solve last remaining section
sections.push(solve(a, stats));
}
sections.reverse(); // put in logical order
// Find best section:
maxValue = sections[0].maxValue;
for (i = sections.length - 1; i >= 0; i--) {
maxValue = Math.max(sections[i].maxValue, maxValue);
}
for (i = sections.length - 1; i >= 0 && sections[i].maxValue < maxValue; i--);
// Which choice led to the highest value (choice = 0 or 1)?
choice = (i >= sections.length / 2)
// Discard the not-chosen version
sections = sections.slice(choice * sections.length/2);
}
// Reconstruct the solution from the sections.
a = [].concat.apply([], sections);
a.maxValue = maxValue;
}
if (traceOrig) stats.trace = traceOrig;
return a;
}
function randomValues(len) {
var a = [];
for (var i = 0; i < len; i++) {
// 50% chance for a 1, 25% for a 2, ... etc.
a.push(Math.min(/\.1*/.exec(Math.random().toString(2))[0].length,5));
}
return a;
}
// I/O
var inputEl = document.querySelector('#inp');
var randEl = document.querySelector('#rand');
var lenEl = document.querySelector('#len');
var goEl = document.querySelector('#go');
var outEl = document.querySelector('#out');
goEl.onclick = function() {
// Get the input and structure it
var a = unstr(inputEl.value),
stats = {
total_applied_merges: 0,
trace: a.length < 100 ? [] : undefined
};
// Apply algorithm
a = solve(a, stats);
// Output results
var output = {
value: a.maxValue,
compact: str(a),
total_applied_merges: stats.total_applied_merges,
trace: stats.trace || 'no trace produced (input too large)'
};
outEl.textContent = JSON.stringify(output, null, 4);
}
randEl.onclick = function() {
// Get input (count of numbers to generate):
len = lenEl.value;
// Generate
var a = randomValues(len);
// Output
inputEl.value = a.join(' ');
// Simulate click to find the solution immediately.
goEl.click();
}
// Tests
var tests = [
' ', '',
'1', '1',
'1 1', '2',
'2 2 1 2 2', '3 1 3',
'3 2 1 1 2 2 3', '5',
'3 2 1 1 2 2 3 1 1 1 1 3 2 2 1 1 2', '6',
'3 1 1 1 3', '3 2 1 3',
'2 1 1 1 2 1 1 1 2 1 1 1 1 1 2', '3 1 2 1 4 1 2',
'3 1 1 2 1 1 1 2 3', '4 2 1 2 3',
'1 4 2 1 1 1 1 1 1 1', '1 5 1',
];
var res;
for (var i = 0; i < tests.length; i+=2) {
var res = str(solve(unstr(tests[i])));
if (res !== tests[i+1]) throw 'Test failed: ' + tests[i] + ' returned ' + res + ' instead of ' + tests[i+1];
}
Enter series (space separated):<br>
<input id="inp" size="60" value="2 3 1 1 2 2"><button id="go">Solve</button>
<br>
<input id="len" size="4" value="30"><button id="rand">Produce random series of this size and solve</button>
<pre id="out"></pre>
As you can see the program produces a reduced array with the maximum value included. In general there can be many derived arrays that have this maximum; only one is given.
An O(n*m) time and space algorithm is possible, where, according to your stated limits, n <= 500 and m <= 58 (consider that even for a billion elements, m need only be about 60, representing the largest element ± log2(n)). m is representing the possible numbers 50 + floor(log2(500)):
Consider the condensed sequence, s = {[x, number of x's]}.
If M[i][j] = [num_j,start_idx] where num_j represents the maximum number of contiguous js ending at index i of the condensed sequence; start_idx, the index where the sequence starts or -1 if it cannot join earlier sequences; then we have the following relationship:
M[i][j] = [s[i][1] + M[i-1][j][0], M[i-1][j][1]]
when j equals s[i][0]
j's greater than s[i][0] but smaller than or equal to s[i][0] + floor(log2(s[i][1])), represent converting pairs and merging with an earlier sequence if applicable, with a special case after the new count is odd:
When M[i][j][0] is odd, we do two things: first calculate the best so far by looking back in the matrix to a sequence that could merge with M[i][j] or its paired descendants, and then set a lower bound in the next applicable cells in the row (meaning a merge with an earlier sequence cannot happen via this cell). The reason this works is that:
if s[i + 1][0] > s[i][0], then s[i + 1] could only possibly pair with the new split section of s[i]; and
if s[i + 1][0] < s[i][0], then s[i + 1] might generate a lower j that would combine with the odd j from M[i], potentially making a longer sequence.
At the end, return the largest entry in the matrix, max(j + floor(log2(num_j))), for all j.
JavaScript code (counterexamples would be welcome; the limit on the answer is set at 7 for convenient visualization of the matrix):
function f(str){
var arr = str.split(/\s+/).map(Number);
var s = [,[arr[0],0]];
for (var i=0; i<arr.length; i++){
if (s[s.length - 1][0] == arr[i]){
s[s.length - 1][1]++;
} else {
s.push([arr[i],1]);
}
}
var M = [new Array(8).fill([0,0])],
best = 0;
for (var i=1; i<s.length; i++){
M[i] = new Array(8).fill([0,i]);
var temp = s[i][1],
temp_odd,
temp_start,
odd = false;
for (var j=s[i][0]; temp>0; j++){
var start_idx = odd ? temp_start : M[i][j-1][1];
if (start_idx != -1 && M[start_idx - 1][j][0]){
temp += M[start_idx - 1][j][0];
start_idx = M[start_idx - 1][j][1];
}
if (!odd){
M[i][j] = [temp,start_idx];
temp_odd = temp;
} else {
M[i][j] = [temp_odd,-1];
temp_start = start_idx;
}
if (!odd && temp & 1 && temp > 1){
odd = true;
temp_start = start_idx;
}
best = Math.max(best,j + Math.floor(Math.log2(temp)));
temp >>= 1;
temp_odd >>= 1;
}
}
return [arr, s, best, M];
}
// I/O
var button = document.querySelector('button');
var input = document.querySelector('input');
var pre = document.querySelector('pre');
button.onclick = function() {
var val = input.value;
var result = f(val);
var text = '';
for (var i=0; i<3; i++){
text += JSON.stringify(result[i]) + '\n\n';
}
for (var i in result[3]){
text += JSON.stringify(result[3][i]) + '\n';
}
pre.textContent = text;
}
<input value ="2 2 3 3 2 2 3 3 5">
<button>Solve</button>
<pre></pre>
Here's a brute force solution:
function findMax(array A, int currentMax)
for each pair (i, i+1) of indices for which A[i]==A[i+1] do
currentMax = max(A[i]+1, currentMax)
replace A[i],A[i+1] by a single number A[i]+1
currentMax = max(currentMax, findMax(A, currentMax))
end for
return currentMax
Given the array A, let currentMax=max(A[0], ..., A[n])
print findMax(A, currentMax)
The algorithm terminates because in each recursive call the array shrinks by 1.
It's also clear that it is correct: we try out all possible replacement sequences.
The code is extremely slow when the array is large and there's lots of options regarding replacements, but actually works reasonbly fast on arrays with small number of replaceable pairs. (I'll try to quantify the running time in terms of the number of replaceable pairs.)
A naive working code in Python:
def findMax(L, currMax):
for i in range(len(L)-1):
if L[i] == L[i+1]:
L[i] += 1
del L[i+1]
currMax = max(currMax, L[i])
currMax = max(currMax, findMax(L, currMax))
L[i] -= 1
L.insert(i+1, L[i])
return currMax
# entry point
if __name__ == '__main__':
L1 = [2, 3, 1, 1, 2, 2]
L2 = [2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
print findMax(L1, max(L1))
print findMax(L2, max(L2))
The result of the first call is 4, as expected.
The result of the second call is 5 as expected; the sequence that gives the result: 2,3,1,1,2,2,2,2,2,2,2,2, -> 2,3,1,1,3,2,2,2,2,2,2 -> 2,3,1,1,3,3,2,2,2,2, -> 2,3,1,1,3,3,3,2,2 -> 2,3,1,1,3,3,3,3 -> 2,3,1,1,4,3, -> 2,3,1,1,4,4 -> 2,3,1,1,5

find all subsets that sum to x - using an initial code

I am trying to build upon a problem, to solve another similar problem... given below is a code for finding the total number of subsets that sum to a particular value, and I am trying to modify the code so that I can return all subsets that sum to that value (instead of finding the count).
Code for finding the total number of suibsets that sum to 'sum':
/**
* method to return number of sets with a given sum.
**/
public static int count = 0;
public static void countSubsetSum2(int arr[], int k, int sum) {
if(sum == 0) {
count++;
return;
}
if(sum != 0 && k == 0) {
return;
}
if(sum < arr[k - 1]) {
countSubsetSum2(arr, k-1, sum);
}
countSubsetSum2(arr, k-1, sum - arr[k-1]);
countSubsetSum2(arr, k-1, sum);
}
Can someone propose some changes to this code, to make it return the subsets rather than the subset count?
Firstly, your code isn't correct.
The function, at every step, recurses with the sum excluding and including the current element 1, moving on to the next element, thanks to these lines:
countSubsetSum2(arr, k-1, sum - arr[k-1]);
countSubsetSum2(arr, k-1, sum);
But then there's also this:
if(sum < arr[k - 1]) {
countSubsetSum2(arr, k-1, sum);
}
which causes it to recurse twice with the sum excluding the current element under some circumstances (which it should never do).
Essentially you just need to remove that if-statement.
If all the elements are positive and sum - arr[k-1] < 0, we'd keep going, but we can never get a sum of 0 since the sum can't increase, thus we'd be doing a lot of unnecessary work. So, if the elements are all positive, we can add a check for if(arr[k - 1] <= sum) to the first call to improve the running time. If the elements aren't all positive, the code won't find all sums.
Now on to printing the sums
If you understand the code well, changing it to print the sums instead should be pretty easy. I suggest you work on understanding it a bit more - trace what the program will do by hand, then trace what you want the program to do.
And a hint for solving the actual problem: On noting that countSubsetSum2(arr, k-1, sum - arr[k-1]); recurses with the sum including the current element (and the other recursive call recurses with the sum excluding the current element), what you should do should become clear.
1: Well, technically it's reversed (we start with the target sum and decrease to 0 instead of starting at 0 and increasing to sum), but the same idea is there.
This is the code that works:
import java.util.LinkedList;
import java.util.Iterator;
import java.util.List;
public class subset{
public static int count = 0;
public static List list = new LinkedList();
public static void countSubsetSum2(int arr[], int k, int sum) {
if(sum <= 0 || k < 0) {
count++;
return;
}
if(sum == arr[k]) {
System.out.print(arr[k]);
for(Iterator i = list.iterator(); i.hasNext();)
System.out.print("\t" + i.next());
System.out.println();
}
list.add(arr[k]);
countSubsetSum2(arr, k-1, sum - arr[k]);
list.remove(list.size() - 1);
countSubsetSum2(arr, k-1, sum);
}
public static void main(String[] args)
{
int [] array = {1, 4, 5, 6};
countSubsetSum2(array, 3, 10);
}
}
First off, the code you have there doesn't seem to actually work (I tested it on input [1,2,3, ..., 10] with a sum of 3 and it output 128).
To get it working, first note that you implemented the algorithm in a pretty unorthodox way. Mathematical functions take input and produce output. (Arguably) the most elegant programming functions should also take input and produce output because then we can reason about them as we reason about math.
In your case you don't produce any output (the return type is void) and instead store the result in a static variable. This means it's hard to tell exactly what it means to call countSubsetSum2. In particular, what happens if you call it multiple times? It does something different each time (because the count variable will have a different starting value!) Instead, if you write countSubsetSum2 so that it returns a value then you can define its behavior to be: countSubsetSum2 returns the number of subsets of the input arr[0...k] that sum to sum. And then you can try proving why your implementation meets that specification.
I'm not doing the greatest job of explaining, but I think a more natural way to write it would be:
// Algorithm stops once k is the least element in the array
if (k == 0) {
if (sum == 0 || sum == arr[k]) {
// Either we can sum to "sum"
return 1;
}
else {
// Or we can't sum to "sum"
return 0;
}
}
// Otherwise, let's recursively see if we can sum to "sum"
// Any valid subset either includes arr[k]
return countSubsetSum2(arr, k-1, sum - arr[k]) +
// Or it doesn't
countSubsetSum2(arr, k-1, sum);
As described above, this function takes an input and outputs a value that we can define and prove to be true mathematically (caveat: it's usually not quite a proof because there are crazy edge cases in most programming languages unfortunately).
Anyways, to get back to your question. The issue with the above code is that it doesn't store any data... it just returns the count. Instead, let's generate the actual subsets while we're generating them. In particular, when I say Any valid subset either includes arr[k] I mean... the subset we're generating includes arr[k]; so add it. Below I assumed that the code you wrote above is java-ish. Hopefully it makes sense:
// Algorithm stops once k is the least element in the array
if (k == 0) {
if (sum == 0 || sum == arr[k]) {
// Either we can sum to "sum" using just arr[0]
// So return a list of all of the subsets that sum to "sum"
// There are actually a few edge cases here, so we need to be careful
List<Set<int>> ret = new List<Set<int>>();
// First consider if the singleton containing arr[k] could equal sum
if (sum == arr[k])
{
Set<int> subSet = new Subset<int>();
subSet.Add(arr[k]);
ret.Add(subSet);
}
// Now consider the empty set
if (sum == 0)
{
Set<int> subSet = new Subset<int>();
ret.Add(subSet);
}
return ret;
}
else {
// Or we can't sum to "sum" using just arr[0]
// So return a list of all of the subsets that sum to "sum". None
// (given our inputs!)
List<Set<int>> ret = new List<Set<int>>();
return ret;
}
}
// Otherwise, let's recursively generate subsets summing to "sum"
// Any valid subset either includes arr[k]
List<Set<int>> subsetsThatNeedKthElement = genSubsetSum(arr, k-1, sum - arr[k]);
// Or it doesn't
List<Set<int>> completeSubsets = genSubsetSum(arr, k-1, sum);
// Note that subsetsThatNeedKthElement only sum to "sum" - arr[k]... so we need to add
// arr[k] to each of those subsets to create subsets which sum to "sum"
// On the other hand, completeSubsets contains subsets which already sum to "sum"
// so they're "complete"
// Initialize it with the completed subsets
List<Set<int>> ret = new List<Set<int>>(completeSubsets);
// Now augment the incomplete subsets and add them to the final list
foreach (Set<int> subset in subsetsThatNeedKthElement)
{
subset.Add(arr[k]);
ret.Add(subset);
}
return ret;
The code is pretty cluttered with all the comments; but the key point is that this implementation always returns what it's specified to return (a list of sets of ints from arr[0] to arr[k] which sum to whatever sum was passed in).
FYI, there is another approach which is "bottom-up" (i.e. doesn't use recursion) which should be more performant. If you implement it that way, then you need to store extra data in static state (a "memoized table")... which is a bit ugly but practical. However, when you implement it this way you need to have a more clever way of generating the subsets. Feel free to ask that question in a separate post after giving it a try.
Based, on the comments/suggestions here, I have been able to get the solution for this problem in this way:
public static int counter = 0;
public static List<List<Integer>> lists = new ArrayList<>();
public static void getSubsetCountThatSumToTargetValue(int[] arr, int k, int targetSum, List<Integer> list) {
if(targetSum == 0) {
counter++;
lists.add(list);
return;
}
if(k <= 0) {
return;
}
getSubsetCountThatSumToTargetValue(arr, k - 1, targetSum, list);
List<Integer> appendedlist = new ArrayList<>();
appendedlist.addAll(list);
appendedlist.add(arr[k - 1]);
getSubsetCountThatSumToTargetValue(arr, k - 1, targetSum - arr[k - 1], appendedlist);
}
The main method looks like this:
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
SubSetSum.getSubsetCountThatSumToTargetValue(arr, 5, 9, new ArrayList<Integer>());
System.out.println("Result count: " + counter);
System.out.println("lists: " + lists);
}
Output:
Result: 3
lists: [[4, 3, 2], [5, 3, 1], [5, 4]]
A Python implementation with k moving from 0 to len() - 1:
import functools
def sum_of_subsets( numbers, sum_original ):
def _sum_of_subsets( list, k, sum ):
if sum < 0 or k == len( numbers ):
return
if ( sum == numbers[ k ] ):
expression = functools.reduce( lambda result, num: str( num ) if len( result ) == 0 else \
"%s + %d" % ( result, num ),
sorted( list + [ numbers[ k ]] ),
'' )
print "%d = %s" % ( sum_original, expression )
return
list.append( numbers[ k ] )
_sum_of_subsets( list, k + 1, sum - numbers[ k ])
list.pop( -1 )
_sum_of_subsets( list, k + 1, sum )
_sum_of_subsets( [], 0, sum_original )
...
sum_of_subsets( [ 8, 6, 3, 4, 2, 5, 7, 1, 9, 11, 10, 13, 12, 14, 15 ], 15 )
...
15 = 1 + 6 + 8
15 = 3 + 4 + 8
15 = 1 + 2 + 4 + 8
15 = 2 + 5 + 8
15 = 7 + 8
15 = 2 + 3 + 4 + 6
15 = 1 + 3 + 5 + 6
15 = 4 + 5 + 6
15 = 2 + 6 + 7
15 = 6 + 9
15 = 1 + 2 + 3 + 4 + 5
15 = 1 + 3 + 4 + 7
15 = 1 + 2 + 3 + 9
15 = 2 + 3 + 10
15 = 3 + 5 + 7
15 = 1 + 3 + 11
15 = 3 + 12
15 = 2 + 4 + 9
15 = 1 + 4 + 10
15 = 4 + 11
15 = 1 + 2 + 5 + 7
15 = 1 + 2 + 12
15 = 2 + 13
15 = 1 + 5 + 9
15 = 5 + 10
15 = 1 + 14
15 = 15

How to calculate the index (lexicographical order) when the combination is given

I know that there is an algorithm that permits, given a combination of number (no repetitions, no order), calculates the index of the lexicographic order.
It would be very useful for my application to speedup things...
For example:
combination(10, 5)
1 - 1 2 3 4 5
2 - 1 2 3 4 6
3 - 1 2 3 4 7
....
251 - 5 7 8 9 10
252 - 6 7 8 9 10
I need that the algorithm returns the index of the given combination.
es: index( 2, 5, 7, 8, 10 ) --> index
EDIT: actually I'm using a java application that generates all combinations C(53, 5) and inserts them into a TreeMap.
My idea is to create an array that contains all combinations (and related data) that I can index with this algorithm.
Everything is to speedup combination searching.
However I tried some (not all) of your solutions and the algorithms that you proposed are slower that a get() from TreeMap.
If it helps: my needs are for a combination of 5 from 53 starting from 0 to 52.
Thank you again to all :-)
Here is a snippet that will do the work.
#include <iostream>
int main()
{
const int n = 10;
const int k = 5;
int combination[k] = {2, 5, 7, 8, 10};
int index = 0;
int j = 0;
for (int i = 0; i != k; ++i)
{
for (++j; j != combination[i]; ++j)
{
index += c(n - j, k - i - 1);
}
}
std::cout << index + 1 << std::endl;
return 0;
}
It assumes you have a function
int c(int n, int k);
that will return the number of combinations of choosing k elements out of n elements.
The loop calculates the number of combinations preceding the given combination.
By adding one at the end we get the actual index.
For the given combination there are
c(9, 4) = 126 combinations containing 1 and hence preceding it in lexicographic order.
Of the combinations containing 2 as the smallest number there are
c(7, 3) = 35 combinations having 3 as the second smallest number
c(6, 3) = 20 combinations having 4 as the second smallest number
All of these are preceding the given combination.
Of the combinations containing 2 and 5 as the two smallest numbers there are
c(4, 2) = 6 combinations having 6 as the third smallest number.
All of these are preceding the given combination.
Etc.
If you put a print statement in the inner loop you will get the numbers
126, 35, 20, 6, 1.
Hope that explains the code.
Convert your number selections to a factorial base number. This number will be the index you want. Technically this calculates the lexicographical index of all permutations, but if you only give it combinations, the indexes will still be well ordered, just with some large gaps for all the permutations that come in between each combination.
Edit: pseudocode removed, it was incorrect, but the method above should work. Too tired to come up with correct pseudocode at the moment.
Edit 2: Here's an example. Say we were choosing a combination of 5 elements from a set of 10 elements, like in your example above. If the combination was 2 3 4 6 8, you would get the related factorial base number like so:
Take the unselected elements and count how many you have to pass by to get to the one you are selecting.
1 2 3 4 5 6 7 8 9 10
2 -> 1
1 3 4 5 6 7 8 9 10
3 -> 1
1 4 5 6 7 8 9 10
4 -> 1
1 5 6 7 8 9 10
6 -> 2
1 5 7 8 9 10
8 -> 3
So the index in factorial base is 1112300000
In decimal base, it's
1*9! + 1*8! + 1*7! + 2*6! + 3*5! = 410040
This is Algorithm 2.7 kSubsetLexRank on page 44 of Combinatorial Algorithms by Kreher and Stinson.
r = 0
t[0] = 0
for i from 1 to k
if t[i - 1] + 1 <= t[i] - 1
for j from t[i - 1] to t[i] - 1
r = r + choose(n - j, k - i)
return r
The array t holds your values, for example [5 7 8 9 10]. The function choose(n, k) calculates the number "n choose k". The result value r will be the index, 251 for the example. Other inputs are n and k, for the example they would be 10 and 5.
zero-base,
# v: array of length k consisting of numbers between 0 and n-1 (ascending)
def index_of_combination(n,k,v):
idx = 0
for p in range(k-1):
if p == 0: arrg = range(1,v[p]+1)
else: arrg = range(v[p-1]+2, v[p]+1)
for a in arrg:
idx += combi[n-a, k-1-p]
idx += v[k-1] - v[k-2] - 1
return idx
Null Set has the right approach. The index corresponds to the factorial-base number of the sequence. You build a factorial-base number just like any other base number, except that the base decreases for each digit.
Now, the value of each digit in the factorial-base number is the number of elements less than it that have not yet been used. So, for combination(10, 5):
(1 2 3 4 5) == 0*9!/5! + 0*8!/5! + 0*7!/5! + 0*6!/5! + 0*5!/5!
== 0*3024 + 0*336 + 0*42 + 0*6 + 0*1
== 0
(10 9 8 7 6) == 9*3024 + 8*336 + 7*42 + 6*6 + 5*1
== 30239
It should be pretty easy to calculate the index incrementally.
If you have a set of positive integers 0<=x_1 < x_2< ... < x_k , then you could use something called the squashed order:
I = sum(j=1..k) Choose(x_j,j)
The beauty of the squashed order is that it works independent of the largest value in the parent set.
The squashed order is not the order you are looking for, but it is related.
To use the squashed order to get the lexicographic order in the set of k-subsets of {1,...,n) is by taking
1 <= x1 < ... < x_k <=n
compute
0 <= n-x_k < n-x_(k-1) ... < n-x_1
Then compute the squashed order index of (n-x_k,...,n-k_1)
Then subtract the squashed order index from Choose(n,k) to get your result, which is the lexicographic index.
If you have relatively small values of n and k, you can cache all the values Choose(a,b) with a
See Anderson, Combinatorics on Finite Sets, pp 112-119
I needed also the same for a project of mine and the fastest solution I found was (Python):
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def index(comb,n,k):
r=nCr(n,k)
for i in range(k):
if n-comb[i]<k-i:continue
r=r-nCr(n-comb[i],k-i)
return r
My input "comb" contained elements in increasing order You can test the code with for example:
import itertools
k=3
t=[1,2,3,4,5]
for x in itertools.combinations(t, k):
print x,index(x,len(t),k)
It is not hard to prove that if comb=(a1,a2,a3...,ak) (in increasing order) then:
index=[nCk-(n-a1+1)Ck] + [(n-a1)C(k-1)-(n-a2+1)C(k-1)] + ... =
nCk -(n-a1)Ck -(n-a2)C(k-1) - .... -(n-ak)C1
There's another way to do all this. You could generate all possible combinations and write them into a binary file where each comb is represented by it's index starting from zero. Then, when you need to find an index, and the combination is given, you apply a binary search on the file. Here's the function. It's written in VB.NET 2010 for my lotto program, it works with Israel lottery system so there's a bonus (7th) number; just ignore it.
Public Function Comb2Index( _
ByVal gAr() As Byte) As UInt32
Dim mxPntr As UInt32 = WHL.AMT.WHL_SYS_00 '(16.273.488)
Dim mdPntr As UInt32 = mxPntr \ 2
Dim eqCntr As Byte
Dim rdAr() As Byte
modBinary.OpenFile(WHL.WHL_SYS_00, _
FileMode.Open, FileAccess.Read)
Do
modBinary.ReadBlock(mdPntr, rdAr)
RP: If eqCntr = 7 Then GoTo EX
If gAr(eqCntr) = rdAr(eqCntr) Then
eqCntr += 1
GoTo RP
ElseIf gAr(eqCntr) < rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mxPntr = mdPntr
mdPntr \= 2
ElseIf gAr(eqCntr) > rdAr(eqCntr) Then
If eqCntr > 0 Then eqCntr = 0
mdPntr += (mxPntr - mdPntr) \ 2
End If
Loop Until eqCntr = 7
EX: modBinary.CloseFile()
Return mdPntr
End Function
P.S. It takes 5 to 10 mins to generate 16 million combs on a Core 2 Duo. To find the index using binary search on file takes 397 milliseconds on a SATA drive.
Assuming the maximum setSize is not too large, you can simply generate a lookup table, where the inputs are encoded this way:
int index(a,b,c,...)
{
int key = 0;
key |= 1<<a;
key |= 1<<b;
key |= 1<<c;
//repeat for all arguments
return Lookup[key];
}
To generate the lookup table, look at this "banker's order" algorithm. Generate all the combinations, and also store the base index for each nItems. (For the example on p6, this would be [0,1,5,11,15]). Note that by you storing the answers in the opposite order from the example (LSBs set first) you will only need one table, sized for the largest possible set.
Populate the lookup table by walking through the combinations doing Lookup[combination[i]]=i-baseIdx[nItems]
EDIT: Never mind. This is completely wrong.
Let your combination be (a1, a2, ..., ak-1, ak) where a1 < a2 < ... < ak. Let choose(a,b) = a!/(b!*(a-b)!) if a >= b and 0 otherwise. Then, the index you are looking for is
choose(ak-1, k) + choose(ak-1-1, k-1) + choose(ak-2-1, k-2) + ... + choose (a2-1, 2) + choose (a1-1, 1) + 1
The first term counts the number of k-element combinations such that the largest element is less than ak. The second term counts the number of (k-1)-element combinations such that the largest element is less than ak-1. And, so on.
Notice that the size of the universe of elements to be chosen from (10 in your example) does not play a role in the computation of the index. Can you see why?
Sample solution:
class Program
{
static void Main(string[] args)
{
// The input
var n = 5;
var t = new[] { 2, 4, 5 };
// Helping transformations
ComputeDistances(t);
CorrectDistances(t);
// The algorithm
var r = CalculateRank(t, n);
Console.WriteLine("n = 5");
Console.WriteLine("t = {2, 4, 5}");
Console.WriteLine("r = {0}", r);
Console.ReadKey();
}
static void ComputeDistances(int[] t)
{
var k = t.Length;
while (--k >= 0)
t[k] -= (k + 1);
}
static void CorrectDistances(int[] t)
{
var k = t.Length;
while (--k > 0)
t[k] -= t[k - 1];
}
static int CalculateRank(int[] t, int n)
{
int k = t.Length - 1, r = 0;
for (var i = 0; i < t.Length; i++)
{
if (t[i] == 0)
{
n--;
k--;
continue;
}
for (var j = 0; j < t[i]; j++)
{
n--;
r += CalculateBinomialCoefficient(n, k);
}
n--;
k--;
}
return r;
}
static int CalculateBinomialCoefficient(int n, int k)
{
int i, l = 1, m, x, y;
if (n - k < k)
{
x = k;
y = n - k;
}
else
{
x = n - k;
y = k;
}
for (i = x + 1; i <= n; i++)
l *= i;
m = CalculateFactorial(y);
return l/m;
}
static int CalculateFactorial(int n)
{
int i, w = 1;
for (i = 1; i <= n; i++)
w *= i;
return w;
}
}
The idea behind the scenes is to associate a k-subset with an operation of drawing k-elements from the n-size set. It is a combination, so the overall count of possible items will be (n k). It is a clue that we could seek the solution in Pascal Triangle. After a while of comparing manually written examples with the appropriate numbers from the Pascal Triangle, we will find the pattern and hence the algorithm.
I used user515430's answer and converted to python3. Also this supports non-continuous values so you could pass in [1,3,5,7,9] as your pool instead of range(1,11)
from itertools import combinations
from scipy.special import comb
from pandas import Index
debugcombinations = False
class IndexedCombination:
def __init__(self, _setsize, _poolvalues):
self.setsize = _setsize
self.poolvals = Index(_poolvalues)
self.poolsize = len(self.poolvals)
self.totalcombinations = 1
fast_k = min(self.setsize, self.poolsize - self.setsize)
for i in range(1, fast_k + 1):
self.totalcombinations = self.totalcombinations * (self.poolsize - fast_k + i) // i
#fill the nCr cache
self.choose_cache = {}
n = self.poolsize
k = self.setsize
for i in range(k + 1):
for j in range(n + 1):
if n - j >= k - i:
self.choose_cache[n - j,k - i] = comb(n - j,k - i, exact=True)
if debugcombinations:
print('testnth = ' + str(self.testnth()))
def get_nth_combination(self,index):
n = self.poolsize
r = self.setsize
c = self.totalcombinations
#if index < 0 or index >= c:
# raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(self.poolvals[-1 - n])
return tuple(result)
def get_n_from_combination(self,someset):
n = self.poolsize
k = self.setsize
index = 0
j = 0
for i in range(k):
setidx = self.poolvals.get_loc(someset[i])
for j in range(j + 1, setidx + 1):
index += self.choose_cache[n - j, k - i - 1]
j += 1
return index
#just used to test whether nth_combination from the internet actually works
def testnth(self):
n = 0
_setsize = self.setsize
mainset = self.poolvals
for someset in combinations(mainset, _setsize):
nthset = self.get_nth_combination(n)
n2 = self.get_n_from_combination(nthset)
if debugcombinations:
print(str(n) + ': ' + str(someset) + ' vs ' + str(n2) + ': ' + str(nthset))
if n != n2:
return False
for x in range(_setsize):
if someset[x] != nthset[x]:
return False
n += 1
return True
setcombination = IndexedCombination(5, list(range(1,10+1)))
print( str(setcombination.get_n_from_combination([2,5,7,8,10])))
returns 188

Algorithm to divide text into 3 evenly-sized groups

I'm would like to create an algorithm that will divide text into 3-evenly sized groups (based on text length). Since this will be put to use for line-breaks, the order of the text needs to be maintained.
For instance this string:
Just testing to see how this works.
would sort to:
Just testing // 12 characters
to see how // 10 characters
this works. // 11 characters
Any ideas?
The "minimum raggedness" dynamic program, also from the Wikipedia article on word wrap, can be adapted to your needs. Set LineWidth = len(text)/n - 1 and ignore the comment about infinite penalties for exceeding the line width; use the definition of c(i, j) as is with P = 2.
Code. I took the liberty of modifying the DP always to return exactly n lines, at the cost of increasing the running time from O(#words ** 2) to O(#words ** 2 * n).
def minragged(text, n=3):
"""
>>> minragged('Just testing to see how this works.')
['Just testing', 'to see how', 'this works.']
>>> minragged('Just testing to see how this works.', 10)
['', '', 'Just', 'testing', 'to', 'see', 'how', 'this', 'works.', '']
"""
words = text.split()
cumwordwidth = [0]
# cumwordwidth[-1] is the last element
for word in words:
cumwordwidth.append(cumwordwidth[-1] + len(word))
totalwidth = cumwordwidth[-1] + len(words) - 1 # len(words) - 1 spaces
linewidth = float(totalwidth - (n - 1)) / float(n) # n - 1 line breaks
def cost(i, j):
"""
cost of a line words[i], ..., words[j - 1] (words[i:j])
"""
actuallinewidth = max(j - i - 1, 0) + (cumwordwidth[j] - cumwordwidth[i])
return (linewidth - float(actuallinewidth)) ** 2
# best[l][k][0] is the min total cost for words 0, ..., k - 1 on l lines
# best[l][k][1] is a minimizing index for the start of the last line
best = [[(0.0, None)] + [(float('inf'), None)] * len(words)]
# xrange(upper) is the interval 0, 1, ..., upper - 1
for l in xrange(1, n + 1):
best.append([])
for j in xrange(len(words) + 1):
best[l].append(min((best[l - 1][k][0] + cost(k, j), k) for k in xrange(j + 1)))
lines = []
b = len(words)
# xrange(upper, 0, -1) is the interval upper, upper - 1, ..., 1
for l in xrange(n, 0, -1):
a = best[l][b][1]
lines.append(' '.join(words[a:b]))
b = a
lines.reverse()
return lines
if __name__ == '__main__':
import doctest
doctest.testmod()
You can try the next simple heuristic for starters: Place to iterators in n/3 and 2n/3 and search for the closest space near each of them.
From http://en.wikipedia.org/wiki/Word_wrap:
SpaceLeft := LineWidth
for each Word in Text
if Width(Word) > SpaceLeft
insert line break before Word in Text
SpaceLeft := LineWidth - Width(Word)
else
SpaceLeft := SpaceLeft - (Width(Word) + SpaceWidth)
This method is used by many modern word processors, such as OpenOffice.org Writer and Microsoft Word. This algorithm is optimal in that it always puts the text on the minimum number of lines.
The answer from "someone" works fine. However, I had problems translating this into SWIFT code. Here is my translation for all those that are interested.
import Foundation
class SplitText{
typealias MinRag = (Float, Int) // meaning (cost for line (so far), word index)
// from http://stackoverflow.com/questions/6426017/word-wrap-to-x-lines-instead-of-maximum-width-least-raggedness?lq=1
class func splitText(text:String, numberOfLines:Int)-> [String]{
//preparations
var words = split(text, maxSplit:100, allowEmptySlices: false, isSeparator:{(s:Character)-> Bool in return s == " " || s == "\n"})
var cumwordwidth = [Int](); //cummulative word widths
cumwordwidth.append(0);
for word in words{
cumwordwidth.append(cumwordwidth[cumwordwidth.count - 1] + count(word));
}
var totalwidth = cumwordwidth[cumwordwidth.count - 1] + count(words) - 1;
var linewidth:Float = Float(totalwidth - (numberOfLines - 1)) / Float(numberOfLines)
// cost function for one line for words i .. j
var cost = { (i:Int,j:Int)-> Float in
var actuallinewidth = max(j - i - 1, 0) + (cumwordwidth[j] - cumwordwidth[i]);
var remainingWidth: Float = linewidth - Float(actuallinewidth)
return remainingWidth * remainingWidth
}
var best = [[MinRag]]()
var tmp = [MinRag]();
//ensure that data structure is initialised in a way that we start with adding the first word
tmp.append((0, -1));
for word in words {
tmp.append((Float.infinity , -1));
}
best.append(tmp);
//now we can start. We simply calculate the cost for all possible lines
for l in 1...numberOfLines {
tmp = [MinRag]()
for j in 0...words.count {
var min:MinRag = (best[l - 1][0].0 + cost(0, j), 0);
var k: Int
for k = 0; k < j + 1 ; ++k {
var loc:Float = best[l - 1][k].0 + cost(k, j);
if (loc < min.0 || (loc == min.0 && k < min.1)) {
min=(loc, k);
}
println("l=\(l), j=\(j), k=\(k), min=\(min)")
}
tmp.append(min);
}
best.append(tmp);
}
//now build the answer based on above calculations
var lines = [String]();
var b = words.count;
var o:Int
for o = numberOfLines; o > 0 ; --o {
var a = best[o][b].1;
lines.append(" ".join(words[a...b-1]));
b = a;
}
return reverse(lines);
}
}

Resources