Longest positive sum substring - algorithm

I was wondering how could I get the longest positive-sum subsequence in a sequence:
For example I have -6 3 -4 4 -5, so the longest positive subsequence is 3 -4 4. In fact the sum is positive (3), and we couldn't add -6 neither -5 or it would have become negative.
It could be easily solvable in O(N^2), I think could exist something much more faster, like in O(NlogN)
Do you have any idea?
EDIT: the order must be preserved, and you can skip any number from the substring
EDIT2: I'm sorry if I caused confusion using the term "sebsequence", as #beaker pointed out I meant substring

O(n) space and time solution, will start with the code (sorry, Java ;-) and try to explain it later:
public static int[] longestSubarray(int[] inp) {
// array containing prefix sums up to a certain index i
int[] p = new int[inp.length];
p[0] = inp[0];
for (int i = 1; i < inp.length; i++) {
p[i] = p[i - 1] + inp[i];
}
// array Q from the description below
int[] q = new int[inp.length];
q[inp.length - 1] = p[inp.length - 1];
for (int i = inp.length - 2; i >= 0; i--) {
q[i] = Math.max(q[i + 1], p[i]);
}
int a = 0;
int b = 0;
int maxLen = 0;
int curr;
int[] res = new int[] {-1,-1};
while (b < inp.length) {
curr = a > 0 ? q[b] - p[a-1] : q[b];
if (curr >= 0) {
if(b-a > maxLen) {
maxLen = b-a;
res = new int[] {a,b};
}
b++;
} else {
a++;
}
}
return res;
}
we are operating on input array A of size n
Let's define array P as the array containing the prefix sum until index i so P[i] = sum(0,i) where `i = 0,1,...,n-1'
let's notice that if u < v and P[u] <= P[v] then u will never be our ending point
because of the above we can define an array Q which has Q[n-1] = P[n-1] and Q[i] = max(P[i], Q[i+1])
now let's consider M_{a,b} which shows us the maximum sum subarray starting at a and ending at b or beyond. We know that M_{0,b} = Q[b] and that M_{a,b} = Q[b] - P[a-1]
with the above information we can now initialise our a, b = 0 and start moving them. If the current value of M is bigger or equal to 0 then we know we will find (or already found) a subarray with sum >= 0, we then just need to compare b-a with the previously found length. Otherwise there's no subarray that starts at a and adheres to our constraints so we need to increment a.

Let's make a naive implementation and then improve it.
We move from the left to the right calculating partial sums and for each position we find the most-left partial sum such as the current partial sum is greater than that.
input a
int partialSums[len(a)]
for i in range(len(a)):
partialSums[i] = (i == 0 ? 0 : partialSums[i - 1]) + a[i]
if partialSums[i] > 0:
answer = max(answer, i + 1)
else:
for j in range(i):
if partialSums[i] - partialSums[j] > 0:
answer = max(answer, i - j)
break
This is O(n2). Now the part of finding the left-most "good" sum could be actually maintained via BST, where each node would be represented as a pair (partial sum, index) with a comparison by partial sum. Also each node should support a special field min that would be the minimum of indices in this subtree.
Now instead of the straightforward search of an appropriate partial sum we could descend the BST using the current partial sum as a key following the next three rules (assuming C is the current node, L and R are the roots of the left and the right subtrees respectively):
Maintain the current minimal index of "good" partial sums found in curMin, initially +∞.
If C.partial_sum is "good" then update curMin with C.index.
If we go to R then update curMin with L.min.
And then update the answer with i - curMin, also add the current partial sum to the BST.
That would give us O(n * log n).

We can easily have a O(n log n) solution for longest subsequence.
First, sort the array, remember their indexes.
Pick all the largest numbers, stop when their sum are negative, and you have your answer.
Recover their original order.
Pseudo code
sort(data);
int length = 0;
long sum = 0;
boolean[] result = new boolean[n];
for(int i = n ; i >= 1; i--){
if(sum + data[i] <= 0)
break;
sum += data[i];
result[data[i].index] = true;
length++;
}
for(int i = 1; i <= n; i++)
if(result[i])
print i;
So, rather than waiting, I will propose a O(n log n) solution for longest positive substring.
First, we create an array prefix which is the prefix sum of the array.
Second, we using binary search to look for the longest length that has positive sum
Pseudocode
int[]prefix = new int[n];
for(int i = 1; i <= n; i++)
prefix[i] = data[i];
if(i - 1 >= 1)
prefix[i] += prefix[i - 1];
int min = 0;
int max = n;
int result = 0;
while(min <= max){
int mid = (min + max)/2;
boolean ok = false;
for(int i = 1; i <= n; i++){
if(i > mid && pre[i] - pre[i - mid] > 0){//How we can find sum of segment with mid length, and end at index i
ok = true;
break;
}
}
if(ok){
result = max(result, mid)
min = mid + 1;
}else{
max = mid - 1;
}
}
Ok, so the above algorithm is wrong, as pointed out by piotrekg2 what we need to do is
create an array prefix which is the prefix sum of the array.
Sort the prefix array, and we need to remember the index of the prefix array.
Iterate through the prefix array, storing the minimum index we meet so far, the maximum different between the index is the answer.
Note: when we comparing value in prefix, if two indexes have equivalent values, so which has smaller index will be considered larger, this will avoid the case when the sum is 0.
Pseudo code:
class Node{
int val, index;
}
Node[]prefix = new Node[n];
for(int i = 1; i <= n; i++)
prefix[i] = new Node(data[i],i);
if(i - 1 >= 1)
prefix[i].val += prefix[i - 1].val;
sort(prefix);
int min = prefix[1].index;
int result = 0;
for(int i = 2; i <= n; i ++)
if(prefix[i].index > min)
result = max(prefix[i].index - min + 1, result)
min = min(min, prefix[i].index);

Related

Why second version of dynamic programming is wrong

If I was given a array of positive integer, like [2,19,6,16,5,10,7,4,11,6], I wish to find
the biggest subset sum attainable from the above array so that the sum is divisible by 3. I try to solve it using dynamic programming
let dp[i][j] to be the biggest sum attained up to index i in array with remainder of j, which is
0,1,2 since I am finding something divisible by 3.
And I have two implementation below:
int n = nums.length;
int[][] dp = new int[n+1][3];
dp[0][0] = 0;
dp[0][1] = Integer.MIN_VALUE;
dp[0][2] = Integer.MIN_VALUE;
for(int i = 1; i <= n; i++) {
for(int j = 0; j < 3; j++) {
int remain = nums[i-1] % 3;
int remainder = (j + 3 - remain) % 3;
dp[i][j] = Math.max(dp[i-1][remainder] + nums[i-1], dp[i-1][j]);
}
}
return dp[n][0];
int n = nums.length;
int[][] dp = new int[n+1][3];
dp[0][0] = nums[0] % 3 == 0 ? nums[0] : Integer.MIN_VALUE;
dp[0][1] = nums[0] % 3 == 1 ? nums[0] : Integer.MIN_VALUE;
dp[0][2] = nums[0] % 3 == 2 ? nums[0] : Integer.MIN_VALUE;
for(int i = 1; i < n; i++) {
for(int j = 0; j < 3; j++) {
int remain = nums[i] % 3;
int remainder = (j + 3 - remain) % 3;
dp[i][j] = Math.max(dp[i-1][remainder] + nums[i], dp[i-1][j]);
}
}
return dp[n-1][0] == Integer.MIN_VALUE ? 0 : dp[n-1][0];
Both implementation above was base on the fact that I either add nums[i] or not, and I add the nums[i] to the table with the corresponding remainder before/after I added nums[i], which is like knapsack DP, but the first version pass all test cases and the one below failed for some of them. Like [2,19,6,16,5,10,7,4,11,6], it gives 81 instead of the correct answer 84, can anyone explain why the second version is wrong?
The first version is calculating the largest subset sum divisible by 3; the second version calculates the largest sum divisible by 3 of a subset that includes nums[0], the first element.
The sole difference in the two versions is the base case for dynamic programming. The first version has the correct base cases: after processing zero elements, the only subset sum possible is zero. In the second version, the base case starts at 1, and implies that after processing one element, the only subset sum possible is the one containing that first element. All future subset sums are forced to use that element.
Try running the code on the array [1, 3]. The second version will return zero, because it does not consider subsets without 1.

Looking for largest sum inside array

I have a given array [-2 -3 4 -1 -2 1 5 -3] so the largest sum would be 7 (numbers from 3rd to 7th index). This array is just a simple example, the program should be user input elements and length of the array.
My question is, how to determine which sum would be largest?
I created a sum from all numbers and the sum of only positive numbers and yet the positive sum would be great but I didn't used the -1 and -2 after that 3rd index because of the "IF statement" so my sum is 10 and the solution is not good.
I assume your questions is to find the contiguous subarray(containing at least one number) which has the largest sum. Otherwise, the problem is pretty trivial as you can just pick all the positive numbers.
There are 3 solutions that are better than the O(N^2) brute force solution. N is the length of the input array.
Dynamic programming. O(N) runtime, O(N) space
Since the subarray contains at least one number, we know that there are only N possible candidates: subarray that ends at A[0], A[1]...... A[N - 1]
For the subarray that ends at A[i], we have the following optimal substructure:
maxSum[i] = max of {maxSum[i - 1] + A[i], A[i]};
class Solution {
public int maxSubArray(int[] nums) {
int max = Integer.MIN_VALUE;
if(nums == null || nums.length == 0) {
return max;
}
int[] maxSum = new int[nums.length + 1];
for(int i = 1; i < maxSum.length; i++) {
maxSum[i] = Math.max(maxSum[i - 1] + nums[i - 1], nums[i - 1]);
}
for(int i = 1; i < maxSum.length; i++) {
max = Math.max(maxSum[i], max);
}
return max;
}
}
Prefix sum, O(N) runtime, O(1) space
Maintain a minimum sum variable as you iterate through the entire array. When visiting each number in the input array, update the prefix sum variable currSum. Then update the maximum sum and minimum sum shown in the following code.
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
int maxSum = Integer.MIN_VALUE, currSum = 0, minSum = 0;
for(int i = 0; i < nums.length; i++) {
currSum += nums[i];
maxSum = Math.max(maxSum, currSum - minSum);
minSum = Math.min(minSum, currSum);
}
return maxSum;
}
}
Divide and conquer, O(N * logN) runtime
Divide the original problem into two subproblems and apply this principle recursively using the following formula.
Let A[0,.... midIdx] be the left half of A, A[midIdx + 1, ..... A.length - 1] be the right half of A. leftSumMax is the answer of the left subproblem, rightSumMax is the answer of the right subproblem.
The final answer will be one of the following 3:
1. only uses numbers from the left half (solved by the left subproblem)
2. only uses numbers from the right half (solved by the right subproblem)
3. uses numbers from both left and right halves (solved in O(n) time)
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0)
{
return 0;
}
return maxSubArrayHelper(nums, 0, nums.length - 1);
}
private int maxSubArrayHelper(int[] nums, int startIdx, int endIdx){
if(startIdx == endIdx){
return nums[startIdx];
}
int midIdx = startIdx + (endIdx - startIdx) / 2;
int leftMax = maxSubArrayHelper(nums, startIdx, midIdx);
int rightMax = maxSubArrayHelper(nums, midIdx + 1, endIdx);
int leftIdx = midIdx, rightIdx = midIdx + 1;
int leftSumMax = nums[leftIdx], rightSumMax = nums[rightIdx];
int leftSum = nums[leftIdx], rightSum = nums[rightIdx];
for(int i = leftIdx - 1; i >= startIdx; i--){
leftSum += nums[i];
leftSumMax = Math.max(leftSumMax, leftSum);
}
for(int j = rightIdx + 1; j <= endIdx; j++){
rightSum += nums[j];
rightSumMax = Math.max(rightSumMax, rightSum);
}
return Math.max(Math.max(leftMax, rightMax), leftSumMax + rightSumMax);
}
}
Try this:
locate the first positive number, offset i.
add the following positive numbers, giving a sum of sum, last offset is j. If this sum is greater than your current best sum, it becomes the current best sum with offsets i to j.
add the negative numbers that follow until you get another positive number. If this negative sum is greater in absolute value than sum, start a new sum at this offset, otherwise continue with the current sum.
go back to step 2.
Stop this when you get to the end of the array. The best positive sum has been found.
If no positive sum can be found, locate the least negative value, this single entry would be your best non-trivial sum.

Find the subarray within an array (containing at least TWO number) which has the largest sum

Find the subarray within an array (containing at least TWO number) which has the largest sum.
For example, given the array [-2,-1,-3,-4,-1],
the contiguous subarray [-2,-1] has the largest sum = -3.
try to do it in O(n) time
Followup, if input is stream, how to solve it
public int maxSubArray(int[] nums) {}
For an Array of size (N). Let us call it A
You can create another array B where you will store the sum so Far.
Now traverse through the parent Array.
int max = Integer.MIN;
B[0] = A[0];
for(i=1;i<A.length;i++)
{
if(A[i] > 0){
B[i]=B[i-1] + A[i];
}else if(A[i]+B[i-1] > max){
B[i] = A[i]+B[i-1]
max = A[i]+B[i-1]
}
else{
B[i] = A[i];
}
Now the max number in Array B has the max possible sum of the consecutive sub Array but you don't know the Sub Array.
You can use Kadane's Algorithm in modified fashion.
You can find Kadane' Algorithm here. (You will store the ends of the subarray too).
How can we modify it?
-> Just keep in track of the window size you are taking i.e. RIGHT-LEFT>=1
I think this should help for all set of numbers including negative.
Still for all negative numbers (which you can check in an O(n) go). Just loop FROM o to N : maximum = max(arr[i]+arr[i+1],maximum);
Just to ensure if the case gets covered.
Something like this should work:
int maxvalue = int.MIN_VALUE;
for (int i = 0; i < N; i++)
for (int j = i + 1; j < N; j++) {
int value = 0;
for (int x = i; x <= j; x++)
value += array[x];
if (value > maxvalue)
maxvalue = value;
}
return maxvalue;

Maximum subarray sum modulo M

Most of us are familiar with the maximum sum subarray problem. I came across a variant of this problem which asks the programmer to output the maximum of all subarray sums modulo some number M.
The naive approach to solve this variant would be to find all possible subarray sums (which would be of the order of N^2 where N is the size of the array). Of course, this is not good enough. The question is - how can we do better?
Example: Let us consider the following array:
6 6 11 15 12 1
Let M = 13. In this case, subarray 6 6 (or 12 or 6 6 11 15 or 11 15 12) will yield maximum sum ( = 12 ).
We can do this as follow:
Maintaining an array sum which at index ith, it contains the modulus sum from 0 to ith.
For each index ith, we need to find the maximum sub sum that end at this index:
For each subarray (start + 1 , i ), we know that the mod sum of this sub array is
int a = (sum[i] - sum[start] + M) % M
So, we can only achieve a sub-sum larger than sum[i] if sum[start] is larger than sum[i] and as close to sum[i] as possible.
This can be done easily if you using a binary search tree.
Pseudo code:
int[] sum;
sum[0] = A[0];
Tree tree;
tree.add(sum[0]);
int result = sum[0];
for(int i = 1; i < n; i++){
sum[i] = sum[i - 1] + A[i];
sum[i] %= M;
int a = tree.getMinimumValueLargerThan(sum[i]);
result = max((sum[i] - a + M) % M, result);
tree.add(sum[i]);
}
print result;
Time complexity :O(n log n)
Let A be our input array with zero-based indexing. We can reduce A modulo M without changing the result.
First of all, let's reduce the problem to a slightly easier one by computing an array P representing the prefix sums of A, modulo M:
A = 6 6 11 2 12 1
P = 6 12 10 12 11 12
Now let's process the possible left borders of our solution subarrays in decreasing order. This means that we will first determine the optimal solution that starts at index n - 1, then the one that starts at index n - 2 etc.
In our example, if we chose i = 3 as our left border, the possible subarray sums are represented by the suffix P[3..n-1] plus a constant a = A[i] - P[i]:
a = A[3] - P[3] = 2 - 12 = 3 (mod 13)
P + a = * * * 2 1 2
The global maximum will occur at one point too. Since we can insert the suffix values from right to left, we have now reduced the problem to the following:
Given a set of values S and integers x and M, find the maximum of S + x modulo M
This one is easy: Just use a balanced binary search tree to manage the elements of S. Given a query x, we want to find the largest value in S that is smaller than M - x (that is the case where no overflow occurs when adding x). If there is no such value, just use the largest value of S. Both can be done in O(log |S|) time.
Total runtime of this solution: O(n log n)
Here's some C++ code to compute the maximum sum. It would need some minor adaptions to also return the borders of the optimal subarray:
#include <bits/stdc++.h>
using namespace std;
int max_mod_sum(const vector<int>& A, int M) {
vector<int> P(A.size());
for (int i = 0; i < A.size(); ++i)
P[i] = (A[i] + (i > 0 ? P[i-1] : 0)) % M;
set<int> S;
int res = 0;
for (int i = A.size() - 1; i >= 0; --i) {
S.insert(P[i]);
int a = (A[i] - P[i] + M) % M;
auto it = S.lower_bound(M - a);
if (it != begin(S))
res = max(res, *prev(it) + a);
res = max(res, (*prev(end(S)) + a) % M);
}
return res;
}
int main() {
// random testing to the rescue
for (int i = 0; i < 1000; ++i) {
int M = rand() % 1000 + 1, n = rand() % 1000 + 1;
vector<int> A(n);
for (int i = 0; i< n; ++i)
A[i] = rand() % M;
int should_be = 0;
for (int i = 0; i < n; ++i) {
int sum = 0;
for (int j = i; j < n; ++j) {
sum = (sum + A[j]) % M;
should_be = max(should_be, sum);
}
}
assert(should_be == max_mod_sum(A, M));
}
}
For me, all explanations here were awful, since I didn't get the searching/sorting part. How do we search/sort, was unclear.
We all know that we need to build prefixSum, meaning sum of all elems from 0 to i with modulo m
I guess, what we are looking for is clear.
Knowing that subarray[i][j] = (prefix[i] - prefix[j] + m) % m (indicating the modulo sum from index i to j), our maxima when given prefix[i] is always that prefix[j] which is as close as possible to prefix[i], but slightly bigger.
E.g. for m = 8, prefix[i] being 5, we are looking for the next value after 5, which is in our prefixArray.
For efficient search (binary search) we sort the prefixes.
What we can not do is, build the prefixSum first, then iterate again from 0 to n and look for index in the sorted prefix array, because we can find and endIndex which is smaller than our startIndex, which is no good.
Therefore, what we do is we iterate from 0 to n indicating the endIndex of our potential max subarray sum and then look in our sorted prefix array, (which is empty at the beginning) which contains sorted prefixes between 0 and endIndex.
def maximumSum(coll, m):
n = len(coll)
maxSum, prefixSum = 0, 0
sortedPrefixes = []
for endIndex in range(n):
prefixSum = (prefixSum + coll[endIndex]) % m
maxSum = max(maxSum, prefixSum)
startIndex = bisect.bisect_right(sortedPrefixes, prefixSum)
if startIndex < len(sortedPrefixes):
maxSum = max(maxSum, prefixSum - sortedPrefixes[startIndex] + m)
bisect.insort(sortedPrefixes, prefixSum)
return maxSum
From your question, it seems that you have created an array to store the cumulative sums (Prefix Sum Array), and are calculating the sum of the sub-array arr[i:j] as (sum[j] - sum[i] + M) % M. (arr and sum denote the given array and the prefix sum array respectively)
Calculating the sum of every sub-array results in a O(n*n) algorithm.
The question that arises is -
Do we really need to consider the sum of every sub-array to reach the desired maximum?
No!
For a value of j the value (sum[j] - sum[i] + M) % M will be maximum when sum[i] is just greater than sum[j] or the difference is M - 1.
This would reduce the algorithm to O(nlogn).
You can take a look at this explanation! https://www.youtube.com/watch?v=u_ft5jCDZXk
There are already a bunch of great solutions listed here, but I wanted to add one that has O(nlogn) runtime without using a balanced binary tree, which isn't in the Python standard library. This solution isn't my idea, but I had to think a bit as to why it worked. Here's the code, explanation below:
def maximumSum(a, m):
prefixSums = [(0, -1)]
for idx, el in enumerate(a):
prefixSums.append(((prefixSums[-1][0] + el) % m, idx))
prefixSums = sorted(prefixSums)
maxSeen = prefixSums[-1][0]
for (a, a_idx), (b, b_idx) in zip(prefixSums[:-1], prefixSums[1:]):
if a_idx > b_idx and b > a:
maxSeen = max((a-b) % m, maxSeen)
return maxSeen
As with the other solutions, we first calculate the prefix sums, but this time we also keep track of the index of the prefix sum. We then sort the prefix sums, as we want to find the smallest difference between prefix sums modulo m - sorting lets us just look at adjacent elements as they have the smallest difference.
At this point you might think we're neglecting an essential part of the problem - we want the smallest difference between prefix sums, but the larger prefix sum needs to appear before the smaller prefix sum (meaning it has a smaller index). In the solutions using trees, we ensure that by adding prefix sums one by one and recalculating the best solution.
However, it turns out that we can look at adjacent elements and just ignore ones that don't satisfy our index requirement. This confused me for some time, but the key realization is that the optimal solution will always come from two adjacent elements. I'll prove this via a contradiction. Let's say that the optimal solution comes from two non-adjacent prefix sums x and z with indices i and k, where z > x (it's sorted!) and k > i:
x ... z
k ... i
Let's consider one of the numbers between x and z, and let's call it y with index j. Since the list is sorted, x < y < z.
x ... y ... z
k ... j ... i
The prefix sum y must have index j < i, otherwise it would be part of a better solution with z. But if j < i, then j < k and y and x form a better solution than z and x! So any elements between x and z must form a better solution with one of the two, which contradicts our original assumption. Therefore the optimal solution must come from adjacent prefix sums in the sorted list.
Here is Java code for maximum sub array sum modulo. We handle the case we can not find least element in the tree strictly greater than s[i]
public static long maxModulo(long[] a, final long k) {
long[] s = new long[a.length];
TreeSet<Long> tree = new TreeSet<>();
s[0] = a[0] % k;
tree.add(s[0]);
long result = s[0];
for (int i = 1; i < a.length; i++) {
s[i] = (s[i - 1] + a[i]) % k;
// find least element in the tree strictly greater than s[i]
Long v = tree.higher(s[i]);
if (v == null) {
// can't find v, then compare v and s[i]
result = Math.max(s[i], result);
} else {
result = Math.max((s[i] - v + k) % k, result);
}
tree.add(s[i]);
}
return result;
}
Few points from my side that might hopefully help someone understand the problem better.
You do not need to add +M to the modulo calculation, as mentioned, % operator handles negative numbers well, so a % M = (a + M) % M
As mentioned, the trick is to build the proxy sum table such that
proxy[n] = (a[1] + ... a[n]) % M
This then allows one to represent the maxSubarraySum[i, j] as
maxSubarraySum[i, j] = (proxy[j] - proxy[j]) % M
The implementation trick is to build the proxy table as we iterate through the elements, instead of first pre-building it and then using. This is because for each new element in the array a[i] we want to compute proxy[i] and find proxy[j] that is bigger than but as close as possible to proxy[i] (ideally bigger by 1 because this results in a reminder of M - 1). For this we need to use a clever data structure for building proxy table while keeping it sorted and
being able to quickly find a closest bigger element to proxy[i]. bisect.bisect_right is a good choice in Python.
See my Python implementation below (hope this helps but I am aware this might not necessarily be as concise as others' solutions):
def maximumSum(a, m):
prefix_sum = [a[0] % m]
prefix_sum_sorted = [a[0] % m]
current_max = prefix_sum_sorted[0]
for elem in a[1:]:
prefix_sum_next = (prefix_sum[-1] + elem) % m
prefix_sum.append(prefix_sum_next)
idx_closest_bigger = bisect.bisect_right(prefix_sum_sorted, prefix_sum_next)
if idx_closest_bigger >= len(prefix_sum_sorted):
current_max = max(current_max, prefix_sum_next)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
continue
if prefix_sum_sorted[idx_closest_bigger] > prefix_sum_next:
current_max = max(current_max, (prefix_sum_next - prefix_sum_sorted[idx_closest_bigger]) % m)
bisect.insort_right(prefix_sum_sorted, prefix_sum_next)
return current_max
Total java implementation with O(n*log(n))
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.TreeSet;
import java.util.stream.Stream;
public class MaximizeSumMod {
public static void main(String[] args) throws Exception{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
Long times = Long.valueOf(in.readLine());
while(times --> 0){
long[] pair = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
long mod = pair[1];
long[] numbers = Stream.of(in.readLine().split(" ")).mapToLong(Long::parseLong).toArray();
printMaxMod(numbers,mod);
}
}
private static void printMaxMod(long[] numbers, Long mod) {
Long maxSoFar = (numbers[numbers.length-1] + numbers[numbers.length-2])%mod;
maxSoFar = (maxSoFar > (numbers[0]%mod)) ? maxSoFar : numbers[0]%mod;
numbers[0] %=mod;
for (Long i = 1L; i < numbers.length; i++) {
long currentNumber = numbers[i.intValue()]%mod;
maxSoFar = maxSoFar > currentNumber ? maxSoFar : currentNumber;
numbers[i.intValue()] = (currentNumber + numbers[i.intValue()-1])%mod;
maxSoFar = maxSoFar > numbers[i.intValue()] ? maxSoFar : numbers[i.intValue()];
}
if(mod.equals(maxSoFar+1) || numbers.length == 2){
System.out.println(maxSoFar);
return;
}
long previousNumber = numbers[0];
TreeSet<Long> set = new TreeSet<>();
set.add(previousNumber);
for (Long i = 2L; i < numbers.length; i++) {
Long currentNumber = numbers[i.intValue()];
Long ceiling = set.ceiling(currentNumber);
if(ceiling == null){
set.add(numbers[i.intValue()-1]);
continue;
}
if(ceiling.equals(currentNumber)){
set.remove(ceiling);
Long greaterCeiling = set.ceiling(currentNumber);
if(greaterCeiling == null){
set.add(ceiling);
set.add(numbers[i.intValue()-1]);
continue;
}
set.add(ceiling);
ceiling = greaterCeiling;
}
Long newMax = (currentNumber - ceiling + mod);
maxSoFar = maxSoFar > newMax ? maxSoFar :newMax;
set.add(numbers[i.intValue()-1]);
}
System.out.println(maxSoFar);
}
}
Adding STL C++11 code based on the solution suggested by #Pham Trung. Might be handy.
#include <iostream>
#include <set>
int main() {
int N;
std::cin>>N;
for (int nn=0;nn<N;nn++){
long long n,m;
std::set<long long> mSet;
long long maxVal = 0; //positive input values
long long sumVal = 0;
std::cin>>n>>m;
mSet.insert(m);
for (long long q=0;q<n;q++){
long long tmp;
std::cin>>tmp;
sumVal = (sumVal + tmp)%m;
auto itSub = mSet.upper_bound(sumVal);
maxVal = std::max(maxVal,(m + sumVal - *itSub)%m);
mSet.insert(sumVal);
}
std::cout<<maxVal<<"\n";
}
}
As you can read in Wikipedia exists a solution called Kadane's algorithm, which compute the maximum subarray sum watching ate the maximum subarray ending at position i for all positions i by iterating once over the array. Then this solve the problem with with runtime complexity O(n).
Unfortunately, I think that Kadane's algorithm isn't able to find all possible solution when more than one solution exists.
An implementation in Java, I didn't tested it:
public int[] kadanesAlgorithm (int[] array) {
int start_old = 0;
int start = 0;
int end = 0;
int found_max = 0;
int max = array[0];
for(int i = 0; i<array.length; i++) {
max = Math.max(array[i], max + array[i]);
found_max = Math.max(found_max, max);
if(max < 0)
start = i+1;
else if(max == found_max) {
start_old=start;
end = i;
}
}
return Arrays.copyOfRange(array, start_old, end+1);
}
I feel my thoughts are aligned with what have been posted already, but just in case - Kotlin O(NlogN) solution:
val seen = sortedSetOf(0L)
var prev = 0L
return max(a.map { x ->
val z = (prev + x) % m
prev = z
seen.add(z)
seen.higher(z)?.let{ y ->
(z - y + m) % m
} ?: z
})
Implementation in java using treeset...
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.TreeSet;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in)) ;
String[] str = read.readLine().trim().split(" ") ;
int n = Integer.parseInt(str[0]) ;
long m = Long.parseLong(str[1]) ;
str = read.readLine().trim().split(" ") ;
long[] arr = new long[n] ;
for(int i=0; i<n; i++) {
arr[i] = Long.parseLong(str[i]) ;
}
long maxCount = 0L ;
TreeSet<Long> tree = new TreeSet<>() ;
tree.add(0L) ;
long prefix = 0L ;
for(int i=0; i<n; i++) {
prefix = (prefix + arr[i]) % m ;
maxCount = Math.max(prefix, maxCount) ;
Long temp = tree.higher(prefix) ;
System.out.println(temp);
if(temp != null) {
maxCount = Math.max((prefix-temp+m)%m, maxCount) ;
}
//System.out.println(maxCount);
tree.add(prefix) ;
}
System.out.println(maxCount);
}
}
Here is one implementation of solution in java for this problem which works using TreeSet in java for optimized solution !
public static long maximumSum2(long[] arr, long n, long m)
{
long x = 0;
long prefix = 0;
long maxim = 0;
TreeSet<Long> S = new TreeSet<Long>();
S.add((long)0);
// Traversing the array.
for (int i = 0; i < n; i++)
{
// Finding prefix sum.
prefix = (prefix + arr[i]) % m;
// Finding maximum of prefix sum.
maxim = Math.max(maxim, prefix);
// Finding iterator poing to the first
// element that is not less than value
// "prefix + 1", i.e., greater than or
// equal to this value.
long it = S.higher(prefix)!=null?S.higher(prefix):0;
// boolean isFound = false;
// for (long j : S)
// {
// if (j >= prefix + 1)
// if(isFound == false) {
// it = j;
// isFound = true;
// }
// else {
// if(j < it) {
// it = j;
// }
// }
// }
if (it != 0)
{
maxim = Math.max(maxim, prefix - it + m);
}
// adding prefix in the set.
S.add(prefix);
}
return maxim;
}
public static int MaxSequence(int[] arr)
{
int maxSum = 0;
int partialSum = 0;
int negative = 0;
for (int i = 0; i < arr.Length; i++)
{
if (arr[i] < 0)
{
negative++;
}
}
if (negative == arr.Length)
{
return 0;
}
foreach (int item in arr)
{
partialSum += item;
maxSum = Math.Max(maxSum, partialSum);
if (partialSum < 0)
{
partialSum = 0;
}
}
return maxSum;
}
Modify Kadane algorithm to keep track of #occurrence. Below is the code.
#python3
#source: https://github.com/harishvc/challenges/blob/master/dp-largest-sum-sublist-modulo.py
#Time complexity: O(n)
#Space complexity: O(n)
def maxContiguousSum(a,K):
sum_so_far =0
max_sum = 0
count = {} #keep track of occurrence
for i in range(0,len(a)):
sum_so_far += a[i]
sum_so_far = sum_so_far%K
if sum_so_far > 0:
max_sum = max(max_sum,sum_so_far)
if sum_so_far in count.keys():
count[sum_so_far] += 1
else:
count[sum_so_far] = 1
else:
assert sum_so_far < 0 , "Logic error"
#IMPORTANT: reset sum_so_far
sum_so_far = 0
return max_sum,count[max_sum]
a = [6, 6, 11, 15, 12, 1]
K = 13
max_sum,count = maxContiguousSum(a,K)
print("input >>> %s max sum=%d #occurrence=%d" % (a,max_sum,count))

Max sum in an array with constraints

I have this problem , where given an array of positive numbers i have to find the maximum sum of elements such that no two adjacent elements are picked. The maximum has to be less than a certain given K. I tried thinking on the lines of the similar problem without the k , but i have failed so far.I have the following dp-ish soln for the latter problem
int sum1,sum2 = 0;
int sum = sum1 = a[0];
for(int i=1; i<n; i++)
{
sum = max(sum2 + a[i], sum1);
sum2 = sum1;
sum1 = sum;
}
Could someone give me tips on how to proceed with my present problem??
The best I can think of off the top of my head is an O(n*K) dp:
int sums[n][K+1] = {{0}};
int i, j;
for(j = a[0]; j <= K; ++j) {
sums[0][j] = a[0];
}
if (a[1] > a[0]) {
for(j = a[0]; j < a[1]; ++j) {
sums[1][j] = a[0];
}
for(j = a[1]; j <= K; ++j) {
sums[1][j] = a[1];
}
} else {
for(j = a[1]; j < a[0]; ++j) {
sums[1][j] = a[1];
}
for(j = a[0]; j <= K; ++j) {
sums[1][j] = a[0];
}
}
for(i = 2; i < n; ++i) {
for(j = 0; j <= K && j < a[i]; ++j) {
sums[i][j] = max(sums[i-1][j],sums[i-2][j]);
}
for(j = a[i]; j <= K; ++j) {
sums[i][j] = max(sums[i-1][j],a[i] + sums[i-2][j-a[i]]);
}
}
sums[i][j] contains the maximal sum of non-adjacent elements of a[0..i] not exceeding j. The solution is then sums[n-1][K] at the end.
Make a copy (A2) of the original array (A1).
Find largest value in array (A2).
Extract all values before the it's preceeding neighbour and the values after it's next neighbour into a new array (A3).
Find largest value in the new array (A3).
Check if sum is larger that k. If sum passes the check you are done.
If not you will need to go back to the copied array (A2), remove the second larges value (found in step 3) and start over with step 3.
Once there are no combinations of numbers that can be used with the largest number (i.e. number found in step 1 + any other number in array is larger than k) you remove it from the original array (A1) and start over with step 0.
If for some reason there are no valid combinations (e.g. array is only three numbers or no combination of numbers are lower than k) then throw an exception or you return null if that seems more appropriate.
First idea: Brute force
Iterate all legal combination of indexes and build the sum on the fly.
Stop with one sequence when you get over K.
keep the sequence until you find a larger one, that is still smaller then K
Second idea: maybe one can force this into a divide and conquer thing ...
Here is a solution to the problem without the "k" constraint which you set out to do as the first step: https://stackoverflow.com/a/13022021/1110808
The above solution can in my view be easily extended to have the k constraint by simply amending the if condition in the following for loop to include the constraint: possibleMax < k
// Subproblem solutions, DP
for (int i = start; i <= end; i++) {
int possibleMaxSub1 = maxSum(a, i + 2, end);
int possibleMaxSub2 = maxSum(a, start, i - 2);
int possibleMax = possibleMaxSub1 + possibleMaxSub2 + a[i];
/*
if (possibleMax > maxSum) {
maxSum = possibleMax;
}
*/
if (possibleMax > maxSum && possibleMax < k) {
maxSum = possibleMax;
}
}
As posted in the original link, this approach can be improved by adding memorization so that solutions to repeating sub problems are not recomputed. Or can be improved by using a bottom up dynamic programming approach (current approach is a recursive top down approach)
You can refer to a bottom up approach here: https://stackoverflow.com/a/4487594/1110808

Resources